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Abstract
Interpretation of biologicalmechanismsunderlying genetic risk associations for prostate cancer is complicated by the relatively
large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three
distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genome-
encoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity.We examined
67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946),
African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry.
Markers at 55 regionspassed a region-specific significance threshold (P-value cutoff range: 3.9 × 10−4–5.6 × 10−3) and in 30 regions
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we identifiedmarkers that weremore significantly associatedwith risk than the previously reported variants in themultiethnic
sample. Novel secondary signals (P < 5.0 × 10−6) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12).
Among 666 variants in the 55 regions with P-values within one order of magnitude of themost-associatedmarker, 193 variants
(29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were
detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated
variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20
(36%) and 27 (49%)when examining the 2 and 3most significantly associated variants in each region, respectively. These results
have prioritized subsets of candidate variants for downstream functional evaluation.

Introduction
Prostate cancer is the most common non-skin cancer and the
second leading cause of cancer death among men in the USA.
The risk of prostate cancer varies across racial/ethnic popula-
tions, with the incident rate in African Americans being 1.6
times that in European Americans, and 2.6 times that in Asian
Americans (1). Genome-wide association studies (GWAS) and
large-scale collaborative replication efforts have identified 100
prostate cancer risk variants (2–15) (referred to as index variants),
mainly in populations of European or Asian ancestry. Whether
the associations with these risk variants generalize and define
the biologically relevant variation in other populations are
important questions. In prior studies, examining previously
identified risk variants in men of African ancestry (16,17), we
have noted directionally consistent associations at the majority
of risk loci (83%) which suggests that the underlying functional
variant is common and shared across populations. Fine-mapping
in these regions inmen of African ancestry revealedmarkers that
have greater statistical significance and larger effect sizes [odds
ratios (ORs)] for 27 (out of 82) index variants in this population
(17). Due to the varying linkage disequilibrium (LD) patterns
and allele frequencies observed across racial/ethnic groups, stud-
ies in diverse populations, and most notably African-American
populations, have been suggested to increase power for fine-
mapping by reducing the number of proxies that are correlated
with the underlying functional allele (18–21).

Since the vast majority of index variants (and their proxies)
are located in regions outside of protein-coding exons, identify-
ing biologically functional candidate variants and the genes
they influence are substantial challenges in human genetics. It
is now clear that GWAS trait-associated variants are enriched
among regulatory elements (22–25). Recently, we and others
have developed approaches to identify candidate functional var-
iants by intersecting genetic information with epigenetic marks
that characterize regulatory elements (26–30). Identifying the tar-
get gene of a regulatory element also poses a challenge since
regulatory elements can act over great distances. Expression
quantitative trait loci (eQTL) analysis has emerged as a powerful
method to nominate candidate genes (31–33). Such approaches
have led to the identification of putative functional variants
and candidate genes for a number of prostate cancer risk regions,
including 8q24 (34–36), 10q11/MSMB (37), 6q22/RFX6 (38) and
8p21/NKX3.1 (39).

In the present study, we combined multiethnic fine-mapping
results with detailed tissue-specific functional annotation and
eQTL data for prostate cancer. Specifically, we conducted geno-
typing and imputation-based fine-mapping of 67 regions (see
Materials and Methods) in a large multiethnic sample comprised
of 17 524 prostate cancer cases and 17 519 controls from popula-
tions of European (8600 cases and 6946 controls), African (5327
cases and 5136 controls), Japanese (2563 cases and 4391 controls)
and Latino (1034 cases and 1046 controls) ancestry to further

refine the complexity of prostate cancer-associated variants as
well as elucidate novel risk variants (i.e. secondary signals) for
this malignancy. We used epigenetic and gene expression infor-
mation to functionally annotate the most-associated variants in
an attempt to identify a subset of variants in each region to be
prioritized for functional testing.

Results
Statistical fine-mapping

The 67 regions contained 69 index risk variants; 3p11-p12 and
4q22 each harbored 2 index SNPs (see below). In the analysis of
17 524 prostate cancer cases and 17 519 controls (Supplementary
Material, Tables S1–S3; Supplementary Material, File S1), a high
degree of directional consistency of the per-allele ORswas noted
with the index signals in these populations, consistent with
what we previously observed in many of these same samples/
populations (16,17,40). Of the 69 risk alleles, 68 were available
(frequency ≥0.01) in populations of European ancestry and all
68 alleles (100%) were positively associated with risk, with 50
(74%) nominally statistically significant (P < 0.05); whereas
these proportions (positive OR versus nominally significant)
were 90% (62/69) and 33% (23/69) in the African, 84% (54/64)
and 41% (26/64) in the Japanese and 81% (55/68) and 25% (17/
68) in the Latino ancestry populations, respectively.We observed
significant effect heterogeneity across populations for six index
SNPs (Phet < 9.1 × 10−4 and I2 > 80.0%; see Materials andMethods),
two of which (rs2660753/3p12 and rs9600079/13q22) were direc-
tionally inconsistent, while the other four (rs12653946/5p15,
rs1512268/8p21, rs7501939/17q12 and rs1859962/17q24) were
directionally consistent but had large differences in estimated
effect sizes across populations (Supplementary Material,
Table S4).

Using a region-specific threshold of statistical significance
(seeMaterials andMethods), we found 55 of 67 (82%) regions con-
tained signals that were significantly associated with prostate
cancer risk (Supplementary Material, Table S4). Among these 55
regions, the index SNP remained the most significantly asso-
ciated marker at 10 regions, while a correlated variant was mar-
ginally more significantly associated (r2 ≥ 0.2 and <1 order of
magnitude change in the P-value compared with the index
SNP) at 15 regions (Supplementary Material, Table S4). The effect
sizes (ORs) of the index SNP and the most-associated correlated
variant in these 15 regions were similar in magnitude in both
the multiethnic sample and the racial/ethnic population in
which the discovery GWASwas conducted (referred to as the dis-
covery GWAS population), with no statistically significant hetero-
geneity noted.

In 30 regions, combined data from multiple populations re-
vealed variants that were more significantly associated with
risk than the index variant, which we defined as a >1 order of
magnitude change in the P-value (Table 1; Supplementary
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Table 1. The index variants and most significantly associated markers in 30 known prostate cancer susceptibility regions.

Index variant Region, ethnicitya Multiethnic European African Japanese Latino
Most-associated marker r2 with index in

EUR/AFR/ASNb

Allelesc ORd Pe Phet
f RAFg ORd Pe RAFg ORd Pe RAFg ORd Pe RAFg ORd Pe

rs11902236 2p25.1, EUR T/C 1.01 0.72 0.055 0.27 1.06 0.036 0.62 0.98 0.56 0.11 0.92 0.13 0.24 0.94 0.4
rs7575106 0.20/0.08/— G/A 1.11 0.0011 0.033 0.07 1.16 0.0013 0.09 1.11 0.038 0 – – 0.06 0.80 0.099

rs13385191 2p24.1, ASN G/A 1.08 0.0003 0.043 0.24 1.03 0.24 0.06 1.00 0.99 0.56 1.16 6.1 × 10−5 0.28 1.14 0.053
rs9306894 0.45/0.27/0.82 G/A 1.10 5.8 × 10−8 0.21 0.37 1.08 0.0011 0.12 1.05 0.28 0.57 1.17 1.1 × 10−5 0.32 1.12 0.1

rs1465618 2p21, EUR T/C 1.10 2.3 × 10−6 0.013 0.22 1.08 0.0097 0.11 1.02 0.62 0.68 1.22 3.6 × 10−7 0.41 1.04 0.6
rs13017478 0.17/0.02/0.73 C/T 1.10 7.4 × 10−8 0.013 0.70 1.09 0.00091 0.80 1.07 0.081 0.71 1.23 4.4 × 10−7 0.79 0.96 0.65

rs721048 2p15, EUR A/G 1.07 0.0091 0.21 0.18 1.05 0.13 0.04 1.12 0.15 0.05 1.01 0.94 0.17 1.24 0.0088
rs58235267 0.15/0.03/0.00 G/C 1.13 3.9 × 10−12 0.73 0.51 1.12 1.7 × 10−5 0.44 1.16 1.5 × 10−6 0.73 1.11 0.013 0.54 1.09 0.2

rs10187424 2p11.2, EUR T/C 1.07 3.6 × 10−5 0.24 0.58 1.04 0.12 0.36 1.07 0.016 0.63 1.10 0.0079 0.66 1.18 0.015
rs1561198 0.82/0.40/0.99 C/T 1.09 3.6 × 10−7 0.69 0.54 1.08 0.0015 0.32 1.07 0.02 0.63 1.10 0.011 0.63 1.17 0.02

rs2660753h 3p12.1, EUR T/C 1.07 0.00057 5.1 × 10−7 0.10 1.14 0.00047 0.50 0.95 0.061 0.27 1.20 4.7 × 10−6 0.21 1.23 0.0071
rs76668454 0.37/0.02/0.28 C/T 1.29 4.6 × 10−19 0.19 0.07 1.27 1.2 × 10−7 0.05 1.15 0.041 0.16 1.34 1.3 × 10−9 0.13 1.46 8.5 × 10−5

rs2055109h 3p11.2, ASN C/T 1.08 0.00024 0.024 0.23 1.05 0.088 0.12 1.06 0.21 0.11 1.27 2.5 × 10−5 0.17 1.07 0.43
rs76668454 0.06/0.00/0.30 C/T 1.29 4.6 × 10−19 0.19 0.07 1.27 1.2 × 10−7 0.05 1.15 0.041 0.16 1.34 1.3 × 10−9 0.13 1.46 8.5 × 10−5

rs7611694 3q13.2, EUR A/C 1.05 0.0028 0.068 0.58 1.08 0.0017 0.65 0.99 0.63 0.20 1.11 0.024 0.67 1.06 0.37
rs12629813 0.80/0.04/0.71 C/T 1.08 1.3 × 10−5 0.97 0.57 1.08 0.0029 0.57 1.07 0.027 0.23 1.09 0.066 0.64 1.10 0.15

rs10934853 3q21.3, EUR A/C 1.06 0.00039 0.037 0.28 1.12 1.1 × 10−5 0.71 1.04 0.24 0.50 1.01 0.7 0.40 0.97 0.67
rs4857837 0.90/0.18/0.11 A/G 1.13 2.1 × 10−11 0.15 0.28 1.10 0.00053 0.30 1.16 1.2 × 10−6 0.15 1.21 0.00015 0.29 1.04 0.56

rs10936632 3q26.2, EUR A/C 1.08 2.7 × 10−5 0.22 0.51 1.11 1.0 × 10−5 0.26 1.05 0.16 0.34 1.04 0.46 0.37 1.00 0.95
rs76925190 0.18/0.04/0.10 A/C 1.22 1.4 × 10−13 0.15 0.81 1.28 1.8 × 10−12 0.96 1.06 0.47 0.79 1.15 0.015 0.79 1.19 0.048

rs1894292 4q13.3, EUR G/A 1.05 0.002 0.3 0.52 1.07 0.006 0.68 1.03 0.42 0.66 1.08 0.032 0.64 0.96 0.55
rs4694176 0.53/0.04/0.55 C/A 1.07 3.9 × 10−5 0.7 0.58 1.08 0.0017 0.79 1.10 0.0089 0.65 1.04 0.27 0.50 1.04 0.54

rs12500426i 4q22.3, EUR A/C 1.03 0.052 0.12 0.46 1.05 0.043 0.40 0.98 0.5 0.44 1.04 0.3 0.55 1.14 0.043
rs60063444 0.65/0.13/0.83 T/C 1.08 5.9 × 10−5 0.79 0.40 1.07 0.0042 0.11 1.10 0.048 0.39 1.05 0.17 0.51 1.12 0.075

rs17021918i 4q22.3, EUR C/T 1.05 0.003 0.95 0.65 1.05 0.038 0.78 1.06 0.093 0.63 1.04 0.34 0.72 1.08 0.28
rs60063444 0.30/0.00/0.42 T/C 1.08 5.9 × 10−5 0.79 0.40 1.07 0.0042 0.11 1.10 0.048 0.39 1.05 0.17 0.51 1.12 0.075

rs2242652 5p15.33, EUR G/A 1.12 5.9 × 10−6 0.43 0.80 1.13 0.001 0.85 1.07 0.12 0.81 1.21 0.0035 0.85 1.15 0.22
rs7726159 0.43/0.59/0.27 C/A 1.11 1.7 × 10−7 0.92 0.67 1.12 0.00013 0.81 1.11 0.0053 0.65 1.10 0.025 0.71 1.06 0.49

rs12653946 5p15.33, EUR T/C 1.13 6.8 × 10−14 4.6 × 10−6 0.42 1.10 8.2 × 10−5 0.42 1.07 0.018 0.46 1.33 2.8 × 10−15 0.49 1.02 0.76
rs4975758 0.82/0.49/0.96 G/C 1.15 2.2 × 10−16 2.7 × 10−5 0.47 1.11 5.0 × 10−5 0.33 1.11 0.0012 0.46 1.34 1.3 × 10−15 0.50 1.04 0.55

rs1933488 6q25.2, EUR A/G 1.03 0.082 0.28 0.58 1.06 0.02 0.56 0.99 0.81 0.19 1.05 0.26 0.58 0.97 0.67
rs13215045 0.70/0.32/0.32 C/T 1.06 0.0003 0.71 0.69 1.09 0.0016 0.56 1.05 0.081 0.38 1.03 0.37 0.72 1.06 0.45
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Table 1. Continued

Index variant Region, ethnicitya Multiethnic European African Japanese Latino
Most-associated marker r2 with index in

EUR/AFR/ASNb

Allelesc ORd Pe Phet
f RAFg ORd Pe RAFg ORd Pe RAFg ORd Pe RAFg ORd Pe

rs6465657 7q21.3, EUR C/T 1.06 0.0045 0.15 0.46 1.09 0.00051 0.89 1.01 0.92 0.90 1.04 0.48 0.69 0.94 0.36
rs138101303 0.22/0.03/0.11 A/G 1.11 7.3 × 10−5 0.12 0.71 1.17 8.2 × 10−6 0.82 1.06 0.2 0.86 1.01 0.87 0.80 1.00 0.99

rs1512268 8p21.2, EUR T/C 1.17 2.5 × 10−21 0.00012 0.43 1.10 6.8 × 10−5 0.65 1.15 2.3 × 10−6 0.38 1.34 1.3 × 10−15 0.47 1.20 0.0037
rs1160267 0.99/0.64/0.99 G/A 1.18 4.5 × 10−23 0.00017 0.43 1.10 4.3 × 10−5 0.72 1.19 8.2 × 10−8 0.38 1.34 1.2 × 10−15 0.47 1.20 0.0041

rs817826 9q31.2, ASN C/T 1.04 0.11 0.36 0.14 1.02 0.58 0.30 1.07 0.027 0.06 0.97 0.64 0.11 0.94 0.51
rs1746824 0.02/0.38/0.25 C/T 1.06 0.00095 0.032 0.28 1.01 0.6 0.48 1.10 0.0012 0.29 1.03 0.44 0.31 1.22 0.0039

rs2252004 10q26.12, ASN C/A 1.08 0.00022 0.021 0.90 1.08 0.047 0.49 1.03 0.39 0.79 1.21 2.0 × 10−5 0.70 1.05 0.48
rs77929344 —/0.00/0.48 T/C 1.31 9.3 × 10−7 1 0 – – <0.01 – – 0.87 1.31 9.3 × 10−7 0 – –

rs1938781 11q12.1, ASN G/A 1.08 1.2 × 10−5 0.023 0.21 1.03 0.4 0.33 1.07 0.02 0.31 1.19 9.6 × 10−6 0.24 1.13 0.091
rs12223473 0.02/0.16/0.50 G/T 1.18 4.6 × 10−7 0.66 <0.01 – – 0.08 1.22 0.00012 0.19 1.15 0.0022 0.07 1.20 0.16

rs10875943 12q13.12, EUR C/T 1.06 0.0004 0.33 0.30 1.08 0.0049 0.63 1.02 0.45 0.81 1.13 0.0093 0.32 1.06 0.39
rs11168963 0.92/0.58/0.71 G/A 1.08 2.4 × 10−5 0.91 0.29 1.07 0.0086 0.57 1.07 0.021 0.76 1.11 0.021 0.31 1.07 0.36

rs902774 12q13.13, EUR A/G 1.12 1.7 × 10−5 0.0032 0.16 1.20 3.9 × 10−8 0.08 0.97 0.55 0.06 1.21 0.19 0.14 1.00 0.97
rs55958994 0.82/0.01/— T/C 1.21 2.8 × 10−13 0.34 0.13 1.25 2.1 × 10−10 0.14 1.17 0.00013 0 – – 0.07 1.09 0.5

rs1270884 12q24.21, EUR A/G 1.08 2.3 × 10−5 0.21 0.48 1.11 2.9 × 10−5 0.20 1.03 0.47 0.20 1.03 0.49 0.38 1.14 0.046
rs10774740 0.41/0.21/0.59 G/T 1.10 2.2 × 10−8 0.12 0.61 1.14 1.1 × 10−7 0.32 1.06 0.062 0.31 1.04 0.27 0.53 1.14 0.039

rs9600079 13q22.1, ASN T/G 1.03 0.035 7.8 × 10−5 0.44 1.02 0.41 0.53 0.97 0.22 0.39 1.19 1.1 × 10−6 0.40 1.03 0.65
rs7327286 0.19/0.01/0.83 G/A 1.13 6.1 × 10−10 0.19 0.18 1.09 0.0047 0.17 1.11 0.0071 0.40 1.20 3.3 × 10−7 0.38 1.09 0.19

rs8008270 14q22.1, EUR C/T 1.11 3.0 × 10−6 0.029 0.81 1.17 2.4 × 10−7 0.72 1.04 0.17 <0.01 – – 0.89 1.06 0.56
rs62003517 0.98/0.01/1.00 C/G 1.15 2.0 × 10−7 0.33 0.81 1.18 2.2 × 10−7 0.95 1.05 0.44 <0.01 – – 0.90 1.15 0.18

rs11649743 17q12 A, EUR G/A 1.16 3.9 × 10−12 0.2 0.80 1.15 3.2 × 10−6 0.93 1.07 0.22 0.72 1.20 8.5 × 10−6 0.83 1.30 0.0018
rs11658433 0.87/0.38/0.67 A/C 1.19 5.6 × 10−14 0.55 0.79 1.16 1.9 × 10−6 0.94 1.19 0.014 0.72 1.23 3.6 × 10−6 0.82 1.30 0.0038

rs7501939 17q12 B, EUR C/T 1.16 2.5 × 10−19 1.9 × 10−6 0.61 1.20 1.5 × 10−12 0.48 1.05 0.062 0.70 1.34 6.6 × 10−14 0.68 1.04 0.52
rs11263763 0.71/0.18/0.91 A/G 1.20 3.9 × 10−26 0.00031 0.54 1.22 2.9 × 10−15 0.62 1.10 0.0028 0.70 1.35 4.6 × 10−14 0.61 1.11 0.12

rs11650494 17q21.32, EUR A/G 1.10 0.00049 0.86 0.08 1.09 0.047 0.23 1.10 0.0035 <0.01 – – 0.06 1.02 0.86
rs111834333 0.87/0.18/— T/C 1.15 6.0 × 10−6 0.043 0.08 1.08 0.078 0.12 1.24 1.1 × 10−6 0 – – 0.06 0.97 0.84

rs1859962 17q24.3, EUR G/T 1.10 7.0 × 10−9 9.8 × 10−6 0.49 1.20 1.1 × 10−13 0.29 1.00 0.91 0.27 1.01 0.79 0.61 1.14 0.041
rs6501436 0.96/0.08/0.94 G/A 1.14 1.5 × 10−14 0.005 0.50 1.20 1.0 × 10−13 0.22 1.13 0.00047 0.28 1.01 0.74 0.61 1.15 0.039

rs8102476 19q13.2, EUR C/T 1.07 4.5 × 10−5 0.017 0.54 1.11 1.3 × 10−5 0.76 1.09 0.015 0.37 0.97 0.34 0.50 1.07 0.28
rs11083450 0.77/0.58/0.51 T/C 1.09 7.7 × 10−7 0.2 0.49 1.13 1.0 × 10−6 0.67 1.06 0.04 0.31 1.03 0.38 0.42 1.03 0.63
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Material, Fig. S1). A complete list of these variants can be found in
Supplementary Material, Table S4. The most significantly asso-
ciated markers at three regions (rs13017478/2p21, rs58235267/
2p15 and rs76925190/3q26) were weakly correlated with the
index variant in each of these respective regions (r2 range, 0.15–
0.18), but were still able to capture the index signals by condition-
al analysis (see Materials and Methods; Supplementary Material,
Table S5). In these 30 regions, the ORs of the most-associated
markers demonstrated marked directional consistency for 27
(90%) regions, compared with only 18 of the 32 (56%) index var-
iants (Table 1). However, each of the 55 regions had a set of
risk-associated SNPs from the meta-analysis with similar effect
sizes and corresponding P-values. While this set of markers is
statistically indistinguishable they define a relatively small sub-
set that most likely contain the underlying functional variant
in each region.

Interestingly, two index SNPs located 357 kb apart and previ-
ously reported as independent signals (rs2660753/3p12 (41) and
rs2055109/3p11 (11)), could be explained by the most-associated
marker in the region after fine-mapping (rs76668454). Both
index SNPs are modestly correlated with rs76668454 in the dis-
covery GWAS populations (r2 ≥ 0.30). This scenario was also
observed at 4q22 with the two index SNPs (rs12500426 and
rs17021918), located 48 kb apart, captured by marker rs60063444
(Supplementary Material, Table S6).

When evaluating the most-associated variants instead of the
index SNPs, associations at three regions (rs76668454/3p12,
rs7327286/13q22 and rs6501436/17q24) were no longer signifi-
cantly heterogeneous across populations. However, three other
regions (rs4975758/5p15, rs1160267/8p21 and rs11263763/17q12)
remained significantly heterogeneous, likely due to the larger es-
timated effect sizes observed in the Japanese population
(Table 1).

An example of a region illustrating the improvement in the
association signal through multiethnic fine-mapping is shown
in Figure 1. At 13q22, the index SNP rs9600079, originally identi-
fied in this Japanese sample (42) (Table 1), was not significantly
associated with prostate cancer risk in the other racial/ethnic
populations (European: OR = 1.02, P = 0.41; African: OR = 0.97,
P = 0.22; Latino: OR = 1.03, P = 0.65). In testing all common variants
that are correlated with rs9600079 in Asians (r2≥ 0.2), the most-
associated variant in the multiethnic meta-analysis was
rs7327286 (overall: P = 6.1 × 10−10), which is located 15 kb up-
stream from the index SNP (Fig. 1). This variant is highly corre-
lated with the index SNP in Asians (r2 = 0.83), but is minimally
correlated in Europeans (r2 = 0.19) and Africans (r2 = 0.01). It was
more statistically significant and had a larger effect than
the index SNP in each population and overall, statistical
evidence for heterogeneity no longer remained (Phet = 0.19 versus
Phet of index = 7.8 × 10−5).

At 17q24 (Fig. 2), the index SNP rs1859962 was originally
reported in a European GWAS (5). The association with the
index SNP was significantly heterogeneous across racial/ethnic
populations (Phet = 9.8 × 10−6; Table 1), with the largest effect
and the most significant association observed in Europeans
(OR = 1.20, P = 1.1 × 10−13).When examining all correlated (r2≥ 0.2)
variants in Europeans, rs6501436, a SNP located 10 kb down-
stream from the index SNP, was the most-associated marker in
the multiethnic analysis (P = 1.5 × 10−14). This marker is strongly
correlated with the index SNP in both European (r2 = 0.96) and
Asian ancestry populations (r2 = 0.94), but isminimally correlated
(r2 = 0.08) in Africans. Moreover, in men of African ancestry, this
SNP was more significantly associated with risk than the index
SNP (OR = 1.13, P = 4.7 × 10−4 versus OR = 1.00, P = 0.91). The effectT
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heterogeneity of rs6501436 was no longer significant across po-
pulations (Phet = 0.005 versus Phet of index = 9.8 × 10−6).

Investigating associations in multiple populations also aided
in deciphering potentially ethnic-specific risk variants. As an
example, at 10q26, the index variant rs2252004, initially identi-
fied in this Japanese sample where the signal is the strongest
(OR = 1.21, P = 2.0 × 10−5), is common in all populations (RAF
range, 0.49–0.90) and is only weakly associated with risk in
Europeans (OR = 1.08, P = 0.04; Table 1). In examining all variants
correlatedwith rs2252004 (r2 > 0.2, ASN 1KGP), themost-associated
marker, rs77929344, was only found in Japanese (RAF = 0.87;
OR = 1.31, P = 9.3 × 10−7). Markers correlated with rs2252004 were
only modestly associated with prostate cancer risk in the other
populations (P-values >0.003; region-specific threshold for sig-
nificance P = 0.001; Supplementary Material, Table S4), suggest-
ing that this may be a Japanese-specific risk signal.

We also identified evidence of potential secondary signals in
two regions through conditional analyses (at P < 5.0 × 10−6; see
Materials and Methods; Supplementary Material, Table S7). At
3q21, rs13062436, located 179 kb from the index SNP (rs10934853),
was significantly associated with prostate cancer risk when
conditioning on the index signal (OR = 1.14, P = 5.0 × 10−8; Supple-
mentary Material, Fig. S2). Similarly at 3p12, rs17181170 was sig-
nificantly associated with risk in conditional analyses (OR = 1.10,
P = 5.9 × 10−8; Supplementary Material, Fig. S3). As expected, both
of these novel risk variants are uncorrelated with the index SNPs
or the most-associated markers for the index signals in each
population (r2≤ 0.06).

Functional annotation

Multiethnic fine-mapping in each region defined sets of alleles
based on statistical significance, withmany having similar effect
sizes (Supplementary Material, Table S4). To further prioritize
which of the most-associated variants have putative functional-
ity, we mapped them relative to epigenetic marks and transcrip-
tion factor binding data from publically available sources (see
Materials and Methods). Here we limited the annotation to the
55 regions that were significantly associatedwith prostate cancer
risk in the multiethnic analysis (as described above) and the 666
variants in these regions that had P-values that were within 1
order of magnitude of the most-associated marker (referred to
as ‘top-order’ variants). Since this deterministic approach relies
heavily on P-value rankings, we compared this approach with
the ranking distribution obtained by re-sampling the effects of
all candidate SNPs in each region for each population from a
multivariate distribution (see Materials and Methods). At 49
(out of 55, 89%) regions, the set of top-order variants contained
the top-ranked SNP when resampling (Supplementary Material,
Table S8). Moreover, 84% on average (100% median) of the top-
order SNPs were within the 95% joint posterior probabilities
from resampling. For 28 regions, the entire set of top-order
SNPs was included within the 95% joint posterior probabilities.

Of the 666 variants, 193 (29%) overlapped with functional
marks and could be assigned into one of four predicted function-
al categories: missense variants, enhancers, promoter or pro-
moter-proximal enhancers and untranslated regions of coding
exons (UTR) (Supplementary Material, Tables S9 and S10). Of

Figure 1. A Regional Association Plot of the Prostate Cancer Risk Region at Chromosome 13q22.1. The −log10 P-values are from the multiethnic meta-analysis. The index

SNP (rs9600079), originally discovered in this Japanese sample (42), is designated by a purple circle. The r2 shown is estimated in Asians from 1000 Genomes Project (ASN

1KGP) in relation to rs9600079. Gray circles are SNPs not in ASN 1KGP (r2 cannot be estimated). The top red circle represents the marker (rs7327286) that is most strongly

associated with risk in this region. The plot was generated using LocusZoom (http://csg.sph.umich.edu/locuszoom/).
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the 193 SNPs, 2 were non-synonymous substitutions (rs2292884/
H347R inMLPH and rs699664/R325Q in GGCX), 152 (79%) were pre-
sent in enhancers, 29 (15%) were in promoters, and 10 (5%) were
located within untranslated regions. The most statistically asso-
ciated variants in 12 of the 55 (22%) regions represented the best
functional candidates in the region, whereas this number in-
creased to 20 (36%) and 27 (49%) when examining the 2 or 3
most significantly associated markers in each region, respective-
ly (Supplementary Material, Table S9). To determinewhether the
top-order variants are enriched for enhancer annotations, we ex-
amined 721 371 SNPs (MAF > 1%) and insertion/deletion variants
in the 1KGP database within windows of 1 Mb (centered on the
index SNP) at the 55 regions and found that 102 735 (14%) over-
lapped with the features that we used to identify and annotate
enhancers. Comparedwith this figure, our 666 top-order variants
contained 152 enhancer overlaps (23%), constituting a 1.6-fold
enrichment over background (P = 1.1 × 10−9).

We also performed a cis-eQTL analysis with the top-order var-
iants (n = 666) in 145 prostate tumor samples to further assess
whether the risk signals defined by the top SNPs may also be as-
sociated with an eQTL. The cis-eQTL associations in this sample
based on the index variants or correlated markers (r2 > 0.5) in
the CEU 1KGP population have been published previously (35).
In 11 regions, we found suggestive evidence of cis-eQTL
associations (P < 9.1 × 10−4; see Materials and Methods) between
top-order SNPs and the expression of one or more nearby genes
(Supplementary Material, Table S9) with the most significant as-
sociations observed at 5p15 and IRX4 (P = 2.4 × 10−15) (43), 6q21
and SESN1 (P = 6.3 × 10−8), 6q25 and RGS17 (P = 2.5 × 10−6), 11q22

and MMP7 (P = 2.3 × 10−6), and at 17p13 with VPS53 (P = 1.3 × 10−6)
and FAM57A (P = 6.4 × 10−6). Five cis-eQTL associations (SLC6A19,
C10orf32, CTBP2, MMP7 and FAM57A) were not identified previ-
ously when focusing on the index variant or those correlated
with the index SNP in the European ancestry population (35).
To determine whether the top-order variants were enriched for
cis-eQTL associations, we examined all common variants (MAF≥
1%) in the 55 regions where fine-mapping was conducted. Of
334 357 variants in these regions, 4822 (1.4%) were significant
cis-eQTLs. In comparison, 87 out of the 666 top-order variants
in the same regions were significant cis-eQTLs (13%), constituting
a 9-fold enrichment over background (P = 5.0 × 10−55).

Four of the regions were unique in that the statistical associ-
ation, functional annotation and eQTL evidence converged on a
small number of variants (Fig. 3). These regions are discussed
below; detailed annotation information for all regions is provided
in the Supplementary Material, Figure S4 and Supplementary
Material, File S1.

At 10q24, the most promising functional candidate is variant
rs12773833 (7 annotations, P = 1.8 × 10−6), one of the most-
associated variants in the region. It overlaps with ChIPseq
peaks for FOXA1, the Androgen Receptor in tumor and normal
prostate tissue samples, DNaseI, H3K27Ac and H3K4me1 and is
an eQTL (P = 6.5 × 10−4) with the AS3MT gene ∼200 kb telomeric
(Fig. 3A; Supplementary Material, Table S9). A second candidate,
rs7094325 (P = 1.7 × 10−6), is an eQTL for AS3MT (P = 5.1 × 10−4) and
C10orf32 (P = 7.7 × 10−4; Supplementary Material, Table S9), over-
laps a CTCF peak in LNCaP (Fig. 3A) and disrupts a potential
CTCF response element (Supplementary Material, Table S10).

Figure 2. A Regional Association Plot of the Prostate Cancer Risk Region at Chromosome 17q24.3. The −log10 P-values are frommultiethnic meta-analysis. The index SNP

(rs1859962), originally discovered in a European GWAS (5), is designated by a purple circle. The r2 shown is estimated in Europeans from 1000 Genomes Project (EUR 1KGP)

in relation to rs1859962. Gray circles are SNPsnot in EUR 1KGP (r2 cannot be estimated). The top red circle represents themarker (rs6501436) that ismost strongly associated

with risk in this region. The plot was generated using LocusZoom (http://csg.sph.umich.edu/locuszoom/).
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At 10q26, the top-order SNPs include rs11598549 (P = 2.3 ×
10−8), which is situated in a DNaseI site (Fig. 3B) and is an eQTL
with CtBP2 (P = 7.9 × 10−4; Supplementary Material, Table S9).
Other top-order SNPs, rs4962419, rs7077275, rs12769019 and
rs12769682 (P < 2 × 10−7), also overlap the DNaseI hypersensitive
and transcription-factor bound region of this enhancer, with
the low-risk A allele of rs12769019 predicted to disrupt an Andro-
gen Receptor response element (Fig. 3B; SupplementaryMaterial,
Table S10). A recent report confirmed that the Androgen Receptor
binds to this region and that the risk allele of rs12769019 med-
iates increased androgen responsiveness of the enhancer in a re-
porter assay (44).

At 12q13, the most significantly associated SNP rs55958994
(P = 2.8 × 10−13; Supplementary Material, Table S9) overlaps
6 annotations (Fig. 3C) and is situated within a DNaseI hyper-
sensitive site in an H3K27Ac and H3K4me1 marked active

promoter-proximal enhancer of KRT8. In a previous fine-
mapping study in this African sample we reported rs55958994
as the most significant association in the region (17). The multi-
ethnic results presented here with a larger sample and multiple
populations further support rs55958994 as the most-associated
marker and best functional candidate in the region.

At 17p13, the index SNP rs684232 (five annotations, P = 5.3 ×
10−5) and the most-associated SNP rs2474694 (four annotations,
P = 3.3 × 10−5) are in different DNaseI hypersensitive sites within
the same H3K27Ac and H3K4me3 marked promoter of the
VPS53 gene (Fig. 3D). Both SNPs are also eQTLs with VPS53
(rs684232 P = 4.6 × 10−6; rs2474694 P = 4.6 × 10−4) and FAM57A
(rs684232 P = 2.3 × 10−5; rs2474694 P = 2.3 × 10−5; Supplementary
Material, Table S9). Of the two, rs684232 is predicted to disrupt
a GATA6 binding site, whereas rs2474694 is located within the
5′ UTR of VPS53.

Figure 3. Genome Browser Views of Four Candidate Risk Regions. SNP locations are shown relative to epigenetic features in LNCaP (and other) cell lines. Intervals for

significant peak regions are denoted with black rectangles for each dataset indicated at left. SNPs are colored by order of P-value magnitude relative to the top SNP

(lilac) in the region: first order red, second order green, third order blue, all others black. Red dotted lines guide the exact position of the best functional candidates

relative to epigenetic features. Gray lines guide the position of other SNPs. For the most notable SNPs in enhancer or promoter regions an alignment of the

surrounding DNA sequence to a response element match is shown, with gray boxes indicating position of the SNP. (A) chromosome 10q24.32 region. (B) chromosome

10q2.13 region. (C) chromosome 12q13.13 region. (D) chromosome 17p13.3 region.
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Discussion
In this multiethnic fine-mapping study of prostate cancer risk
loci, 55 regions (out of 67 examined) passed region-specific
significance thresholds, and in 25 regions, the index SNP and cor-
related variants were most effective in denoting the risk asso-
ciation. In 30 regions, we identified markers that are more
statistically associated with risk than the index SNP in themulti-
ethnic sample. In applying information on functional annotation
from prostate cancer cell lines wewere able to further define var-
iants inmany regions that may be considered high-priority func-
tional candidates for experimental testing.

GWAS have revealed 100 genetic risk variants for prostate
cancer, more than any other common cancer. Although most
of the associations were originally identified in populations of
European ancestry, the vast majority of these risk variants are
also associated with risk in other populations, pointing to
common shared functional variants (16,17,40). Some loci do
not replicate despite adequate statistical power. Given the direc-
tional consistency noted across populations, this observation
suggests that the index variant is not the biologically relevant
allele or is not a valid proxy for the true causal variant in all po-
pulations. Fine-mapping using trans-ethnic populations has
been shown both in theory (45–48) and in practice (18–21) for a
number of traits to have better performance than using a single
population of relatively homogeneous ancestry. Based on the
expectation that most functional alleles are common and
shared, the success of this approach requires having good cover-
age on the genetic variation across populations. Here we used
GWAS genotyping plus imputation based on a high-density ref-
erence panel from 1KGP, which is currently the most compre-
hensive and efficient approach for testing common alleles at
risk regions.

The primary goal of our studywas to reduce the complexity in
each region defined by an index signal and to identify a subset of
variants that most likely contain functional variation affecting
prostate cancer risk in all populations. However, this does not
rule out the possibility of additional risk variants in these regions
as demonstrated at 3q21 and 3p12, or the possibility of allelic het-
erogeneity in a region in these populations. Additionally, mul-
tiple variants may jointly contribute to the disease risk in a
non-additive fashion such as through haplotypes or gene–gene
interactions, which requires further investigation.

In selecting regions for fine-mapping, we applied a conserva-
tive region-specific significance threshold to reduce the potential
for identifying and reporting false-positive associations. Several
methods for prioritizing the best candidate markers in a region
have been proposed and utilized in trans-ethnic fine-mapping
studies (16,18–21,47). In general, these methods attempt to iden-
tify a single variant or so-called ‘bestmarker’ in a region among a
group of variantsmutually correlated. For example,MANTRA (47)
leverages heterogeneity acrossmultiple ethnic groups to improve
power and provide a credible set of variants. When applied to our
data, the credible set often contained hundreds of SNPs with a
ranking similar to the P-value ranking (data not shown). Instead,
we opted to leverage the differential LD structure and investigate
SNPs with consistent estimates across populations ranked by P-
value, in order to provide a narrower list of top-order variants
as promising candidates for functional annotation. To account
for the uncertainty from estimation on the resulting ranking of
P-values, we used an empirical resampling approach to estimate
the probability that each SNP is the most-associated marker
within each region. For the vast majority (89%) of the regions
that we examined, the top-ranked SNP from resampling is

included within our defined set of top-order variants. Although
requiring validation, this suggests that the underlying functional
allele, which is expected to have the largest effect size and smal-
lest P-value, has a good probability of being included within the
subset of alleles that we have defined in each region (shown in
Supplementary Material, Table S4).

Comparedwith past fine-mapping studies for prostate cancer,
our study is empowered by improved imputation coverage,
increased sample size and different LD structure from multi-
ethnic populations. Previous fine-mapping efforts limited to sin-
gle populations include region-specific studies of 5p15 (TERT) (49),
8p21 (NKX3.1) (39), 10q11 (MSMB) (50), 11q13 (51–53), 17q12
(HNF1B) (54,55) and 19q13 (KLK3) (56,57) in European or Asian an-
cestry populations as well as an initial characterization of the
known regions in part of this African ancestry sample (16,17).
In a concurrent fine-mapping study, which is the largest fine-
mapping study to date in men of European ancestry, Al Olama
et al. (79) examined 64 regions in 25 779 prostate cancer cases
and 26 218 controls, with the majority of samples genotyped
with the iCOGS array (14). Leveraging individual-level data, they
used stepwise regression to suggest more significant markers at
47 regions. In total, they indicate 1623 variants as candidates via
statistical fine-mapping (21.6 SNPs per region on average;median
of 13). Of these variants, they identify 403 with additional func-
tional annotation with an average of 5.4 per region (median =
3). In comparison, our multiethnic study suggests a total of 666
SNPs in 55 regions (average of 12.1 SNPs per region and amedian
of 6). With additional functional annotation our study identifies
an average of 3.5 markers (median = 2). Comparing final conclu-
sions for the 46 overlapping regions across the two studies, there
are 29 (63.0%) regions with at least one overlapping functional
candidate marker. Moreover, 11 of the 46 regions (23.9%) have a
single overlapping candidate—a strong candidate marker for fu-
ture more detailed functional investigation. For these overlap-
ping regions, Al Olama et al. reported novel secondary signals
(P < 1.0 × 10−5) with 13 variants in these regions. In our study,
nine of these variants were nominally associated with prostate
cancer risk (P < 0.05), with two markers correlated (r2 range,
0.47–0.93, EUR 1KGP) with the secondary signals we identified
at 3q21 and 3p12.We believe that these contrasting findings high-
light the value of using both homogeneous aswell asmultiethnic
samples in fine-mapping, with the latter focused on prioritizing
risk variants that generalize across populations and thus, are
most likely to be or tag the biologically functional variant.

In order to assess the variants for biological relevance we de-
termined their locations relative to chromatin biofeatures and
other primary sequence features in cell types that reflect the epi-
thelial cell types of origin for this cancer. These include PrEC and
RWPE1, which are immortalized, non-transforming prostate epi-
thelial cell lines, and LNCaP, a prostate cancer cell line that was
originally isolated from lymph node metastases. Previously, we
examined GWAS risk variants and proxies within biofeatures in
these cell types and identified 727 putative functional SNPs in
LD (r2 > 0.5) with the index SNP in 77 risk regions (58). A large pro-
portion (667, or 88%) of these SNPs fell within 217 distinct enhan-
cer regions. While this subset of variants likely captures many
true biologically functional variants, associations with prostate
cancer risk were not directly assessed. Here we show that
through multiethnic association mapping we are able to elimin-
ate many of the proxies and reduce the number of candidate
functional variants to a much smaller subset within one or two
enhancers inmany regions. In particular, wewere able to narrow
down our list of candidates from 666 top-order SNPs to 193within
chromatin features of biological interest in the cell type of origin,
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of which 152 (79%) are located in 82 distinct enhancer regions,
with an average of 1.5 enhancers per region over 55 regions. Con-
trast this with the previous study where we found 217 putative
risk enhancers over 77 regions, equivalent to 2.8 enhancers
per risk region. We also evaluated eQTLs to further highlight
potential functional alleles and target genes that may be altered
by inherited variation. Through combining different sources
of evidence we have attempted to reduce the number of variants
and hypotheses for researchers to test in follow-up studies
designed to reveal the biological mechanisms underlying
genetic risk.

We showed that relative to random selections of SNPs from
1KGP, our top-order set was highly enriched for enhancer and
promoter regulatory elements, consistent with previous findings
that the majority of GWAS signals for many cancers overlap en-
hancer regions (58,59). Moreover, our finding of enrichment
strongly suggests that there is a real bias toward perturbation of
regulatory sequences in risk for prostate cancer. It also suggests,
because of the types of disruptions, that risk is mediated bio-
logically at the level of point-disruptions of enhancer–promoter
interactions mediated by transcription factor binding to the
chromosome at the location of the SNP. More studies are needed
to assess the gene regulation for each risk enhancer, identify
potential gene targets, and determine which targets mediate
phenotypes consistent with increased risk for cancer using
cell-based assays. Combining new technologies, including
CRISPR-cas9 RNA-mediated genome editing for knockout and
allele replacement experiments and 4C chromatin interaction
assays to identify physical interactions between risk enhancers
and their target regions, are expected to yield insight into the
mechanism of GWAS identified risk at many of the regions.

In summary, we have characterized 55 prostate cancer risk re-
gions through statistical multiethnic fine-mapping, functional
annotation and cis-eQTL analyses and have revealed variants in
∼50% of these regions that may be functional and in turn should
be prioritized in future experimental testing to understand bio-
logical mechanisms at prostate cancer risk regions.

Materials and Methods
Study populations and genotyping

We combined data from studies with existing high-density SNP
genotyping in prostate cancer GWAS in the following popula-
tions: European ancestry [8600 cases and 6946 controls from
the Cancer of the Prostate in Sweden (CAPS) (60), Breast and Pros-
tate Cancer Cohort Consortium (BPC3) (10) and PEGASUS]; African
ancestry [5327 cases and 5136 controls from the African Ancestry
Prostate Cancer GWAS Consortium (AAPC) (8) and the Ghana
Prostate Study (61)]; Japanese ancestry [2563 cases and 4391 con-
trols fromGWAS in Japanese in theMultiethnic Cohort (MEC) (40),
and in Biobank Japan (11,42)]; and Latino ancestry [a GWAS of
1034 cases and 1046 controls from the MEC (40)]. Details of each
study are provided in the Supplementary Material, File S1 and
Supplementary Material, Table S1. Genotyping of each study
was performed using Illumina or Affymetrix GWAS arrays and
quality control procedures of each GWAS have been described
previously and are provided in Supplementary Material, Table S2.
Imputation was performed in each study using a cosmopolitan
reference panel from the 1000 Genomes Project (1KGP; March,
2012). Across each region, genotyped SNPs, imputed SNPs and
insertion/deletion variants≥1% frequency were examined for as-
sociation with prostate cancer risk. SNPs with an imputation r2

[‘info score’ (62)] < 0.3 were not tested for association. The vast

majority of SNPs reported in this paper (581/666: 87%) had an
r2≥ 0.8 in all studies. This studywas approved by the Institutional
Review Board at the University of Southern California.

Statistical analysis

Here we focus on 69 of the 100 known risk variants (referred to as
index SNPs) in 67 regions; exclusions include 23 regions/variants
wheremultiethnic fine-mapping in this sample has already been
reported (15), 8q24 (2,4,42,63,64) and 11q13which harbormultiple
independent risk variants (51–53) andwill be reported separately,
and 19q13 (KLK3, a gene that encodes PSA) which is a risk region
for low-grade prostate cancer (56,57,65). Regions that contain two
index SNPs are 3p11-p12 (rs2055109/3p11 and rs2660753/3p12)
and 4q22 (rs12500426 and rs17021918). Within ±500 kb of each
index SNP, association testing with prostate cancer risk was con-
ductedwithin each study using unconditional logistic regression,
adjusted for global ancestry in an additive model. We summar-
ized the ethnic-specific and overall effect using a fixed-effect in-
verse-variance-weighted meta-analysis. For each SNP, we report
a per-allele OR, 95% confidence interval (CI), and a P-value ob-
tained from a 1-degree of freedom Wald test.

In ourmultiethnic fine-mapping, we focused initially on SNPs
that are correlated (r2 ≥ 0.2) with the index SNP in the racial/
ethnic population in which the original discovery was made,
and are more statistically significant (>1 order of magnitude
change in P-value in the multiethnic sample). The r2 threshold
of 0.2 was lowered when demonstrated through conditional ana-
lyses that a moreweakly correlated variant could account for the
association signal defined by the index variant. To determine
statistical significance within each region, we applied a region-
specific threshold to correct for multiple independent tests
conducted for SNPs correlated (r2 ≥ 0.2) with the index SNP in
the original GWAS population. For each region, an empirically
determined threshold accounting for the number of correlated
SNPs was estimated as 0.05 divided by the number of tags that
can capture all of the common tested SNPs [minor allele fre-
quency (MAF)≥ 0.05] at r2 > 0.8 in AFR 1KGP. These region-specific
significance cutoffs range from 3.9 × 10−4 to 5.6 × 10−3 and are
conservative given that African ancestry populations often re-
quire more ‘tags’ and represent only approximately one-third of
our study sample, and thus, will reduce the number of false-
positive signals. Of the 67 regions examined, the significance of
the index SNP or those correlated with the index SNP (at r2≥ 0.2)
surpassed region-specific thresholds for 55 regions (Supplemen-
tary Material, Table S4). In these regions we evaluated effect
heterogeneity across racial/ethnic populations using Cochran’s
Q test and I2 statistics (66). Statistically significant heterogeneous
effects were defined as those with Phet < 9.1 × 10−4 (0.05/55 re-
gions) and I2 > 80.0%. For 15 regions inwhich themost-associated
SNP, or a SNPwith nominal P-value < 10−5, was weakly correlated
with the index variant (r2 < 0.2), we performed conditional ana-
lysis with both SNPs in the samemodel to determine if a second-
ary signal could be identified. A secondary signal was defined as
significantly associated with prostate cancer risk in the overall
meta-analysis at P < 5.0 × 10−6, with no impact on the effect or
degree of statistical significance of the index SNP or most signifi-
cantly associated marker in the region (16).

For each statistically significant region, we defined a ‘top-set’
of SNPs as those with P-values within one order of magnitude
change from the most-associated marker. This definition was
used for ease of implementation and interpretation. However,
several new statistical approaches for fine-mapping have been
presented and rely on the conversion of a marginal P-value to a
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posterior probability (67), Bayes Factors or scaled Bayes Factor (68)
for re-ranking the SNPs and providing probabilistic interpreta-
tions for the final set of SNPs selected (i.e. credible sets). The
main advantage of these approaches is that they incorporate
the corresponding SNP variance, weighted relative to a prior vari-
ance, to re-rank the SNPs. The re-ranking of the SNPs is depend-
ent upon the specification of the prior and Wakefield (69)
discusses several options including a prior with effect size-MAF
dependence and a prior equivalent to the ranking via P-values.
Importantly, in Wakefield (70) it is noted that these priors impli-
citly assume that the SNPs are independent, thus theymaynot be
appropriate for fine-mapping and may lead to false conclusions
when relying on final probabilistic interpretations (i.e. 95% cred-
ible sets). While more sophisticated hierarchical modeling ap-
proaches may be necessary, such as those in Conti and Witte
(71), these lack the ease of implementation. Moreover, the
major strength of our overall approach is the leveraging of differ-
ential linkage disequilibrium across multiple ethnic groups to
narrow the set of SNPs. In this situation, it is unclear how sensi-
tive final SNP rankings are to various pre-specified priors. To ac-
count for the potential uncertainty in the ranking of P-values due
to effect estimationwithin each ethnic group, we performed a re-
sampling approach similar in spirit to the methods described in
Zaitlen et al. (46). That is, for all candidate SNPs (r2 ≥ 0.2 with
index in the original GWAS population), we resampled the eth-
nic-specific effect estimates from amultivariate normal distribu-
tionwith amean given by the estimated ethnic-specificmarginal
maximum likelihood estimates (MLE) β̂ and structured covari-
ance matrix with the diagonal elements equal to the estimated
variance for each marginal effect σ̂2

βi
and the off-diagonal ele-

ments equal to the approximated covariance for twomarginal ef-
fects ρijσ̂βi σ̂βj , where ρij is the estimated pairwise correlation
between SNPi and SNPj from 1KGP for the corresponding racial/
ethnic population. For each region, resampled ethnic-specific ef-
fect estimates were then meta-analyzed in a fixed-effect model,
weighted by the estimated variance. This approach provides pos-
terior probabilities (under a prior with a point mass at the MLE)
for the joint ranking of all candidate SNPs within a region and
avoids assumptions of independence.

Functional annotation

For each region we mapped the most-associated SNPs (Supple-
mentary Material, Tables S9 and S10) to putative functional do-
mains using bedtools software (bedtools.readthedocs.org/en/
latest/#) and in-house python scripts to assemble a matrix of
positive overlaps. We used a number of publicly available pros-
tate epithelia and PrCa ENCODE datasets of chromatin features
to identify putative enhancer/regulatory regions in each risk re-
gion (58,72). These datasets included LNCaP and RWPEI DnaseI
HS sites (GSE32970) ENCODE; PrEC DNaseI HS sites (GSE29692)
ENCODE; LNCaP CTCF ChIP-seq peaks (GSE33213) ENCODE;
LNCaP H3K27ac and TCF7L2 (GSE51621) (58), H3K4me3 and
H3K4me1 histone modification ChIP-seq peaks (GSE27823) (73);
FoxA1 ChIP-seq peaks (GSE28264) (74); Androgen Receptor (AR)
ChIP-seq peaks (75) and AR binding sites (GSE28219) (76); NKX3-
1 ChIP-seq peaks (GSE28264) (74). We also included AR ChIP-seq
data on 7 normal and 13 tumor prostate tissue (M. Pomerantz
et al., submitted for publication).

We subsequently classified the putative functionality of each
SNP according to the mapped features. These fall into four cat-
egories, promoter, enhancer, coding disruptions and untrans-
lated exonic regions. For coding exons we used dbSNP (77) to
assess the nature of disruptions in protein-coding sequence.

For 5′ or 3′UTR SNPswe reported overlap withmiRcode highcons
predicted target sequences (78). To assess potential disruptions
of transcription factor response elements, we performed motif
analysis as previously described (58), reporting motifs with a
>85%match and 70% difference between the reference and effect
alleles in the position frequency matrix describing the motif. To
calculate enrichment of SNPs in enhancers we used the hyper-
geometric distribution as implemented in base packages of R.
The hypergeometric distribution measures the probability of k
successes in n draws without replacement from a finite popula-
tion given that the entire makeup of the population is known.

Cis-eQTL analysis

For themost-associated variants in each regionwe examined the
associations with expression of nearby genes in 145 prostate
tumor samples from the TCGA database (February 2013). If a vari-
ant was not represented in the TCGA data, the genotypes were
imputed using IMPUTE2 (62). A cis-eQTL analysis was performed
for these variants and any transcript within a 1 Mb interval
(500 kb on either side). Gene expression values were adjusted
for somatic copy number and CpGmethylation as previously de-
scribed (32). Each risk variant was corrected for the number of
transcripts in the interval. Significant associations were defined
as a nominal P-value of < 9.1 × 10−4, which is a Bonferroni correc-
tion for the number of regions examined (n = 55).

Supplementary Material
Supplementary Material is available at HMG online.
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