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ABSTRACT Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of
proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments
by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex
diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjust-
able anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show—first using syn-
thetic data—that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives
rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight
derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity
sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the het-
erochromatin region of the cell’s nucleus as well as 2) in the cell’s cytoplasm and 3) in solution. The protein consists of the basic
region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins.
INTRODUCTION
Building dynamical models applicable to crowded and com-
plex environments is essential in describing protein dy-
namics inside living cells. Despite the wealth of data, our
ability to extract meaningful mechanistic insight from ex-
periments in living cells is limited by our theoretical
modeling tools (1). Thus, terms suggesting deviations
from simple model behavior such as anomalous transport
and heterogeneous dynamics often arise in biophysics (2,3).

Anomalous diffusion (4) is a process often used to
describe dynamics in complex environments (5,6). It has
been used to describe the dynamics of telomeres inside
mammalian cell nuclei (7) and bacterial chromosomal loci
(8), the diffusion of mRNA molecules inside the bacterial
cytoplasm (9), and the diffusion of viruses inside infected
cells (10).

In normal diffusion, the mean square displacement
(MSD) of the observed particle, hr2(t)i increases linearly
with time t according to hr2(t)i ¼ qDt, where q is a constant
dependent on dimensionality and taking values 2, 4, or 6 for
one-dimensional, two-dimensional, and three-dimensional
diffusion, respectively, and D is the diffusion coefficient.
By contrast, in anomalous diffusion the particle MSD does
not increase linearly with time but instead exhibits a po-
wer-law behavior hr2if ta, where a is called the anomalous
diffusion exponent and depends on the precise diffusion
mechanism in the system of interest (11).
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In practice, anomalous diffusion is attributed to a number
of factors including molecular crowding (12), active trans-
port (13), binding (14), or combinations of the above (15).
In theory, anomalous diffusion can be derived from general-
ized Langevin equations (8), fractional Brownian motion
(FBM) (16),percolation (17), diffusion in fractals (18),
diffusion in a heterogeneous landscape (19,20), or using po-
wer law jump size or waiting time distributions in contin-
uous time random walk (CTRW) models (21).

Although anomalous diffusion arises in all these models,
there are substantial differences in the dynamics the models
describe. For example, in CTRWs particle jump size distri-
butions and waiting time distributions between jumps can
give rise to anomalous MSDs.

Here, our focus is on fluorescence correlation spectros-
copy (FCS)—a powerful noninvasive technique with single
molecule capability (22)—often used to describe in vivo
protein diffusion (12,23–26).

The output of FCS experiments is fluorescence intensities
of labeled proteins as they traverse an illuminated confocal
volume (27). In simple FCS, the diffusion coefficient, D, is
typically extracted by fitting fluorescence intensity time
autocorrelation curves, G(t) (28)
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where n is the number of particles in the population and Q¼
z0/w where z0 and w are constants characterizing the
confocal volume’s asymmetry. The diffusion time, tD,
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across the confocal volume of width w is related to the diffu-
sion constant, D, using this expression: tD ¼ w2/4D. For
simplicity of illustration only, we ignore triplet corrections
in Eq. 1 (29).

When single-component diffusion models fail, G(t) can
instead be expressed using 1) a two-component normal
diffusion model (30), or, more generally, 2) a multicompo-
nent normal diffusion model (31–34)

GðtÞ ¼ 1
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; (2)

or, even, 3) an anomalous diffusion model (2,30,35)
FIGURE 1 A schematic illustrating how small protein probes (such as

BZip) tagged with fluorescent particles may interact with different areas

of the nucleus. White: laser-illuminated confocal volume inside the nuclear

ROI. Black ovals: Different local environment areas. Proteins (red) diffuse

across the heterogeneous illuminated area of the nucleus. In area (A) the

protein diffuses essentially freely as the area is largely clear. In area (B)

the protein is diffusing through a crowded area without specifically interact-

ing with the molecules there (gray) except via Brownian collisions. In area

(C) the protein is diffusing while binding nonspecifically to an area of DNA

where it has no specific targets (green rectangles), and in area (D) the pro-

tein has encountered one of its targets, i.e., a high-affinity DNA site (blue

rectangle) to which it binds long enough to slow its diffusion. To see this

figure in color, go online.
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In going from the first to the second equality an anoma-
lous mean square displacement, dr2(t) f ta, is assumed
(2) and a new diffusion time, ~tD, and confocal volume
asymmetry parameter, ~Q, were introduced. It is worth noting
that in Eq. 2 each term of the sum corresponds to the contri-
bution from one set of particles with diffusion time tD
through the confocal volume. Though the particles may be
identical, their diffusion time depends on their interactions
in the confocal volume; in this way they are naturally
divided into different sets (see Fig. 1).Rather than fit the
data using Eq. 3, we instead use the maximum entropy
method to extract a multicomponent diffusion model from
data that could otherwise be fit equally well by adjusting
an anomalous exponent, a. Using synthetic data first, we
show how molecular-level insight can be drawn from the
form of our multicomponent diffusion model. For instance,
we will show that our multicomponent diffusion model can
arise from stochastic binding/unbinding of proteins to
different affinity sites and that, under some circumstances
that we will discuss, distributions over diffusion coefficients
can yield distributions over affinity strengths.

Next, we will turn our attention to real FCS data on the
diffusion of the basic region-leucine zipper (BZip) domain.
Specifically, we will consider the truncated BZip domain of
the transcription factor CCAAT/enhancer binding protein a

(C/EBPa) whose diffusion in the nucleus as measured by
FCS can be fit to an apparent anomalous diffusion model
(Eq. 3) (36).

Molecular modeling (37) and single molecule techniques
(38,39) suggest that the multiple interactions of transcrip-
tion factors (TFs) with nuclear elements—such as specific
and nonspecific DNA interactions, protein interactions,
and molecular crowding—can give rise to complex diffusive
behavior.
Biophysical Journal 109(1) 7–17
Our treatment of the FCS data will reveal that funda-
mental processes such as a combination of free particle
diffusion, crowded diffusion, and stochastic binding/
unbinding events give rise to a complex G(t) observed
without resorting to an anomalous diffusion model. Our find-
ings will be consistent with knowledge of the fact that BZip
interacts with specific elements in target gene promoters, as
well as similar consensus DNA elements that are found in
a-satellite DNA repeat sequences located in regions of
centromeric heterochromatin (36,40). In analyzing real
data, we will also consider specific fluorophore properties,
such as flickering, which we can quantify in our analysis.

However, we emphasize that because our starting point is
the multicomponent normal diffusion model (Eq. 2), we
make the assumption from the onset that each diffusion
component is normal. That is, for each component the
mean square displacement (if individual proteins could be
tracked and their mean squared displacement recorded)
would be proportional to time. We cannot therefore pre-
clude, for example, the possibility that a CTRW model
with a power law waiting time distribution (that could
describe, say, anomalous escape kinetics of a tightly bound
protein) could not be a better description of the microscopic
dynamics. Likewise, we cannot preclude other, more sophis-
ticated anomalous diffusion models, either.

Moreover, FCS data does not provide single protein trajec-
tories. Thus, trapping time distributions are not directly
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observable fromFCS.By assuming amulticomponent normal
diffusion model, our parsimonious approach implicitly treats
the unobserved waiting times as exponential and, from this
starting point, provides insight into what processes may be
responsible for the complex diffusion dynamics we observe.

We will end by discussing the possible clinical implica-
tions of the insights gathered from our approach.
MATERIALS AND METHODS

Webegin by considering an FCS confocal volume populated byM stationary

binding sites with N diffusing particles and assume that particles, P, revers-

ibly bind to sites, S, according to Pþ S4 PS. We define a forward, or asso-

ciation rate, kþ; a backward, or dissociation rate, k�; an affinity, K¼ kþ/k�;
and an affinity distribution,p(K). By assumption,whenunbound, all particles

in the confocal volume diffuse with the same diffusion coefficient, D0.

If we consider a situation like the one presented in Fig. 1, where the pro-

teins are confined to small regions for the duration of the experiment and

taking the nonergodic limit meaning the proteins do not interact with

each other while diffusing (41)), the MSD of proteins in one region, say re-

gion A, will then be

�
r2A
� ¼ 1

n

Xn

i¼ 1

ðriðtÞ � rið0ÞÞ2fDAt; (4)

where n is the number of proteins in the region and DA is the average diffu-

sion coefficient in the region. This diffusion is a priori assumed to be

normal. If we now assume the binding sites in the region are in equilibrium

with the proteins, we have [P][S]/[PS] ¼ K�1. K does not depend on the

diffusion coefficient in the region if the region is well mixed (42). The prob-

ability pf that a protein is free to diffuse with the normal diffusion

coefficient D0, will then be pf ¼ [P]/([P] þ [PS]) and therefore

hr2AifDAt ¼ pf D0. Therefore, the effective diffusion coefficient, DA, is

related to the bound and unbound fraction of particles as follows:

DA ¼ D0

½P�
½P� þ ½PS� þ Db

½PS�
½P� þ ½PS� ¼ D0

1

1þ K½S�; (5)

where, in going from the first to the second equality, we have assumed that

the bound diffusion coefficient is zero. We also assumed that particles do

not interact. In fact—as we will discuss shortly—because binding sites

will be present in excess, particles will not be assumed to interact by

competing for sites either. In this way each region exhibits a different diffu-

sion coefficient that depends on the specific protein-binding site interac-

tions in the region. If there are sets of regions where the interactions are

similar but not quite the same, a probability distribution p(D) of normal

diffusion coefficients will arise.

When dealingwith particles that can bind to sites of differing affinities, we

must consider whether: 1) particles interact (either directly or by competing

for affinity sites); 2) whether, over the timescale of an experiment, each par-

ticle explores all types of affinity sitesmultiple times (the ergodic limit); 3) or

whether, over the timescale of an experiment, particles remain mostly

confined to regions with few affinity sites (the nonergodic limit).

In case 2, for independent particles, the net diffusion coefficient for all

particles pðD0Þ, tends to a sharp Gaussian by the central limit theorem. In

this case, it is not possible to individually extract different affinity constants

from pðD0Þ. Rather,

D0 ¼ D0

½P�
½P� þ ½PS1� þ ½PS2� þ/

¼ D0

1

1þ K1½S1� þ K2½S2� þ/
; (6)
where Ki is the affinity for the ith site present at concentration [Si]. Howev-

er, if the affinity for one of two sites is known, then the affinity of the other

can be determined. Thus, direct insight may be obtained by mutating one

known affinity site.

For case 3, for independent particles, each protein has a unique diffusion

coefficient (given by Eq. 5), which is related to the affinity of the site to

which it is binding/unbinding. This is the nonergodic limit where, in prin-

ciple, the number of binding sites is determinable from a distribution of

diffusion coefficients. In this limit, p(K) is related to pðD0Þ.
We note that later, in our data analysis, we will find multiple pðD0Þ s (one

for each experiment which covers, for instance, different regions of euchro-

matin in the cell’s heterogeneous nucleus). By averaging over the individual

pðD0Þ s, we will be configurationally averaging over affinity site distances.

Thus, information on affinity site distances will be lost.

Case 3 is the one that is most relevant to our analysis focused on the BZip

domain of a transcription factor (C/EBPa) in regions of euchromatin based

on the following observations.

1) In general, within the confocal volumewe expect to have a few hundreds

of thousands of binding sites (43–46). Furthermore, we anticipate these

binding sites are not, for the most part, selective of BZip because areas

rich in binding sites selective of BZip attract large numbers of BZip pro-

teins and we take data in regions of the nucleus that visually appear to

have the lowest concentrations of BZip. Incidentally, these are likely re-

gions comprised mostly or entirely of euchromatin. This expectation is

confirmed because when the confocal volume is positioned in these re-

gions for FCS collection, there is no discernible immobile fraction

(because no bleach out occurs during data collection) (47). Thus, there

is a far larger number of nonspecific trapping sites in the confocal vol-

ume than there are diffusing particles; [S] z 0.1 mM. By contrast, we

assume [P] ¼ 1 nM for the particle concentration (this is roughly the

concentration of red fluorescent protein (RFP)-tagged BZip proteins in

the experimental data we use). Given the size of our confocal volumes

(~2 mm), this translates to only a few (1–10) RFP-tagged BZips. In prac-

tice, experimental conditions determine [P]. Thus, the number of low af-

finity binding sites far exceeds the number of BZip and, because there

are only a few RFP-tagged BZips in the confocal volume, we expect

cooperation or competition for the high affinity sites by BZips to be

negligible.

2) TFs have very specific targets on the genome to which they bind with

high affinity, and tend to bind to the rest of the DNA with very low af-

finities (38,48).

We end with two additional observations on possible alternatives to our

multicomponent diffusion model.

First, percolative diffusion (i.e., trapping of the diffusing molecules in the

chromatin or other networks) may not be responsible for theG(t) that is well

fit by an anomalous model that we will observe in the cell’s nucleus. This is

because the size of diffusing particles is small relative to any large struc-

tures in the region of interest (ROI). This ensures that particles do not

become enmeshed in filaments or structures, which could lead to percola-

tive diffusion (17). For our BZip data, we have RFP tags of size ~5 nm

which, even with the addition of the BZip domain, is much less than the

limit (around 60 nm) at which we expect percolative diffusion

(17,49).Furthermore, because we have avoided taking data in areas of het-

erochromatin, we do not expect our probes to often encounter dense

network formations that could trap them into percolative diffusion.

Second, it has been suggested that heterochromatin is closely packed in a

fractal-like structure (18), and that particles diffusing through it would be

forced to explore self-similar structures leading to anomalous diffusion

where FBMmodels have been used (50). However, we explore regions spe-

cifically far away from heterochromatin where this should not be an issue.

Furthermore, particles that exhibit FBM are typically at least an order of

magnitude larger (50,51) than our small probes, which are of a size for

which such effects are not expected to occur (52). In general, although

the possibility that a small fraction of our probes will undergo percolate
Biophysical Journal 109(1) 7–17
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diffusion or FBM cannot be excluded, the small size of our probes combined

with our averaging over many different ROIs, which are all chosen specif-

ically far away from heterochromatin ensure that in the aggregate the contri-

bution from FBM and percolate diffusion is negligible even if present.
Numerical methods and analysis of synthetic data

In principle, the p(tD) appearing in our multicomponent normal diffusion

model, Eq. 2, can be extracted from the data—the FCS curve we call

GðtÞ—by minimizing a c2 residual between the data and the theoretical

Gth(t) as follows:

c2 ¼
X
t

�
GthðtÞ � GðtÞ	2; (7)

where
GthðtÞ ¼
X
tD

pðtDÞ
�
1þ t

tD

��1�
1þ 1

Q2

t

tD

��1=2

: (8)

In practice, for noisy GðtÞ, this extraction must be regularized to avoid nu-

merical error propagation. Sengupta and co-workers (31) used entropy,
�P
tD

pðtDÞlogðpðtDÞ=qðtDÞÞ, as a regularizing function along with stan-

dard c2 minimization to obtain p(tD) where q(tD) is a prior on p(tD). How-

ever, for our results (benchmarked in Figs. 2 and 3) we use the prior, q(tD)

obtained from a first round of Tikhonov regularization (53). Our code is im-

plemented on Mathematica and is available (on http://www.statphysbio.

physics.iupui.edu/ or by contacting the corresponding author). Once the

p(tD) has been acquired, a simple change of variable transformation accord-

ing to D ¼ w2/4tD yields p(D) and, through Eq. 5, p(K). Fig. 2 is synthetic

data we generated by taking Eq. 3 and plotting it using a ¼ 0.9 with 5%

white noise (blue dots, Fig. 2 a). In other words, this synthetic data coin-

cides with the G(t) generated by an anomalous diffusion model. If this

were real data, we could either fit it using an adjustable anomalous exponent

or we could extract a p(tD).

The p(tD) we extracted from this curve is given in Fig. 2 b. As a sanity

check, we use the p(tD) to recreate the original data (solid line, Fig. 2 a).

Here is the type of insight we could gather from our p(tD) that would not

otherwise be attainable had we simply fit G(t) to an anomalous diffusion

model with an adjustable anomalous exponent: Suppose a specific binding

site were removed either by mutating/removing a particular DNA binding

site or a cooperative binding partner without which successful binding is

improbable. In this case, we would expect the theoretical p(tD) to show a
Biophysical Journal 109(1) 7–17
gap for some tD values (pink curve, Fig. 2 d). We show a theoretical

p(tD) with an exaggerated excision for illustrative purposes.

However, in experiments, we would measure the G(t) coinciding with

this theoretical p(tD) (i.e., not the p(tD) directly). This G(t) (with some

added noise) is shown in blue dots, Fig. 2 c. At this point our goal would

be to ask: how can a mutation, say, alter the p(tD)? To answer this question,

we would take this G(t) (blue dots, Fig. 2 c) and extract a p(tD) (blue curve,

Fig. 2 d). What would then be clear is that this extracted p(tD) shows a clear

excision from which we would be able to infer the binding site’s affinity.

Alternatively, in the case of a mutated or removed binding partner, we could

confirm the role the binding partner played in binding to a specific affinity

site.

Indeed, this exercise highlights that a great deal of microscopic informa-

tion (such as binding site affinities and binding partners) can in principle be

inferred from curves that could have been equally well fit using anomalous

diffusion models. Of course, we can repeat this exercise for any anomalous

exponent (other examples can be found in the Supporting Material).

If the dynamics were actually anomalous (i.e., if their mean square

displacement obtained by tracking individual hypothetical trajectories

was not proportional to time) our analysis would then draw incorrect infer-

ences about affinities from our p(tD). However, a change in affinity because

of the loss of a binding site, for instance, would suggest that p(tD) could be

used to estimate affinities.

Furthermore, it is conceivable that G(t) may be sufficiently complicated

that it may not be well fit using an anomalous diffusion model and that dis-

tributions of anomalous exponents (or increasingly complex forms for wait-

ing time and jump size distributions in CTRWs) would be required to fit the

data. We do not have this problem because we do not assume a functional

form for p(tD) (i.e., our treatment is nonparametric). Thus, we can treat, in

principle, arbitrarily complex G(t) s. As an example, we used a skewed

Gaussian p(tD) (see Fig. 3 b) to create a theoretical G(t) to which we added

6% white noise (blue dots, Fig. 3 a). We then extracted the p(tD) from the

noisy synthetic data. At this noise level, the extracted p(tD) overlaps

completely with the theoretical p(tD) in Fig. 3 b. As a sanity check, we

used this extracted p(tD) to reconstruct the expected G(t) (solid line,

Fig. 3 a).

Having benchmarked the method on synthetic data, we now turn to real

FCS data.
Survey of the experimental methods

Standard recombinant DNA methods were used to generate the plasmids

encoding the RFPs mCherry (54) or mRuby (55) that were linked to the
FIGURE 2 Protein binding sites of different af-

finities can give rise to apparent anomalous diffu-

sion. A theoretical G(t) (containing 150 points)

was created from an anomalous diffusion model,

Eq. 3, with a ¼ 0.9, to which 5% white noise

was added (a, blue dots, logarithmic in time). In

(b), a p(tD) is extracted from this G(t) and, as a

check, we used it to reproduce the G(t) (a: solid

curve). Part of p(tD) is then excised, which yields

a new, to our knowledge, p(tD) (d: pink curve). A

G(t) is created from this theoretical distribution

with 8% white noise (c: blue dots, logarithmic in

time). A p(tD) is then extracted from this (d, blue

curve) and the G(t) is reconstructed from this

p(tD) as a check (c, solid curve). Time is in arbi-

trary units. To see this figure in color, go online.

http://www.statphysbio.physics.iupui.edu/
http://www.statphysbio.physics.iupui.edu/


FIGURE 3 G(t) s may arise from unusual p(tD)

distributions that cannot easily be fit using anoma-

lous diffusion models. A skewed-normal distribu-

tion (b) plus 6% added noise was used to

generate a 100 point G(t) (a, blue dots, equidistant

in time). The p(tD) was then extracted (b) and used

to reconstruct the noiseless G(t) (a, solid curve).

The original and extracted p(tD) are indistinguish-

able, although agreement of our reconstructed G(t)

with the original noisy G(t) is excellent at this

noise level. To see this figure in color, go online.
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sequence encoding the BZip domain of the rat C/EBP a (starting at the

methionine at position 237 of the full length C/EBP protein). The cell

line used was mouse pituitary GHFT1 cells maintained in monolayer

culture. 400 ml of the cell suspension was transferred to each 0.2 cm

gap electroporation cuvette containing 1 mg of the plasmid DNA, the

content were gently mixed, and pulsed with 200 V at a capacitance of

1200 microfarads in pulses of 10 ms duration. Recovered cells were

then diluted in a phenol red-free tissue culture medium containing serum

plated on a Nunc Lab-Tek chambered coverglass and transferred to an

incubator for imaging the following day. FCS measurements were

made using the ISS Alba FastFLIM system (ISS, Champagne, IL)

coupled to an Olympus IX71 microscope and a stage-top environmental

control system. Emission events were collected at 2 kHz. For further de-

tails see (36,56).
RESULTS AND DISCUSSION

As an experimental test for our model, we considered a
BZip domain of the C/EBPa tagged with either the RFP
mCherry or mRuby2. We subsequently used FCS to charac-
terize the diffusion of the proteins in solution and in living
mouse cells. Within the cell, we looked at diffusion of the
labeled proteins in the cytosol and within the nucleus in re-
gions away from heterochromatin (Fig. 4), which is easily
visualized in cells of mouse origin (57).

The selection of the ROI (solution, cytosol, nucleus away
from heterochromatin) limited the expected types of protein
interactions and simplified our analysis.

A nucleus has an approximate volume of ~528 mm3 and
the volume of the DNA cylinder is 3.14 mm3 (43,44). The
DNA cylinder of the mouse genome contains ~2.6� 109 ba-
ses, of which ~75% are in euchromatin (46), so the concen-
tration of bases in euchromatin is ~3.7 million bases/mm3.
Therefore, for a BZip domain length of ~70 bases (45)
and a confocal volume of ~2 mm3, we expect to have a
few hundreds of thousands of binding sites within the
confocal volume.

We determine the relative size of the high-affinity site
populations by measuring the immobile fraction during
bleach out experiments. Because there is a low immobile
fraction in the regions observed, there are few high-affinity
binding sites in those ROIs (36,47). The concentration of
RFP-tagged BZips is 1 nM, which within the range of
confocal volumes used in these experiments (36), translates
to BZip numbers on the order of 1–10, given the size of the
confocal volume (~2 mm3 in the experiments). We therefore
expect cooperation or competition between the BZips to
play a negligible role.

As we will discuss, proteins in solution will allow us to
identify the peak in p(D) due to free diffusion (and flickering
as well) from which we will deduce the contribution to p(D)
for proteins diffusing in the cytosol due to molecular
crowding.

Finally, we will show that although diffusion in the nu-
cleus can be fit using an anomalous diffusion model and ap-
pears the most complicated, the features of its p(D) can be
quantitatively interpreted. For instance, the BZip proteins
homo- or heterodimerize by forming parallel coiled coils
(leucine zipper), and bind to specific DNA elements using
a region rich in basic amino acids (58). These proteins
also undergo relatively unhindered diffusion in the nucleus
in regions away from heterochromatin. We will determine
from the p(D) those features from diffusion in crowded en-
vironments (now readily identifiable due to our analysis of
the diffusion in the cytosol) and features arising from
nonspecific DNA binding. We will then associate features
from the p(D) s with affinities, Ks, and physical mechanisms
that could give rise to those specific interactions.
FIGURE 4 We used FCS to investigate ROIs at

various cell locations, both in the cytosol and in

the nucleus but far from areas of heterochromatin.

In this instance, Cerulean-CTA FP was used to im-

age the cytosol and mCherry RFP was used to tag

BZip protein domains; the tagged BZips were

observed diffusing in the nucleus via FCS. Because

BZip preferentially attaches to heterochromatin,

we were able to choose ROIs far from heterochro-

matin by avoiding RFP congregation areas (bright

red spots). To see this figure in color, go online.

Biophysical Journal 109(1) 7–17
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In solution: free diffusion and protein flickering
contribute to p(D)

The raw data we analyzed was first used to characterize the
behavior of our RFPs (56). The FCS curves that were ac-
quired for this purpose consisted of 50–100 data points de-
pending on experimental settings and arise from millions of
RFPs diffusing in and out of the confocal volume in concen-
trations of the order of 1 nM per data set. In these FCS ex-
periments, both flickering (59) as well as other known
photophysical contributions contribute to the G(t).

Flickering is a fast, reversible photoswitching event that
arises from instabilities in the core RFP chromophore
(60). A particle flickering faster than the free diffusion
time tD0

would appear in the G(t) as a fast-moving (high
diffusion coefficient) component, whereas a particle flick-
ering slower than tD0

would simply appear as an additional
component in p(D) with a lower diffusion coefficient.
Because each flickering particle registers as multiple high-
D particles, high-D particles appear more numerous, and
so p(D) shows substantial probability density at higher
values of D when flickering is present. In fact, in our anal-
ysis, flickering will appear as a plateau in the p(D) at high
values of D. The plateau arises because fast flickering can
be interpreted as diffusion times across the confocal volume,
which become vanishingly small such that its corresponding
diffusion coefficient is infinitely fast.

To determine whether this is correct and ensure that our
method does not produce such a plateau when no flickering
is present, we ran a control by acquiring FCS data for
Alexa568, which is well behaved in FCS studies (56,61).
The extracted diffusion coefficient distribution of Alexa568
showed no plateau (see Fig. 5 a), and a peak at ~360 mm2/s.
As the experimental confocal volume was originally cali-
brated by setting the diffusion coefficient for Alexa568 to
363 mm2/s (56), our recovery of this value was expected
and it validates our approach. We also performed simula-
tions of mCherry and mRuby2 diffusing while flickering,
which reproduced the plateau (Fig. 5 b). Finally, we used
the Spearman rank coefficient r as a simple measure of
the quality of the data sets we worked with; because G(t)
curves ought to be perfectly monotonic in the absence of
diffusive plateaus in the p(D) s extracted from our data sets are consistent wi

at lower D values in p(D) that may arise from binding of TFs to DNA are we

peak at low values of D for Alexa568 (a) is due to FP aggregation. To see th
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noise, we limited ourselves to analyzing data sets with r

% �0.9.
In the cytosol: we extract (label-dependent)
molecular crowding effects on protein diffusion

We first describe results of our method employed on an
ensemble of different FCS data sets that can be found in
Fig. 6 (left for mCherry, right for mRuby2). Here, we
used purified mCherry and mRuby2 FPs to compare the
analysis of their diffusion characteristics in three different
environments: 1) in solution (Fig. 6, a and b) and tagging
BZip domains expressed in living cells both 2) in the cytosol
(Fig.6, c and d) and 3) in the nucleus away from areas of het-
erochromatin (Fig. 6, e and f).

In all cases, a plateau appears at the right side of the p(D)
distribution corresponding to the apparent superdiffusive
component that we now know is the result blinking/
flickering.

The lower bound of the superdiffusive plateau coincides
with expected free diffusion for mCherry or mRuby2 (D
z 120 mm2/s). To obtain this D, we used the Einstein-
Stokes relation D ¼ kBT/6phr in water at 300 K and a mo-
lecular size of 2 nm (62), which is the radius of gyration of
the RFPs if we think of them as tumbling spheres. In addi-
tion, FP-tagged BZip proteins are expected to be somewhat
slower, because the BZip domain represents a 122 AA
(13 kDa) tail, and therefore 120 mm2/s can be considered
an upper bound. This value for the free diffusion coefficient
D0 for mCherry and mRuby2—which has also been exper-
imentally determined to be ~100 mm2/s (56)—is therefore
a natural lower bound for the flickering plateau, and indeed
it appears as such in our analysis (see Fig. 6, a and b).
Furthermore, the value of p(D) at D0 is low but nonzero,
again as expected.

In the cytosol, we believe mCherry-BZip has few interac-
tions. This is because C/EBPa—the parent protein of the
BZip domain used here—has not been demonstrated to
have any interactions with cytosolic proteins other than
during its degradation (63). The question of whether
mCherry has interactions in the cytosol has not, to our
FIGURE 5 FP flickering gives rise to the pla-

teaus we see for larger D values. We used FCS

data acquired for freely diffusing Alexa568,

which is well behaved, as a control for our exper-

imental data to determine if it would show a

superdiffusive plateau in our analysis: results

were negative (a). We then performed a similar

analysis for mCherry and mRuby2 freely diffusing

while flickering and extracted the resulting p(D)

from G(t) using our method: a superdiffusive

plateau was reproduced; we show here the data

for mRuby2 (b) 56. We conclude that the super-

th flickering of the FP. Furthermore, we conclude the remaining features

ll separated from the flickering plateau if it arises in the data. The small

is figure in color, go online.



FIGURE 6 We extract probability distributions

of diffusion coefficients from FCS curves. To

extract p(D) s, we used FCS data acquired for

mCherry and mRuby2 diffusing freely in solution

(a and b), and for BZip protein domains tagged

with mCherry and mRuby2 diffusing, whereas in

the cytosol (c and d) and in the nucleus but far

from regions of heterochromatin (e and f) 56.

The p(D) s for the freely diffusing FPs in solution

exhibit superdiffusive plateaus due to flickering

and triplet corrections, with the actual free diffu-

sion coefficient appearing as a lower bound. In

the cytosolic and nuclear data, these plateaus are

still present for the FP-tagged BZips but they

are accompanied by rich landscapes that capture

the many different interactions between the FP-

tagged BZips and their environment detailed in

the main body. Red curves represent the p(D) s

extracted from individual data sets; Black curves

are the average of all underlying red curves. The

total number of data sets averaged is per plot:

(a) 3, (b) 9, (c) 5, (d) 16, (e) 7, and (f) 21. In cases

where only a few data sets were available the

average occasionally exhibits features that are

only found in one data set; we consider such fea-

tures to be most likely artifacts of heterogeneity

between different ROIs in the cytosol or nucleus

and ignore them in our analysis. In cases where

more data sets are averaged such single data set features are naturally muted. We note that, predictably, in solution the p(D) s are far less noisy as

compared to the heterogeneous environment of a living cell. To see this figure in color, go online.
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knowledge, been directly investigated, however it does not
exhibit behavior indicative of such interactions during ex-
periments (56).

In the absence of known interaction, the p(D)’s peak
obtained for mCherry-BZip and mRuby2-BZip in the
cytosol (Fig. 6, c and d), which is roughly centered at 20–
40 mm2/s—which is smaller than that expected for free
diffusion—is therefore attributed to the slower diffusion
arising from cytoplasmic crowding. Furthermore, the peak
of our extracted p(D) is in the range of diffusion coefficient
values determined by FCS and fluorescence recovery after
photobleaching (FRAP) experiments (56,64,65)

In addition to the peak centered at 20–40 mm2/s (the
crowding peak), the p(D) for mCherry in the cytosol shown
in Fig.6 c shows a component of free diffusion and a third
very slow diffusion component. This third component, how-
ever, only shows up strongly in a single data set and could be
a result of a particular feature of the cytosol in the ROI from
which the data set originates. By contrast, the p(D) curves
for mRuby2 in the cytosol also show a similar peak at 20–
40 mm2/s but no substantial slower component as was the
case for mCherry, strengthening the view that this particular
feature is an experimental outlier. The overlap of the 20–
40 mm2/s peak and free diffusion peak for mRuby2 may
be caused by interactions between mRuby2 and cytosolic
proteins or organelles. In fact, previous analyses of FCS
data suggested that mRuby2 expressed in living cells dis-
plays a reduced diffusion that is tentatively attributed to
possible interactions of the chromophore with other cyto-
solic molecules or structures (56).
In the nucleus: the diffusion of BZip (whoseG(t) is
well fit by anomalous diffusion) is attributed to
DNA site binding

The crowding peak is much less prominent in the nucleus
where other interactions dominate, as we now describe.

In the nucleus, DNA-binding domains–such as those of
the BZip proteins–are expected to engage in at least four
different types of binding interactions: 1) direct binding
with high affinity to specific DNA elements (58); 2) binding
to nonspecific DNA elements with lower affinity; 3) interac-
tions with other proteins involved in chromatin binding
(36); 4) association with proteins that form subnuclear
domains such as nucleoli, speckles, or promyelocytic
leukemia bodies (66) or oligomeric complexes with other
proteins (67).

These interactions are captured by the traces shown in
Fig. 6, e and f. In particular, these traces exhibit a number
of peaks in the p(D) in the nucleus, with three common types
of interactions identified for both the mCherry-BZip and
the mRuby2-BZip fusion proteins. There is a very slow
interaction centered around 0.2 mm2/s, another centered
at 0.8 mm2/s, and a third interaction centered around
5 mm2/s. These likely identify different types of nuclear in-
teractions, one or more of which may be related to
Biophysical Journal 109(1) 7–17
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interactions with other proteins involved in chromatin bind-
ing (interaction 3), as a typical residence of TFs in chro-
matin has been shown to be about 2 s (66). In addition,
the BZip domain is known to interact with the heterochro-
matin protein 1 alpha (HP1a), which binds directly to
histones and interacts with both histone- and DNA-methyl-
transferases (interaction 3) (36,67). Histones are very stable
and slow diffusing (66), and protein complexes containing
histones would be expected to exhibit extremely long bind-
ing times, i.e., small diffusion coefficients.

Furthermore, based on the timescales involved, at least
one of the captured interactions might be related to associ-
ations with subnuclear domains (interaction 4), which can
be on longer timescales than chromatin binding (66). How-
ever, the intermediate interaction identified might be
another type of interaction with chromatin. Using FRAP,
two different interactions for the parent protein C/EBPa
were identified—by fitting the FRAP results to a double
exponential decay curve—but both interaction times were
attributed to chromatin binding (68).

Results for a single data set of real FCS data for mRuby2-
tagged BZip diffusing in the nucleus away from regions of
heterochromatin are shown in Fig. 7. This single trace con-
tains three peaks (K0,K1,K2) found in both the p(tD) and the
p(D), which correspond to diffusion coefficients of about
1000, 80, and 2 mm2/s, respectively. Each of the three peaks
arises from a different physical mechanism, namely blink-
ing/flickering and free diffusion (K0), molecular crowding
of freely diffusing mRuby2-tagged BZips (K1) and finally
mRuby2-tagged BZips (K2) engaged in one of the types of
binding discussed previously.

Unlike the curves in (homogeneous) solution, the curves
in the cytosol and especially in the cell’s nucleus differ
somewhat from one another. We emphasize that this data
is in vivo and that, despite this fact, qualitative differences
on diffusion of BZip are clearly detected by our method be-
tween the solution, the cytosol, and the nucleus. Further-
more, because there are a number of interactions possible
in the nucleus, a very large number of ROIs may be required
to yield a smoother p(D).
in our data, bounded below by the expected free diffusion coefficient for mRu

K1 z 5 nM�1 can be attributed to molecular crowding interactions; and 3) the pe

discussed in the text. (In deriving the values for K we assumed, for simplicity on
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CONCLUSIONS

Diffusion in the complex heterogeneous environment of the
cell often shows strong deviations from normal diffusion
(2,7,8,17,18,69). Here, we have focused on FCS and demon-
strate that processes described by time autocorrelation, G(t),
which are generally fit using anomalous models that could
also be interpreted as multicomponent diffusion processes.
Our method provides insight into flickering phenomena,
crowding interactions, and may also reveal binding site af-
finities in some regimes.

Measurements of binding site affinities and even binding
site affinity distributions in the cell’s nucleus are of current
interest (39,69–73). A number of single-molecule localiza-
tion and tracking methods (such as TIRF, EPI, SPIM,
FSM, smFRET) (74)) exist to measure affinities (39,71).
Although powerful, these methods can be problematic
because of the difficulty in distinguishing transitions in
the noisy dynamics of the diffusing particle (69,70), and
can suffer from bias, arising for example from over detec-
tion of slow versus fast moving particles (69).

Here, we argue that FCS—a widespread technique poised
to provide dynamical insight into in vivo systems—comple-
ments single-molecule localization and tracking methods
and may provide an independent assessment of binding af-
finities. FCS’s potential to help quantify nuclear ligand-
dependent interactions has previously been explored (75);
in that study, MaxEnt, diffusion time distribution analysis,
and standard fitting techniques were used to determine the
existence of multiple diffusing species and interactions in
the nucleus.

Here, we used a combination of MaxEnt and Tikhonov
regularization to infer models from FCS data collected
from the complex environment of live cells. We have shown
that the diffusion time and diffusion coefficient distributions,
p(tD) and p(D), respectively, for BZip protein interactions in
the nucleus yield information on diffusion times, diffusion
coefficients, and, ultimately, binding affinities of the proteins
to nuclear structures. Our results can be used to create a
detailed quantitativemap of the types and strength of specific
FIGURE 7 Affinity constants for key interac-

tions can be determined from data collected in the

cell’s nucleus. Here a p(tD)—extracted from a

data set acquired from mRuby2-tagged BZip

domain diffusing in the nucleus far from areas of

heterochomatin (56)—is transformed into the cor-

responding p(D). The data set presented here is

atypical. It was the nuclear data set that exhibited

the smallest c2 of all experimental data sets we

examined. Now—using the accepted free diffusion

coefficient for mRuby2 of ~100 mm2/s (56) and

Eq. 5—we find that 1) the peak corresponding to

K0 is most consistent with a superdiffusive compo-

nent appearing as an artifact of flickering/blinking

by2 as seen in FCS of mRuby2 in solution; 2) the peak corresponding to

ak corresponding to K2 z 500 nM�1 represents one of the types of binding

ly, [S] ¼ 0.1 mM). To see this figure in color, go online.
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binding interactions that provide data from a sufficient num-
ber of different regions inside the living cell.

BZip proteins—evolutionarily conserved from plants to
humans—play critical roles in both physiological and path-
ophysiological processes, from the control of reproduction
to cancer progression. In fact, over 50 human BZip proteins
participate in a wide range of important biological pro-
cesses, making these proteins attractive clinical targets for
selective inhibition (76). For example, specific dominant-
negative heterodimer partners for the BZip proteins, called
AZip, were designed to specifically inhibit BZip DNA bind-
ing in equimolar competition (77). The expression of AZip
proteins in cells and in transgenic animals demonstrated that
the selective inhibition of BZip DNA binding had significant
physiological effects, from the prevention of skin papilloma
formation (78) to the reduction in adipose tissue (79).

In addition, small molecules that inhibit BZip DNA bind-
ing have been identified, providing important structural in-
formation for the design of drugs targeting this important
transcription factor family (80). Our method has the poten-
tial to reveal how BZips binding potency and specificity
changes with the addition of these novel drugs. In other
words, if a particular value of K—otherwise prominent—
should disappear from p(K) obtained from treated cells,
we would collect valuable insight into the types of interac-
tions these drugs have disrupted.

Of course, the technique we presented here is not specific
to BZip; rather, our method should be applicable to other
proteins—and even cellular structure—monitored by FCS.
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