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Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning
phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over
continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called
nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear
inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor
to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number
of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known
optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better
performance than the basic TLBO and some other algorithms as well.

1. Introduction

Most of the swarm intelligent optimization studies and
applications have been focused on nature-inspired algo-
rithms. Numerous population-based and nature-inspired
optimization algorithms have been presented, such as the
Ant Colony Optimization (ACO), Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Artificial Bee Colony
(ABC), and Differential Evolution (DE). These optimization
algorithms are based on different natural phenomena. ACO
works based on the behavior of ant colony searching foods
from the source to a destination [1, 2]. GA applies the theory
of Darwin based on the survival of the fittest to the optimiza-
tion problems [3, 4]. PSO emulates the collaborative behavior
of birds flocking and fish schooling in searching for foods [5–
7]. ABC uses the foraging behavior of a honey bee [8–10].
DE derived from the Genetic Algorithm, which is an efficient
global optimizer in the continuous search domain [11, 12].
These algorithms have been applied to many engineering
optimization problems and proven effective in solving spe-
cific types of problems. However, various algorithms have
their own advantages and disadvantages in solving diverse

problems. Generally, a good optimization algorithm should
possess the three essential conditions. First, the algorithm
has the ability of obtaining the true global optima value.
Second, the convergence speed of the algorithms should be
fast. Third, the program should have a minimum of control
parameters so that it will be easy to use. If an optimization
algorithmmeets the above three conditions at the same time,
it would be a great algorithm. Some optimization techniques
often achieve global optima results but at the cost of the
convergence speed. Those algorithms tend to focus on the
quality of computational results rather than the convergence
speed. However, the higher calculation accuracy and faster
convergence speed are the ultimate aim in the practical
applications.

Recently, Rao et al. [13, 14] proposed a teaching-learning-
based optimization (TLBO) algorithm, inspired by the phe-
nomenon of teaching and learning in a class. The TLBO
requires only the common control parameters like population
size and numbers of generation and that does not require
any algorithm-specific control parameters; that is, it is a
parameter-less algorithm [15]. Thus, there is no burden of
tuning control parameters in the TLBO algorithm. Hence,
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the TLBO algorithm is simpler and more effective and
involves relatively less computational cost. What it is more
important is that the TLBO algorithm has the ability to
achieve better results at comparatively faster convergence
speed to other algorithms mentioned above. Therefore, the
TLBO algorithm has been successfully applied in diverse
optimization fields such as mechanical engineering, task
scheduling, production planning and control, and vehicle-
routing problems in transportation [16–20]. Similar to other
swarm intelligent optimization algorithms, the basic TLBO
can be improved further and further. In order to improve
the performance of TLBO, several variants of the TLBO
have been proposed. Rao and Patel presented an elitist
TLBO (ETLBO) algorithm [15] to solve complex constrained
optimization problems and used a modified version of
TLBO algorithm [17] to solve themultiobjective optimization
problem of heat exchangers. Sultana and Roy [19] proposed
a quasioppositional teaching-learning-based optimization
(QOTLBO) methodology in order to find the optimal loca-
tion of the distributed generator to simultaneously optimize
power loss, voltage stability index, and voltage deviation of
radial distribution network. Ghasemi et al. [20] used Lévy
mutation strategy based on TLBO for optimal settings of
optimal power flow problem control variables. Furthermore,
some improved TLBO algorithms have been proposed to
solve the global function optimization problem [21–24] and
the multiobjective optimization problem [17, 25, 26].

In this paper, we propose a novel improved TLBO, which
is called nonlinear inertia weighted TLBO (NIWTLBO). A
nonlinear inertia weighted factor is introduced into the basic
TLBO to control the memory rate of learners, and another
dynamic inertia weighted factor is used to replace the original
random number in teacher phase and learner phase. So,
as a result, the NIWTLBO has faster convergence speed
and higher calculation accuracy for most of these optimiza-
tion problems than the basic TLBO. The performance of
NIWTLBO for solving global function optimization prob-
lems is compared with basic TLBO and other optimization
algorithms.The analysis results show that the proposed algo-
rithm outperforms most of the other algorithms investigated
in this paper.

The rest of this paper is organized as follows. Section 2
describes the basic TLBO algorithm in detail. In Section 3,
the proposed NIWTLBO algorithm will be introduced.
And Section 4 provides numerical experiments and results
demonstrating the performance ofNIWTLBO in comparison
with other optimization algorithms. Finally, our conclusions
are mentioned in Section 5.

2. Teaching-Learning-Based Optimization

The basic TLBO algorithm mainly consists of two parts,
namely, the teacher phase and the learner phase. In teacher
phase, the students can learn from the teacher to make their
knowledge level closer to the teacher’s. In learner phase, the
students can learn from the interaction of other individuals
to increase their knowledge. In the TLBO algorithm, a group
of learners is considered as a population. Each learner is

analogous to an individual of the evolutionary algorithm.
The different subjects offered to the learners are considered
as design variables of the optimization problem. A learner’s
result is analogous to the fitness value of the objective
function for optimization problems. The best learner (i.e.,
the best solution in the entire population) is considered
as the teacher. The best solution is the best value of the
objective function of the given optimization problem. The
design variables are the input parameters of the objective
function.

The process of basic TLBO algorithm is described below.

2.1. Initialization. The notations used in TLBO are described
as follows:

𝑁𝑃 is number of learners in a class (i.e., population
size).
𝐷 is number of subjects offered to the learners (i.e.,
dimensions of design variables).
MAXITER is maximum number of allowable itera-
tions.
𝑋
𝑖,𝑘
= (𝑋

𝑖,𝑘,1
, 𝑋
𝑖,𝑘,2
, . . . , 𝑋

𝑖,𝑘,𝑗
, . . . , 𝑋

𝑖,𝑘,𝐷
) denotes a

learner in class (i.e., the individual in the population)
at any iterator 𝑖.
𝑋
𝑖,𝑘,𝑗

denotes the result of 𝑗th subject offered to 𝑘th
learner at 𝑖th iterator. 𝑋

𝑖,teacher represents the teacher,
that is, the best learner in a class at 𝑖th iterator.

The population 𝑋 is randomly initialized by a search
space bounded by 𝑁𝑃 × 𝐷 matrix. The values of 𝑋

𝑖,𝑘,𝑗
are

assigned randomly using the equation

𝑋
0,𝑘,𝑗
= 𝐿
𝑗
+ rand × (𝑈

𝑗
− 𝐿
𝑗
) , (1)

where 𝑘 = 1, 2, 3, . . . , 𝑁𝑃 and 𝑗 = 1, 2, 3, . . . , 𝐷. The rand
represents a uniformly distributed random variable within
the range [0, 1]. 𝐿

𝑗
∈ (𝐿

1
, 𝐿
2
, 𝐿
3
, . . . , 𝐿

𝐷
) represents the

lower bound of design variable. 𝑈
𝑗
∈ (𝑈
1
, 𝑈
2
, 𝑈
3
, . . . , 𝑈

𝐷
)

represents the upper bound of design variable.

2.2. Teacher Phase. In this phase, the algorithm simulates the
students learning from teachers. A good teacher can bring his
or her learners up to his or her level in terms of knowledge.
Hence, the mean result of a class may increase from a low
level to the teacher’s level. But, in fact, it is impossible that the
mean result of a class reaches the teacher’s level. Because of
the individual differences and the forgetfulness of memory,
the learners cannot gain all the knowledge of the teacher. A
teacher can increase the mean result of a class to a certain
value which depends on the capability of the whole class.

Let𝑀
𝑖,𝑗
= (1/𝑁𝑃)(∑

𝑘=𝑁𝑃

𝑘=1
𝑋
𝑖,𝑘,𝑗
) be the mean result of the

learners on a particular subject “𝑗” (𝑗 = 1, 2, . . . , 𝐷) and let
𝑋
𝑖,teacher be the teacher at any iteration 𝑖. 𝑋𝑖,teacher will try to

movemean𝑀
𝑖,𝑗
towards its own level which is the newmean.

Difference Mean
𝑖,𝑘,𝑗

is the difference between the existing
mean result of each subject and the corresponding result of
the teacher for each subject at the iteration 𝑖. The solution is
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updated according to the difference between the existing and
the new means given by

Difference Mean
𝑖,𝑘,𝑗
= 𝑟
𝑖
(𝑋
𝑖,teacher,𝑗 − 𝑇𝐹𝑀𝑖,𝑗) , (2)

𝑇
𝐹
= round [1 + rand (0, 1) {1 − 2}] , (3)

𝑋
new
𝑖,𝑘,𝑗
= 𝑋

old
𝑖,𝑘,𝑗
+ Difference Mean

𝑖,𝑘,𝑗
, (4)

where 𝑋
𝑖,teacher,𝑗 is the result of the teacher in subject 𝑗 at the

iteration 𝑖. 𝑟
𝑖
is a random number in the range [0, 1], and 𝑇

𝐹

is the teaching factor, which decides the value of mean to
be changed. 𝑇

𝐹
can be either 1 or 2. The values of 𝑟

𝑖
and 𝑇

𝐹

are generated randomly in the algorithm and both of these
parameters are not supplied as input to the algorithm.

In every iteration, 𝑋new
𝑖,𝑘,𝑗

is the updated value of 𝑋old
𝑖,𝑘,𝑗

.
Because the optimization problem is a minimization prob-
lem, our goal is to find the minimum of 𝑓. If the new value
gives a better function value, then the old value is updated
with the new value. The updated formula is given as

if 𝑓 (𝑋
new
𝑖,total 𝑘) < 𝑓 (𝑋

old
𝑖,total 𝑘)

𝑋
old
𝑖,𝑘,𝑗
= 𝑋

new
𝑖,𝑘,𝑗

end if ,

(5)

where 𝑋new
𝑖,total 𝑘 and 𝑋

old
𝑖,total 𝑘 represent the new and old total

result of 𝑘th student at the iteration 𝑖, respectively. All the
accepted new values at the end of the teacher phase become
the input to the learner phase.

2.3. Learner Phase. In learner phase, the algorithm simulates
the learning of the learners through interaction among
themselves. A learner interacts randomly with other learners
to increase his or her knowledge. If a learner has more
knowledge than others, the other learners can quickly achieve
new knowledge by learning from him or her to increase their
level. In this learning process, two learners are randomly
selected. One is 𝑋

𝑖,𝑘
and another is 𝑋

𝑖,𝑞
, 𝑘 ̸= 𝑞. The updated

formula is given as

𝑋
new
𝑖,𝑘,𝑗

=
{

{

{

𝑋
old
𝑖,𝑘,𝑗
+ 𝑟
𝑖
(𝑋
𝑖,𝑘,𝑗
− 𝑋
𝑖,𝑞,𝑗
) if 𝑓 (𝑋

𝑖,total 𝑘) < 𝑓 (𝑋𝑖,total 𝑞) ,

𝑋
old
𝑖,𝑘,𝑗
+ 𝑟
𝑖
(𝑋
𝑖,𝑞,𝑗
− 𝑋
𝑖,𝑘,𝑗
) otherwise,

(6)

where 𝑟
𝑖
is a random number in the range [0, 1]. 𝑋

𝑖,total 𝑘
and 𝑋

𝑖,total 𝑞 represent the total result of 𝑘th student and 𝑞th
student at the iteration 𝑖, respectively. Accept the new value if
it improves the value of the objective function. Similarly, use
(5) to update the learner.

In each iteration of the TLBO, it is necessary to detect
the repeated solution to the entire population. If there is a
repeated solution, it needs to remove the repeated solution
and generate a new individual randomly. Hence, it will
expand the diversity of populations and avoid premature con-
vergence of the algorithm. After a number of generations, the
knowledge level of the entire class is smoothly approximated
to a point that is considered the teacher, and the algorithm
converges to a solution.

2.4. Algorithm Termination. The algorithm is terminated
after MAXITER iterations. The details of TLBO algorithm
can be referred to in literature [13, 14].

3. Nonlinear Inertia Weighted Teaching-
Learning-Based Optimization

The basic TLBO algorithm is based on teaching-learning
phenomenon of a classroom. In the teacher phase, the teacher
tries to shift the mean of the learners towards himself or
herself by teaching. In the learner phase, learners improve
their knowledge by interaction among themselves. In the
process of the teaching-learning, learners improve their level
by accumulating knowledge. In other words, they learn new
knowledge based on existing knowledge. In the real world,
the teacher tends to wish that his or her students should
achieve the knowledge equal to him in fast possible time. But
it is impossible for a student because of his or her forgetting
characteristics. In fact, a student usually forgets a part of
existing knowledge due to the physiological phenomena of
the brain. With increasing the iteration numbers of learning,
more and more existing knowledge will be remembered. As
the learning curve presented by Ebbinghaus, it describes how
fast learning knowledge is in learning process. The sharpest
increase occurs after the first try and then gradually evens
out, meaning that less and less new knowledge is retained
after each repetition. Like the forgetting curve, the learning
curve is exponential. So it is necessary to add a memory
weight to the existing knowledge of the student for simulating
this learning scenario. According to this phenomenon, a
nonlinear inertia weighted factor 𝑤 is introduced into (4)
and (6) in the basic TLBO, and this factor is considered as
memory weighted factor which controls the memory rate
of learners. This nonlinear inertia weighted factor will scale
the existing knowledge of the learner for computing the new
value. In contrast to the basic TLBO, in our algorithm the part
of previous value of the learner is decided by aweighted factor
𝑤 while computing the new learner value.

Accordingly, to meet the characteristic of memory to
conform to the learning curve, the nonlinear inertia weighted
factor 𝑤 (i.e., memory rate) is nonlinearly increased from
𝑤min to 1.0 over time, whose value is given as

𝑤 = 1 − exp( −iter2

2 × (MAXITER/8)2
) (1 − 𝑤min) , (7)

where iter is the current iteration number, MAXITER is the
maximumnumber of allowable iterations, and𝑤min ∈ [0.5, 1]
is the minimum value of nonlinear inertia weighted factor
𝑤. The value 𝑤min should be above 0.5 (here it is selected
0.6), or the individuals are worse due to remembering too
little existing knowledge at first. Hence, if the value 𝑤min
is too small, the algorithm could not converge to the true
global optimal solution. 𝑤 curve (i.e., memory rate curve)
is shown as Figure 1. The nonlinear inertia weighted factor 𝑤
is applied to the new equations shown as (10) and (11). In
this modified TLBO, the individuals try to sample diverse
zones of the search space during the early stages of the search.
During the later stages, the individuals adjust the movements
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Figure 1: The memory rate curve.

of trial solutions finely so that they can explore the interior of
a relative small space.

In the teacher phase, in order to obtain a new set of
better learners, the difference between the existing mean
result and the corresponding result of the teacher is added to
the existing population of learners. Similarly, to obtain a new
set of better learners in the learner phase, two learners are
selected randomly, and the difference between their result of
each corresponding subject is added to the existing learner.
As (2) and (6) shown, the difference value added to the
existing learner is formed from the difference of result and
the random number 𝑟

𝑖
. Therefore, in the teacher and learner

phases, the difference value is decided by the randomnumber
𝑟
𝑖
to a large extent. In our proposed method, we modify the

random number 𝑟
𝑖
as follows:

𝑟


𝑖
= 𝜆 + (1 − 𝜆) rand (0, 1) , (8)

where rand(0, 1) is a uniformly distributed random number
within the range [0, 1]. The value 𝜆 ∈ (0, 1) should be neither
too big nor too small. Here, 𝜆 is selected to be 0.5, which
conforms to the dynamic inertiaweight proposed byEberhart
and Shi [28]. So (8) is modified as

𝑟


𝑖
= 0.5 +

rand (0, 1)
2

. (9)

Equation (9) generates a random number in the range
[0.5, 1]which is similar to the method proposed by Satapathy
and Naik [23]. We call 𝑟

𝑖
dynamic inertia weighted factor.

Therefore, the mean value of the random number 𝑟
𝑖
is raised

from 0.5 to 0.75. This increases the probability of stochastic
variations and enlarges the difference value added to the
existing learners, so as to improve population diversity, avoid
prematurity in the search process, and increase the ability
of the basic TLBO to escape from local optima. On the
multimodal function surface, the original random weighed
factor leads to most of the populations clustering near a local
optimum point. However, the population with new dynamic
inertia weight has more chances to jump out of the local

optima and continuously move towards the global optimum
point until a true global optimum is reached.

With the nonlinear inertia weighted factor and the
dynamic inertia weighted factor, the new set of improved
learners can be expressed by using equation in the teacher
phase

𝑋
new
𝑖,𝑘,𝑗
= 𝑤𝑋

old
𝑖,𝑘,𝑗
+ 𝑟


𝑖
(𝑋
𝑖,teacher,𝑗 − 𝑇𝐹𝑀𝑖,𝑗) (10)

and the new set of improved learners can be expressed by
using equation in the learner phase

𝑋
new
𝑖,𝑘,𝑗

=
{

{

{

𝑤𝑋
old
𝑖,𝑘,𝑗
+ 𝑟


𝑖
(𝑋
𝑖,𝑘,𝑗
− 𝑋
𝑖,𝑞,𝑗
) if 𝑓 (𝑋

𝑖,total 𝑘) < 𝑓 (𝑋𝑖,total 𝑞) ,

𝑤𝑋
old
𝑖,𝑘,𝑗
+ 𝑟


𝑖
(𝑋
𝑖,𝑞,𝑗
− 𝑋
𝑖,𝑘,𝑗
) otherwise,

(11)

where 𝑤 is given by (7) and 𝑟
𝑖
is given by (9).

4. Experiments on Benchmark Functions

In this section, NIWTLBO is applied on several bench-
mark functions to evaluate its performance with different
dimensions and search space, comparing with the basic
TLBO algorithm and with other optimization algorithms
available in the literature. All tests are evaluated on a laptop
having Intel core i5 2.67GHz processor and 2GB RAM. The
algorithm is coded using the MATLAB programming lan-
guage and run in MATLAB 2012a environment. This section
provides the results obtained by the NIWTLBO algorithm
compared to the basic TLBO and other intelligent optimiza-
tion algorithms. The details of the 24 benchmark functions
with different characteristics like unimodality/multimodality
and separability/nonseparability are shown in Table 1. “C”
denotes the characteristic of function; “𝐷” is the dimensions
of function; “range” of each function is the difference between
the lower and upper bounds of the variables; “𝑓min” is the
theoretical global minimum solution.

4.1. Experiment 1: NIWTLBO versus PSO, ABC, DE, and
TLBO. This experiment is aimed at identifying the perfor-
mance of the NIWTLBO algorithm to achieve the global
optimum value comparing with PSO, ABC, DE, and the basic
TLBO. To be fair, each algorithm uses the same values of
common control parameters such as population size and
maximum evaluation number. Population size is 40 and
the maximum fitness function evaluation number is 80,000
for all benchmark functions in Table 1. The other specific
parameters of algorithms are given below.

PSO Setting. Cognitive attraction 𝐶
1
= 2, social attraction

𝐶
2
= 2, and inertia weight 𝑤 = 0.9. As mentioned in [5],

a recommended choice for constant 𝐶
1
and 𝐶

2
is integer

2, since it on average makes the weights for “social” and
“cognition” parts be 1. When 𝑤 is in the range of [0.8, 1.2],
the PSO will have the best chance to find the global optimum
and takes a moderate number of iterations [29].
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ABC Setting. For ABC there are no other specific parameters
to set.

DE Setting. In DE, 𝐹 is a real constant which affects the differ-
ential variation between two solutions and𝑅 is crossover rate.
Set 𝐹 = 0.5 and 𝑅 = 0.4. The configuration parameters for
DE are decided on the results of experiments using different
parameter values. We choose the parameter values which
make the DE algorithms get the best result.

TLBO Settings. For TLBO there are no other specific param-
eters to set.

NIWTLBO Settings. InNIWTLBO, there are no other specific
parameters too.

In this section, each benchmark function is indepen-
dently experimented 30 times with PSO, ABC, DE, TLBO,
and NIWTLBO. Each algorithm was terminated after run-
ning for 80,000FEs or when it reached the global minimum
value before completely running for 80,000FEs. The mean
and standard deviation of fitness value obtained through 30
experiments on each benchmark function are recorded in
Table 2. Meanwhile, the mean value and standard deviations
of the number of function fitness evaluations produced by the
experiments are reported in Table 3. In order to analyze the
performancewhether there is significance between the results
of the NIWTLBO and other algorithms, we carried out 𝑡-test
on pairs of algorithms which is very popular in evolutionary
computing [12].The statistical significance levels of difference
of the means of PSO and NIWTLBO algorithm, ABC and
NIWTLBO algorithm, DE and NIWTLBO algorithm, and
TLBO and NIWTLBO algorithm are reported in Table 4.
Here, “+” symbol indicates that 𝑡 value is significant at 0.05
level of significance by two tailed tests, “⋅” symbol marks 𝑡
value being not statistically significant, and “NA” means not
applicable due to the results of one pair of algorithms having
the same accuracy.

The comparative results of each benchmark function for
PSO, ABC, DE, and TLBO are presented in Table 2 in the
form of average solution and standard deviation obtained
in 30 independent runs on each benchmark function. The
significance of NIWTLBO comparing with PSO, ABC, DE,
and TLBO is shown in Table 4. It is observed from Tables
2 and 4 that the performance of NIWTLBO outperforms
PSO, ABC, DE, and TLBO for functions 𝑓

1
–𝑓
8
, 𝑓
18
, 𝑓
19
,

𝑓
21
, and 𝑓

23
. Furthermore, TLBO performs better than PSO,

ABC, and DE for functions 𝑓
1
–𝑓
8
and 𝑓

18
. For functions

𝑓
10
–𝑓
17
, the performance of NIWTLBO, PSO, ABC, DE, and

TLBO is alike that almost all the algorithms can obtain the
global optimum value except for ABC on Bohachevsky3.
For Rosenbrock, the performance of different algorithms
is similar to each other. For Griewank and Multimod, the
performance ofNIWTLBO,DE, and TLBO is alike and better
than PSO and ABC. For Weierstrass, the performance of
NIWTLBO and TLBO is alike and outperforms PSO, ABC,
and DE.

It is observed from the results in Table 3 that the
smaller the number of fitness evaluations the more quickly
the algorithm obtains the global optimum value; that is,

the convergence rate of the algorithm is faster. Obviously, the
NIWTLBO algorithm requires less numbers of function eval-
uations than the basic TLBO algorithm and other algorithms
mentioned to achieve the global optimum value for most
of the benchmark functions. Hence, the convergence rate
of the NIWTLBO algorithm is faster than other algorithms
mentioned for most of the benchmark functions except Six-
Hump Camel Back, Branin, and Goldstein-Price.

4.2. Experiment 2: NIWTLBO versus PSO-𝑤, PSO-cf, CPSO-
H, and CLPSO. In this section, the experiment is aimed at
analysing the ability of the NIWTLBO algorithm to obtain
the global optimum value comparing with other variant PSO
algorithms such as PSO-𝑤 [29], PSO-cf [30], CPSO-H [31],
and CLPSO [32]. In this experiment, 8 different unimodal
and multimodal benchmark functions are tested using the
NIWTLBO algorithm. The details of benchmark functions
are shown in Table 1. In order to maintain the consistency
in the comparison, NIWTLBO algorithm is performed with
the same maximum function evaluations and dimensions.
Each benchmark function is independently experimented 30
times for NIWTLBO. The comparative results are reported
in Table 5 in the form of the average solution and standard
deviation obtained in 30 independent runs on each bench-
mark function. In Table 5, the results of algorithms except
NIWTLBO are taken from literatures [24, 27], where the
algorithms run 30,000FEs with 10 population sizes for 10
dimensional functions.

It is observed from the results in Table 5 that the perfor-
mance of NIWTLBO and TLBO algorithms is better than
PSO-𝑤, PSO-cf, CPSO-H, and CLPSO algorithms for Sphere,
Ackley, and Griewank. The performance of NIWTLBO and
CLPSO is alike for Rastrigin, Noncontinuous Rastrigin,
and Weierstrass. For Rosenbrock and Schwefel 2.26, the
NIWTLBO algorithm does not performwell comparing with
other algorithms.

4.3. Experiment 3: NIWTLBO versus CABC, GABC, RABC,
and IABC. In this section, the experiment is conducted to
identify the performance of the NIWTLBO algorithm to
achieve the global optimum value versus CABC [33], GABC
[34], RABC [8], and IABC [35] on 7 benchmark functions
shown in Table 1. The comparative results are reported in
Table 6. To maintain the consistency in the comparison, the
parameters of the algorithms are similar to the literature
[8], where the population size is set as 20 and dimension is
set as 30. The results of CABC, GABC, RABC, and IABC
are taken from the literature [23] directly. The results of
NIWTLBO and TLBO, in the form of average solution and
standard deviation, are obtained in 30 independent runs on
each benchmark function. In this experiment, TLBO and
NIWTLBO are tested with the same function evaluations
listed in Table 6 to compare their performance with CABC,
GABC, RABC, and IABC algorithms.

From Table 6, it is observed obviously that the perfor-
mance of NIWTLBO and TLBO algorithms is better than
CABC, GABC, and RABC for all benchmark functions. The
performance of NIWTLBO algorithm is similar to IABC for
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Table 2: Performance comparisons of PSO, ABC, DE, TLBO, and NIWTLBO in terms of fitness value. Population size: 40; 𝐷: 30 (except
𝑓
10
∼𝑓
17
: 2𝐷); max. eval.: 80,000FEs.

Number Function 𝑓min PSO ABC DE TLBO NIWTLBO

𝑓
1

Sphere 0 Mean 8.99E − 12 9.91E − 16 7.15E − 27 1.85E − 286 0
Std. 5.92E − 12 5.36E − 16 1.06E − 26 0 0

𝑓
2

SumSquares 0 Mean 1.11E − 10 7.81E − 16 9.06E − 26 1.57E − 286 0
Std. 2.49E − 10 1.32E − 16 3.07E − 26 0 0

𝑓
3

Tablet 0 Mean 3.68E − 08 9.54E − 16 2.40E − 26 7.66E − 285 0
Std. 1.64E − 08 1.78E − 16 1.87E − 26 0 0

𝑓
4

Quartic 0 Mean 5.84E − 02 1.52E − 01 4.03E − 01 2.07E − 02 2.03E − 02
Std. 3.83E − 02 4.18E − 02 1.29E − 01 5.26E − 02 3.52E − 02

𝑓
5

Schwefel 1.2 0 Mean 2.47E + 05 8.82E + 03 2.21E + 04 1.52E − 84 0
Std. 1.48E + 05 1.28E + 03 5.21E + 03 2.97E − 84 0

𝑓
6

Schwefel 2.22 0 Mean 5.16E − 03 2.01E − 14 4.31E − 16 1.79E − 143 4.45E – 323
Std. 6.94E − 03 1.08E − 14 1.04E − 16 1.21E − 143 0

𝑓
7

Schwefel 2.21 0 Mean 1.21E + 00 5.49E + 01 1.21E − 02 8.31E − 120 2.40E − 315
Std. 6.02E − 01 1.38E + 01 2.81E − 03 4.05E − 120 0

𝑓
8

Zakharov 0 Mean 1.62E + 02 2.59E + 02 5.84E + 01 5.95E − 51 1.06E − 319
Std. 6.33E + 01 2.84E + 01 7.01E + 00 5.22E − 51 0

𝑓
9

Rosenbrock 0 Mean 3.01E + 01 1.04E + 01 2.43E + 01 1.29E + 01 1.83E + 01
Std. 2.57E + 01 2.57E + 00 4.61E + 00 5.28E + 00 6.91E + 00

𝑓
10

Schaffer −1 Mean −1 −1 −1 −1 −1
Std. 0 0 0 0 0

𝑓
11

Dropwave −1 Mean −1 −1 −1 −1 −1
Std. 0 0 0 0 0

𝑓
12

Bohachevsky1 0 Mean 0 0 0 0 0
Std. 0 0 0 0 0

𝑓
13

Bohachevsky2 0 Mean 0 0 0 0 0
Std. 0 0 0 0 0

𝑓
14

Bohachevsky3 0 Mean 0 8.46E − 16 0 0 0
Std. 0 2.95E − 16 0 0 0

𝑓
15

Six-Hump Camel Back −1.03163 Mean −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Std. 0 0 0 0 0

𝑓
16

Branin 0.398 Mean 0.3979 0.3979 0.3979 0.3979 0.3979
Std. 0 0 0 0 0

𝑓
17

Goldstein-Price 3 Mean 3 3 3 3 3
Std. 8.11E − 15 4.32E − 15 1.36E − 15 6.78E − 16 6.56E − 16

𝑓
18

Ackley 0 Mean 1.18E + 00 2.82E − 13 2.49E − 14 4.44E − 15 8.66E − 16
Std. 3.85E − 01 3.06E − 14 6.07E − 15 0 0

𝑓
19

Rastrigin 0 Mean 1.08E + 02 1.29E − 13 9.33E + 01 6.93E + 00 0
Std. 2.80E + 01 2.57E − 13 9.43E + 00 5.92E + 00 0

𝑓
20

Griewank 0 Mean 6.77E − 03 7.10E − 03 0 0 0
Std. 9.29E − 03 9.56E − 03 0 0 0

𝑓
21

Schwefel 2.26 −837.9658 Mean −8789.43 −12561.79 −11312.51 −9178.59 −8324.302
Std. 4.63E + 02 1.96E + 02 1.58E + 03 7.97E + 02 1.71E + 02

𝑓
22

Multimod 0 Mean 8.69E − 67 8.52E − 19 4.66E − 311 0 0
Std. 1.74E − 66 8.34E − 19 0 0 0

𝑓
23

Noncontinuous Rastrigin 0 Mean 1.83E + 02 1.99E − 14 6.94E + 01 1.55E + 01 0
Std. 3.15E + 01 1.83E − 14 9.13E + 00 2.65E + 00 0

𝑓
24

Weierstrass 0 Mean 6.27E + 01 1.12E − 02 1.38E + 01 0 0
Std. 2.03E + 01 7.73E − 03 6.07E − 01 0 0
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Table 3: Convergence comparisons in terms of number of fitness evaluations. Population size: 40; 𝐷: 30 (except 𝑓
10
∼𝑓
17
: 2𝐷); max. eval.:

80,000FEs.

Number Function PSO ABC DE TLBO NIWTLBO

𝑓
1

Sphere Mean 80,000 80,000 80,000 80,000 29,514
Std. 0 0 0 0 1.02E + 02

𝑓
2

SumSquares Mean 80,000 80,000 80,000 80,000 29,628
Std. 0 0 0 0 1.23E + 02

𝑓
3

Tablet Mean 80,000 80,000 80,000 80,000 29,562
Std. 0 0 0 0 1.52E + 02

𝑓
4

Quartic Mean 80,000 80,000 80,000 80,000 80,000
Std. 0 0 0 0 0

𝑓
5

Schwefel 1.2 Mean 80,000 80,000 80,000 80,000 39,416
Std. 0 0 0 0 1.09E + 02

𝑓
6

Schwefel 2.22 Mean 80,000 80,000 80,000 80,000 80,000
Std. 0 0 0 0 0

𝑓
7

Schwefel 2.21 Mean 80,000 80,000 80,000 80,000 80,000
Std. 0 0 0 0 0

𝑓
8

Zakharov Mean 80,000 80,000 80,000 80,000 80,000
Std. 0 0 0 0 0

𝑓
9

Rosenbrock Mean 80,000 80,000 80,000 80,000 80,000
Std. 0 0 0 0 0

𝑓
10

Schaffer Mean 12,432 43,636 8,686 9,688 3,029
Std. 3.38E + 02 3.03E + 02 2.06E + 02 2.29E + 02 3.03E + 02

𝑓
11

Dropwave Mean 11,394 13,824 5,490 3,021 812
Std. 3.26E + 01 1.09E + 02 1.53E + 02 1.22E + 02 3.32E + 01

𝑓
12

Bohachevsky1 Mean 9,532 3,263 3,992 2,266 842
Std. 2.21E + 02 7.52E + 01 8.74E + 01 3.23E + 01 2.01E + 01

𝑓
13

Bohachevsky2 Mean 9,578 4,717 4,245 2,568 952
Std. 1.33E + 02 9.27E + 01 1.17E + 02 2.05E + 01 2.56E + 01

𝑓
14

Bohachevsky3 Mean 9,792 80,000 5,376 2,875 965
Std. 2.52E + 02 0 1.26E + 02 1.03E + 02 3.12E + 01

𝑓
15

Six-Hump Mean 1,997 1,372 1,781 712 2,560
Camel Back Std. 1.38E + 02 1.17E + 02 1.36E + 02 5.93E + 01 9.07E + 01

𝑓
16

Branin Mean 1,851 1,813 1,891 1,086 2,172
Std. 1.17E + 02 1.23E + 02 1.04E + 02 1.06E + 02 1.23E + 02

𝑓
17

Goldstein-Price Mean 2,018 1,857 1,765 1,228 2,865
Std. 1.25E + 02 1.48E + 02 2.08E + 02 6.85E + 01 1.42E + 02

𝑓
18

Ackley Mean 80,000 80,000 80,000 80,000 80,000
Std. 0 0 0 0 0

𝑓
19

Rastrigin Mean 80,000 80,000 80,000 80,000 1,436
Std. 0 0 0 0 3.02E + 01

𝑓
20

Griewank Mean 80,000 80,000 53,032 12,064 1,284
Std. 0 0 6.16E + 02 9.37E + 01 2.54E + 01

𝑓
21

Schwefel 2.26 Mean 80,000 80,000 80,000 80,000 80,000
Std. 0 0 0 0 0

𝑓
22

Multimod Mean 80,000 80,000 80,000 28,304 1,427
Std. 0 0 0 1.05E + 02 5.16E + 01

𝑓
23

Noncontinuous Rastrigin Mean 80,000 80,000 80,000 80,000 1,324
Std. 0 0 0 0 1.22E + 02

𝑓
24

Weierstrass Mean 80,000 80,000 80,000 12,712 2,044
Std. 0 0 0 1.19E + 02 1.21E + 02



10 Computational Intelligence and Neuroscience

Table 4: 𝑡 value, significant at 0.05 level of significance by two tailed tests using Table 2. The significance of NIWTLBO compares with PSO,
ABC, DE, and TLBO.

Number Function PSO ABC DE TLBO Number Function PSO ABC DE TLBO
𝑓
1

Sphere + + + + 𝑓
13

Bohachevsky2 NA NA NA NA
𝑓
2

SumSquares + + + + 𝑓
14

Bohachevsky3 NA + NA NA
𝑓
3

Tablet + + + + 𝑓
15

Six-Hump Camel Back NA NA NA NA
𝑓
4

Quartic + + + ⋅ 𝑓
16

Branin NA NA NA NA
𝑓
5

Schwefel 1.2 + + + + 𝑓
17

Goldstein-Price NA NA NA NA
𝑓
6

Schwefel 2.22 + + + + 𝑓
18

Ackley + + + +
𝑓
7

Schwefel 2.21 + + + + 𝑓
19

Rastrigin + + + +
𝑓
8

Zakharov + + + + 𝑓
20

Griewank + + NA NA
𝑓
9

Rosenbrock ⋅ ⋅ ⋅ ⋅ 𝑓
21

Schwefel 2.26 + + + +
𝑓
10

Schaffer NA NA NA NA 𝑓
22

Multimod + + NA NA
𝑓
11

Dropwave NA NA NA NA 𝑓
23

Noncontinuous Rastrigin + + + +
𝑓
12

Bohachevsky1 NA NA NA NA 𝑓
24

Weierstrass + + + NA
“+” indicates that 𝑡 value is significant, “⋅” indicates that 𝑡 value is not statistically significant, and “NA” stands for not applicable.

Table 5: Comparative results of TLBO and NIWTLBO with other PSO algorithms. Population size: 10;𝐷: 10; max. eval.: 30,000FEs; source:
results of algorithms except NIWTLBO are taken from [24, 27].

Number Function PSO-w PSO-cf CPSO-H CLPSO TLBO NIWTLBO

𝑓
1

Sphere Mean 7.96E − 51† 9.84E − 105† 4.98E − 45† 5.15E − 29† 0 0
Std. 3.56E − 50 4.21E − 104 1.00E − 44 2.16E − 28 0 0

𝑓
9

Rosenbrock Mean 3.08E + 00† 6.98E − 01‡ 1.53E + 00‡ 2.46E + 00† 1.72E + 00‡ 1.69E + 00
Std. 7.69E − 01 1.46E + 00 1.70E + 00 1.70E + 00 6.62E − 01 7.18E − 01

𝑓
18

Ackley Mean 1.58E − 14† 9.18E − 01† 1.49E − 14† 4.32E − 10† 3.55E − 15† 8.58E − 16
Std. 1.60E − 14 1.01E + 00 6.97E − 15 2.55E − 14 8.32E − 31 6.37E − 32

𝑓
19

Rastrigin Mean 5.82E + 00† 1.25E + 01† 2.12E + 00† 0 6.77E − 08† 0
Std. 2.96E + 00 5.17E + 00 1.33E + 00 0 3.68E − 07 0

𝑓
20

Griewank Mean 9.69E − 02† 1.19E − 01† 4.07E − 02† 4.56E − 03† 0 0
Std. 5.01E − 02 7.11E − 02 2.80E − 02 4.81E − 03† 0 0

𝑓
21

Schwefel 2.26 Mean 3.20E + 02† 9.87E + 02† 2.13E + 02‡ 0‡ 2.94E + 02† 2.67E + 02
Std. 1.85E + 02 2.76E + 02 1.41E + 02 0 2.68E + 02 1.92E + 02

𝑓
23

Noncontinuous Rastrigin Mean 4.05E + 00† 1.20E + 01† 2.00E − 01† 0 2.65E − 08† 0
Std. 2.58E + 00 4.99E + 00 4.10E − 01 0 1.23E − 07 0

𝑓
24

Weierstrass Mean 2.28E − 03† 6.69E − 01† 1.07E − 15† 0 2.42E − 05† 0
Std. 7.04E − 03 7.17E − 01 1.67E − 15 0 1.38E − 20 0

“†” mark indicates that NIWTLBO is statistically better than the corresponding algorithm.
“‡” mark indicates that NIWTLBO is statistically worse than the corresponding algorithm.

Rastrigin and Griewank and outperforms the IABC for the
rest of benchmark functions in Table 6.

4.4. Experiment 4: NIWTLBO versus SaDE, jDE, and JADE.
In this section, the experiment is carried out for comparing
the performance of the NIWTLBO algorithm with SaDE,
jDE, and JADE algorithms on 7 benchmark functions which
are described in Table 1. The results of SaDE, jDE, and JADE
are taken from the literature [36] directly. The results of
NIWTLBO and TLBO, in the form of average solution and
standard deviation, are obtained in 30 independent runs on
each benchmark function. To be fair, the parameters of the
algorithms are the same to the literature [36], where the pop-
ulation size is 20 and the dimension is 30. The comparative

results are recorded in Table 7. In this experiment, TLBO
and NIWTLBO are implemented with the same function
evaluations listed in Table 7 to compare their performance
with SaDE, jDE, and JADE algorithms.

It can be seen that NIWTLBO performs much better
than these variants of DE on all the benchmark functions in
Table 7. Therefore, it is shown that the NIWTLBO algorithm
has a good performance.

4.5. Experiment 5: NIWTLBO versus TLBO with Different
Dimensions. In this section, we analyse the convergence of
NIWTLBO and TLBO algorithms with different dimensions.
Two unimodal functions and twomultimodal functions have
been tested with dimensions 2, 10, 50, and 100. In this work,
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Table 6: Comparative results of TLBO and NIWTLBO with other variants of ABC algorithms. Population size: 20; 𝐷: 30; source: results of
algorithms except TLBO and NIWTLBO are taken from [23].

Number Function CABC GABC RABC IABC TLBO NIWTLBO

𝑓
1

Sphere Mean 2.3E − 40† 3.6E − 63† 9.1E − 61† 5.34E − 178† 0 0
FEs: 1.5 × 105 Std. 1.7E − 40 5.7E − 63 2.1E − 60 0 0 0

𝑓
5

Schwefel 1.2 Mean 8.4E + 02† 4.3E + 02† 2.9E − 24† 1.78E − 65† 0 0
FEs: 5.0 × 105 Std. 9.1E + 02 8.0E + 02 1.5E − 23 2.21E − 65 0 0

𝑓
6

Schwefel 2.22 Mean 3.5E − 30† 4.8E − 45† 3.2E − 74† 8.82E − 127† 0 0
FEs: 2.0 × 105 Std. 4.8E − 30 1.4E − 45 2.0E − 73 3.49E − 126 0 0

𝑓
7

Schwefel 2.21 Mean 6.1E − 03† 3.6E − 06† 2.8E − 02† 4.98E − 38† 0 0
FEs: 5.0 × 105 Std. 5.7E − 03 7.6E − 07 1.7E − 02 8.59E − 38 0 0

𝑓
18

Ackley Mean 1.0E − 05† 1.8E − 09† 9.6E − 07† 3.87E − 14† 4.48E − 15† 8.65E − 16
FEs: 5.0 × 104 Std. 2.4E − 06 7.7E − 10 8.3E − 07 8.52E − 15 2.16E − 30 2.38E − 31

𝑓
19

Rastrigin Mean 1.3E − 00† 1.5E − 10† 2.3E − 02† 0 6.36E + 00† 0
FEs: 1.0 × 105 Std. 2.7E − 00 2.7E − 10 5.1E − 01 0 4.78E + 00 0

𝑓
20

Griewank Mean 1.2E − 04† 6.0E − 13† 8.7E − 08† 0 0 0
FEs: 5.0 × 105 Std. 4.6E − 04 7.7E − 13 2.1E − 08 0 0 0

“†” mark indicates that NIWTLBO is statistically better than the corresponding algorithm.

Table 7: Comparative results of TLBO and NIWTLBO with other variants of DE algorithms. Population size: 20; 𝐷: 30; source: results of
algorithms except TLBO and NIWTLBO are taken from [23].

Number Function SaDE jDE JADE TLBO NIWTLBO

𝑓
1

Sphere Mean 4.5E − 20† 2.5E − 28† 1.8E − 60† 0 0
FEs: 1.5 × 105 Std. 1.9E − 14 3.5E − 28 8.4E − 60 0 0

𝑓
5

Schwefel 1.2 Mean 9.0E − 37† 5.2E − 14† 5.7E − 61† 0 0
FEs: 5.0 × 105 Std. 5.4E − 36 1.1E − 13 2.7E − 60 0 0

𝑓
6

Schwefel 2.22 Mean 1.9E − 14† 1.5E − 23† 1.8E − 25† 0 0
FEs: 2.0 × 105 Std. 1.1E − 14 1.0E − 23 8.8E − 25 0 0

𝑓
7

Schwefel 2.21 Mean 7.4E − 11† 1.4E − 15† 8.2E − 24† 0 0
FEs: 5.0 × 105 Std. 1.82E − 10 1.0E − 15 4.0E − 23 0 0

𝑓
18

Ackley Mean 2.7E − 03† 3.5E − 04† 8.2E − 10† 4.48E − 15† 8.65E − 16
FEs: 5.0 × 104 Std. 5.1E − 04 1.0E − 04 6.9E − 10 2.16E − 30 2.38E − 31

𝑓
19

Rastrigin Mean 1.2E − 03† 1.5E − 04† 1.0E − 04† 6.36E + 00† 0
FEs: 1.0 × 105 Std. 6.5E − 04 2.0E − 04 6.0E − 05 4.78E + 00 0

𝑓
20

Griewank Mean 7.8E − 04† 1.9E − 05† 9.9E − 08† 0 0
FEs: 5.0 × 105 Std. 1.2E − 03 5.8E − 05 6.0E − 07 0 0

“†” mark indicates that NIWTLBO is statistically better than the corresponding algorithm.

evolutionary generation is employed to evaluate the perfor-
mance of NIWTLBO and TLBO algorithms. The population
size is set as 40 and the number of evolutionary generations is
set as 2000. The experiment results of NIWTLBO and TLBO
algorithms for 2, 10, 50, and 100 dimensional functions over
30 independent runs are listed in Table 8, which is in form
of the mean solution. The graphs are plotted between the
function value and evolutionary generations on logarithmic
scale.

Figures 2 and 3 show the convergence graphs of the
unimodal and multimodal functions for different dimen-
sions, respectively. It is observed from the graphs that the
convergence rate of the NIWTLBO algorithm is faster than
the basic TLBO algorithm for both these unimodal and
multimodal functions for all dimensions. Furthermore, it is

Table 8: Comparative results of TLBO and NIWTLBO with
different dimensions. Population size: 40; generations: 2000.

Function 𝐷
Unimodal Multimodal

Sphere Schwefel 2.22 Rastrigin Griewank

TLBO

2 0 0 0 0
10 0 1.05E − 184 5.78E − 08 0
50 2.09E − 267 4.64E − 134 2.48E + 01 0
100 4.13E − 251 8.91E − 128 4.71E + 01 0

NIWTLBO

2 0 0 0 0
10 0 2.50E − 323 0 0
50 0 4.43E − 317 0 0
100 0 4.09E − 310 0 0



12 Computational Intelligence and Neuroscience

Fu
nc

tio
n 

va
lu

e
10

50

10
−50

10
−100

10
−150

10
−200

10
−250

10
−300

10
0

10
1

10
2

10
3

Generations
10

0

TLBO (D = 2)
TLBO (D = 10)
TLBO (D = 50)
TLBO (D = 100)

NIWTLBO (D = 2)
NIWTLBO (D = 10)
NIWTLBO (D = 50)
NIWTLBO (D = 100)

(a) Sphere
Fu

nc
tio

n 
va

lu
e

Schwefel 2.22
10

50

10
−50

10
−100

10
−150

10
−200

10
−250

10
−300

10
0

10
1

10
2

10
3

Generations
10

0

TLBO (D = 2)
TLBO (D = 10)
TLBO (D = 50)
TLBO (D = 100)

NIWTLBO (D = 2)
NIWTLBO (D = 10)
NIWTLBO (D = 50)
NIWTLBO (D = 100)

(b) Schwefel 2.22

Figure 2: Convergence of TLBO and NIWTLBO algorithms for unimodal function.
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Figure 3: Convergence of TLBO and NIWTLBO algorithms for multimodal function.

observed from Table 8 and the figures that the performance
of NIWTLBO algorithm is almost not affected by the dimen-
sion. But the performance of TLBO algorithmwill be reduced
slightly with the dimension increasing.

4.6. Experiment 6: NIWTLBO versus Other Variants of TLBO.
In order to show the advantages and disadvantages of the
NIWTLBO, we make experiments to compare the perfor-
mance of the NIWTLBO algorithm with some other variants

of TLBO in this section. The variants of TLBO include
WTLBO [21], ITLBO22 [22], ITLBO23 [23], and ITLBO
[24]. Some benchmark functions described in Table 1 are
tested for experiments. In the experiments, the population
size is 20 and dimension is 2. The number of teachers is
4 in ITLBO. To maintain the consistency, the execution of
the NIWTLBO and other variants of TLBO algorithms is
stopped after running for 80,000FEs or when the difference
between the fitness obtained by the algorithm and the global
optimum value is less than 0.1% (e.g., if the optimum
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Table 9: Comparative results of NIWTLBO and different variants of TLBO algorithms. Population size: 20;𝐷: 2; max. eval.: 80,000FEs.

Number Function WTLBO ITLBO22 ITLBO23 I-TLBO (NT = 4) NIWTLBO

𝑓
1

Sphere MNFE 365 386 482 372 281
Succ% 100 100 100 100 100

𝑓
6

Schwefel 2.22 MNFE 442 428 563 416 324
Succ% 100 100 100 100 100

𝑓
9

Rosenbrock MNFE 1643 704 726 684 1606
Succ% 65 100 100 100 100

𝑓
14

Bohachevsky3 MNFE 468 432 516 398 364
Succ% 100 100 100 100 100

𝑓
16

Branin MNFE 41010 649 763 367 1922
Succ% 28 100 100 100 100

𝑓
18

Ackley MNFE 564 508 682 491 443
Succ% 100 100 100 100 100

𝑓
19

Rastrigin MNFE 4608 651 1406 632 481
Succ% 100 100 100 100 100

𝑓
20

Griewank MNFE 18246 1208 2248 1024 965
Succ% 85 100 81 100 100

𝑓
24

Weierstrass MNFE 19642 1243 2325 1186 1042
Succ% 78 100 93 100 100

value is 0, the solution is accepted if it differs from the
optimum value by less than 0.001). If the solution to the
algorithm is not accepted after running for 80,000FEs, it is
unsuccessful. Each benchmark function is tested 100 times
with the NIWTLBO and other variants of TLBO algorithms
and the comparative results in the form of mean function
evaluations and success percentage are shown in Table 9.
“MNFE” denotes the number of function evaluations when
the solution is accepted. The number of function evaluations
in the variants of TLBO is = (2 × population size × number
of generations).

It is observed from Table 9 that, except for Rosenbrock
and Branin, theNIWTLBO algorithm requires fewer number
of function evaluations than other algorithms to reach the
global optimum value, with a very high success rate of 100%.
For Rosenbrock, Branin, Griewank, and Weierstrass, the
WTLBO algorithm performs worse than other algorithms
with low success rate, which is easily trapped in local optima.
From this, it is shown that the NIWTLBO algorithm has a
better performance than some other variants of TLBO.

5. Conclusion

In this paper, we propose the NIWTLBO algorithm which
introduced a nonlinear inertia weighted factor into the basic
TLBO to control the memory rate of learners and used
a dynamic inertia weighted factor to replace the original
random number in teacher phase and learner phase.The pro-
posed algorithm is implemented on 24 benchmark functions
having different characteristics to evaluate its performance
which is comparedwith the basic TLBOand someother state-
of-the-art optimization algorithms available in the literature.
Furthermore, the comparisons between the NIWTLBO and
other algorithms mentioned are also reported.

The experiment results have shown the satisfactory per-
formance of the NIWTLBO algorithm for solving global
optimization problems. The NIWTLBO algorithm not only
enhances the local searching ability of TLBO but also
improves the global performance. Moreover, the NIWTLBO
algorithm can increase the convergence speed and enhance
the ability of the TLBO to escape from local optima.

In future work, the NIWTLBO algorithm will be
extended to handle more complex functions and solve cons-
trained/multiobjective optimization problems. Furthermore,
we will also open up a new way to improve the diversity of
TLBO using a hybrid method, so as to utilize the advantages
of other intelligent algorithms to further improve the global
performance of TLBO.
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