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Abstract

The inter-subject alignment of functional MRI (fMRI) data is important for improving the 

statistical power of fMRI group analyses. In contrast to existing anatomically-based methods, we 

propose a novel multi-subject algorithm that derives a functional correspondence by aligning 

spatial patterns of functional connectivity across a set of subjects. We test our method on fMRI 

data collected during a movie viewing experiment. By cross-validating the results of our 

algorithm, we show that the correspondence successfully generalizes to a secondary movie dataset 

not used to derive the alignment.

1 Introduction

Functional MRI (fMRI) studies of human neuroanatomical organization commonly analyze 

fMRI data across a population of subjects. The effective use of this data requires deriving a 

spatial correspondence across the set of subjects, i.e., the data must be aligned, or registered, 

into a common coordinate space. Current inter-subject registration techniques derive this 

correspondence by aligning anatomically-defined features, e.g. major sulci and gyri, across 

subjects, either in the volume or on extracted cortical surfaces. Talairach normalization [1], 

for example, derives a piecewise affine transformation by matching a set of major 

anatomical landmarks in the brain volume. More advanced techniques match a denser set of 

anatomical features, such as cortical curvature [2], and derive nonlinear transformations 

between a reference space and each subject’s cortical surface.

It is known, however, that an accurate inter-subject functional correspondence cannot be 

derived using only anatomical features, since the size, shape and anatomical location of 

functional loci vary across subjects [3], [4]. Because of this deficiency in current alignment 

methods, it is common practice to spatially smooth each subject’s functional data prior to a 

population based analysis. However, this incurs the penalty of blurring the functional data 

within and across distinct cortical regions. Thus, the functional alignment of multi-subject 

fMRI data remains an important problem.
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We propose to register functional loci directly by using anatomical and functional data to 

learn an inter-subject cortical correspondence. This approach was first explored in [5], 

where subject cortices were registered by maximizing the inter-subject correlation of the 

functional response elicited by a common stimulus (a movie viewing). In essence, the 

correspondence was selected to maximize the correlation of the fMRI time series between 

subjects. This relies on the functional response being time-locked with the experimental 

stimulus. Large regions of visual and auditory cortex stimulated by a movie viewing do 

indeed show consistent inter-subject synchrony [6]. However, other areas in the intrinsic [7] 

or default [8] system fail to exhibit significant correlations across repeated stimulus trials. 

The technique of [5] is hence not expected to improve alignment in these intrinsic regions.

In contrast to [5], we propose to achieve inter-subject alignment by aligning intra-subject 

patterns of cortical functional connectivity. By functional connectivity, we mean within-

subject similarity of the temporal response of remote regions of cortex [9]. This can be 

estimated from fMRI data, for example, by correlating the functional time series between 

pairs of cortical nodes within a subject. This yields a dense set of functional features for 

each subject from which we learn an inter-subject correspondence. Unlike other functional 

connectivity work (see e.g. [10]), we define connectivity between pairs of cortical nodes 

rather than with respect to anatomical regions of interest. Our approach is inspired by studies 

showing that the patterns of functional connectivity in the intrinsic network are consistent 

across subjects [7], [11]. This suggests that our method has the potential to learn an inter-

subject functional correspondence within both extrinsic and intrinsic cortical networks.

In summary, we formulate a multi-subject cortical alignment algorithm that minimizes the 

difference between functional connectivity vectors of corresponding cortical nodes across 

subjects. We do so by learning a dense-deformation field on the cortex of each subject, 

suitably regularized to preserve cortical topology [2]. Our key contributions are: a) the novel 

alignment objective, b) a principled algorithm for accomplishing the alignment, and c) 

experimental verification on fMRI data.

The paper is organized as follows. In §2 we formulate the multi-subject alignment problem, 

followed by a detailed exposition of the algorithm in §3 and§4. Finally, we exhibit results of 

the algorithm applied to multi-subject fMRI data in §5 and draw conclusions in§6.

2 Formulation of the Multi-Subject Alignment Problem

For each subject we are given volumetric anatomical MRI data and fMRI data. The 

anatomical data is used to extract a two-dimensional surface model of cortex. This greatly 

facilitates cortical based analysis and subsequent visualization [12], [13], [14]. Cortex is 

segmented, then each cortical hemisphere is inflated to obtain a smooth surface, which is 

projected to the sphere, S2, represented by a discrete spherical mesh Ms = {pk ∈ S2; 1 ≤ k ≤ 

Nv/2}. The two cortical hemispheres are hence modeled by the disjoint union S = S2 ⊎ S2, 

represented by the corresponding disjoint union of mesh points M = Ms ⊎ Ms. Anatomical 

cortical features, such as cortical curvature, are functions Da : S → RNa sampled on M. 

Thus, our analysis is restricted to cortex only.
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The fMRI volumeric data is first aligned with the anatomical scan, then mapped onto S. This 

assigns each mesh node pk ∈ M a “volumetric cortical voxel” vk ∈ ℝ3, with associated 

functional time series fk ∈ ℝNt. The functional time series data is then a function Df: S → 

RNt sampled on M.

As indicated in the introduction, we do not directly register the fMRI time series but instead 

register the functional connectivity derived from the time series. Let σ(f1, f2) denote a 

similarity measure on pairs of time series f1, f2 ∈ RNt. A useful example is empirical 

correlation: σ(f1, f2) = corr(f1, f2); another possibility is an estimate of the mutual 

information between the pairwise entries of f1, f2. Define the functional connectivity of the 

fMRI data under σ as the map C(pi, pj) = σ(Df(pi), Df(pj)), i.e., the similarity of the 

functional times series at the pairs of cortical nodes. Functional connections both within and 

across cortical hemispheres are considered. Functional connectivity can be conceptualized as 

the adjacency matrix of an edge-weighted graph on all cortical nodes. The edge between 

nodes pi, pj is weighted by the pairwise similarity measure σ(fi, fj) codifying the functional 

similarity of pi and pj. In the case of correlation, C is the correlation matrix of the time series 

data. For typical values of Nv (≈ 72, 000), the functional connectivity data structure is huge. 

Hence we need efficient mechanisms for working with C.

We are given the data discussed above for Ns subjects. Subject k’s training data is specified 

by samples of the functions Da,k : Sk → RNa, Df,k : Sj → RNt, and the derived functional 

connectivity Ck, all sampled on the mesh Mk, k = 1, …, Ns. Our objective is to learn a 

relation consisting of Ns-tuples of corresponding points across the set of cortices. To do so, 

we could select a node from M1 for subject 1 and learn the corresponding points on the 

cortices of the remaining Ns − 1 subjects through smooth and invertible mappings gk : S1 → 

Sk, k = 2, …, Ns. However, this arbitrarily and undesirably gives special status to one 

subject. Instead, we introduce a reference model Sref = S2 ⊎ S2 with mesh Mref. For each 

node p ∈ Mref on Sref, we seek to learn the Ns-tuple of corresponding points (g1(p), g2(p), …, 

gNs(p)), parameterized by gk : Sref → Sk, k = 1, …, Ns.

In general terms, we can now summarize our task as follows: use the functional connectivity 

data Ck, in conjunction with the anatomical data Da,k, k = 1, …, Ns, to estimate warping 

functions {gk : k = 1, …, Ns}, subject to specified regularity conditions, that bring some 

specified balance of anatomy and functional connectivity into alignment across subjects. 

That said, for the remainder of the paper we restrict attention to aligning only functional 

connectivity across subjects. There is no doubt that anatomy must be an integral part of a 

full solution; but that aspect is not new, and is already well understood. Restricting attention 

to the alignment of functional connectivity will allow us to concentrate on the most novel 

and important aspects of our approach.

To proceed, assume a reference connectivity Cref, such that for each subject k = 1, …, Ns,

(1)

where Ck(gk(pi), gk(pj)) = σ(Df,k(gk(pi)), Df,k(gk(pj))), and εk is zero-mean random noise. 

Since gk(p) may not be a mesh point, computation of Df,k(gk(p)) requires interpolation of the 
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time series using mesh nodes in a neighborhood of gk(p). This will be important as we 

proceed.

Given (1), we estimate g by maximizing a regularized log likelihood:

(2)

where Reg(gk) constrains each warping function gk to be smooth and invertible. Here, we 

will focus on the log likelihood term and delay the discussion of regularization to §3. 

Optimization of (2) is complicated by the fact that Cref is a latent variable, so it must be 

estimated along with g. We use Expectation-Maximization to iteratively alternate between 

computing an expectation of Cref (E-step), and a maximum likelihood estimate of g given 

both the observed and estimated unobserved data (M-step) [15]. In the E-step, the 

expectation of Cref, C̄
ref, conditioned on the current estimate of g, ĝ, is computed by 

averaging the connectivity across subjects:

(3)

In the M-step, the estimate ḡ is refined to maximize the likelihood of the full data:

(4a)

(4b)

where we have assumed that the noise in (1) is i.i.d. Gaussian. Because (4b) decouples, we 

can optimize over each subject’s warp separately, i.e., these optimizations can be done in 

parallel:

(5)

However, an interesting alternative is to perform these sequentially with an E-step after each 

that updates the reference estimate C̄
ref. This also allows some other interesting adaptations. 

We note:

(6a)

where

(7)
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is the leave-one-out template for subject k, which is indepedendent of gk. Thus, we replace 

(5) by:

(8)

From (5) and (8) we observe that the multi-subject alignment problem reduces to a sequence 

of pairwise registrations, each of which registers one subject to an average of connectivity 

matrices. If we use (5), each round of pairwise registrations can be done in parallel and the 

results used to update the average template. The difficulty is the computational update of 

C̄
ref. Alternatively, using (8) we do the pairwise registrations sequentially and compute a 

new leave-one-out template after each registration. This is the approach we pursue. An 

algorithm for solving the pairwise registration is derived in the next section and we examine 

the computation of leave-one-out templates in §4.

3 Pairwise Cortical Alignment

We now develop an algorithm for aligning one subject, with connectivity CF, to a reference, 

with connectivity CR, with CF, CR ∈ RNv×Nv. For concreteness, from this point forward we 

let σ(f1, f2) = corr(f1, f2) and assume that the time series have zero mean and unit norm.

A function g: MR → SF maps a reference mesh point pi ∈ MR to g(pi) ∈ SF. By interpolating 

the floating subject’s times series at the points g(pi) ∈ SF we obtain the associated warped 

functional connectivity: . We seek ĝ that best matches C̃
F to CR in the 

sense:

(9)

Here ||·||f is the matrix Frobenius norm and the regularization term Reg(g) serves as a prior 

over the space of allowable mappings. In the following steps, we examine how to efficiently 

solve (9).

Step 1: Parameterizing the dependence of C̃F on the warp

We first develop the dependence of the matrix C̃
F on the warping function g. This requires 

specifying how the time series at the warped points g(pi) ∈ SF is interpolated using the time 

series data { , i = 1, …, Nv} at the mesh points { , i = 1, …, Nv}. Here, we 

employ linear interpolation with a spherical kernel Φ: , p ∈ SF. The 

kernel should be matched to the following specific objectives: (a) The kernel should be 

monomodal. Since the gradient of the registration objective depends on the derivative of the 

interpolation kernel, this will reduce the likelihood of the algorithm converging to a local 

minimum; (b) The support of the kernel should be finite. This will limit interpolation 

complexity. However, as the size of the support decreases, so will the capture range of the 

algorithm. At the initial stages of the algorithm, the kernel should have a broad extent, due 

Conroy et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2015 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to higher initial uncertainty, and become increasingly more localized as the algorithm 

converges. Thus, (c) The support of the kernel should be easily adjustable.

With these considerations in mind, we select Φ(p, pi) to be a spherical radial basis function 

Φi : S2 → ℝ centered at pi ∈ S2 and taking the form: Φi(p) = ϕ(d(p, pi)), p ∈ S2, where ϕ: [0, 

π] → ℝ and d(p, pi) is the spherical geodesic distance between p and pi [16]. Then Φi(p) is 

monomodal with a maximum at pi, it depends only on the distance between p and pi and is 

radially symmetric. In detail, we employ the particular spherical radial basis function:

(10)

where r is a fixed parameter, and (a)+ = a1{a ≥ 0}. Φi(p) has two continuous derivatives and 

its support is {p ∈ S2: d(p, pi) < 2sin−1(r/2)}. Note that the support can be easily adjusted 

through the parameter r. So the kernel has all of our desired properties.

We can now make the dependence of C̃
F on g more explicit. Let . 

Then  where A = [Φi(g(pj))] is 

the Nv × Nv matrix of interpolation coefficients dependent on g and the interpolation kernel. 

Next, noting that , we use A to write the post-warp correlation matrix as:

(11)

where D = diag(d1, d2, …, dNv) serves to normalize the updated data to unit norm: dj = ||

fF(g(pj))||−1. Finally, we use Ã = AD to write:

(12)

Here, (12) encodes the dependence of the registration objective on g through the matrix Ã. It 

is also important to note that since the interpolation kernel is locally supported, Ã is a sparse 

matrix.

Step 2: Efficient Representation/Computation of the Registration Objective

We now consider the Nv × Nv matrices CF and CR. At a spatial resolution of 2 mm, the 

spherical model of human cortex can yield Nv ≈ 72, 000 total mesh points. In this situation, 

direct computation with CF and CR is prohibitive. Hence we need an efficient way to 

represent and compute the objective (12).

For fMRI data it is reasonable to assume that Nt ≪ Nv. Hence, since the data has been 

centered, the rank of  and of  is at most Nt − 1. For simplicity, we 

make the reasonable assumption that rank(TF) = rank(TR) = d. Then CF and CR can be 

efficiently represented by compact d-dimensional SVDs  and 
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. Moveover, these can be computed directly from SVDs of the data matrices: 

 and . In detail:

VF = VTF, VR = VTR, , and .

The above representation avoids computing CF and CR, but we must also show that it 

enables efficient evaluation of (12). To this end, introduce the following linear 

transformation:

(13)

where , are orthogonal with the Nv − d columns of 

 and  forming orthonormal bases for range(VF)⊥ and range(VR)⊥, respectively. Write 

B as:

(14)

with B1 ∈ ℝd×d, B2 ∈ ℝd×Nv, B3 ∈ ℝ(Nv−d)×d and B4 ∈ ℝ(Nv−d)×(Nv−d). Substituting (13) and 

(14) into (12) and simplifying yields:

(15)

with

(16)

The d × d matrix B1 is readily computed since VF, VR are of manageable size. Computation 

of the d×Nv matrix B2 depends on . This has ON columns spanning the Nv − d 

dimensional subspace null(CR). Since there is residual freedom in the choice of  and B2 is 

large, its selection merits closer examination. Now (16) can be viewed as a projection of the 

rows of  onto the columns of VR and . The columns of  lie in null(CR) 

and . Hence a QR-factorization  yields d 

ON vectors in null(CR). Choosing these as the first d columns of , yields B2 = [R, 0], i.e., 

B2 is very sparse.

In summary, we have derived the following efficient means of evaluating the objective. By 

onetime preprocessing of the time series data we obtain ΣF, ΣR and VF, VR. Then given a 

warp g, we compute: the interpolation matrix Ã, , and finally B2 via QR 

factorization of . Then we evaluate (15).
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Step 3: The Transformation Space and Regularization

We now examine the specification of g in greater detail. We allow each mesh point to move 

freely (locally) in two directions. The use of such nonlinear warp models for inter-subject 

cortical alignment has been validated over, for example, rigid-body transformations [17]. To 

specify g, we first need to set up a coordinate system on the sphere. Let U = {(φ, θ); 0 < φ < 

π, 0 < θ < 2π}. Then the sphere can be parameterized by x: U → ℝ3 with x(φ, θ) = (sin φ cos 

θ, sin φ sin θ, cos φ). Here, φ is a zenith angle measured against one of the principal axes, 

and θ is an azimuthal angle measured in one of the projective planes (i.e., xy-plane, xz-plane, 

or yz-plane). Note that x omits a semicircle of S2; so at least two such parameterizations are 

required to cover the entire sphere [18].

Consider pi ∈ S2 parameterized by x(φ, θ) such that pi = x(φi, θi). Then the warp field at pi 

is:

(17)

for displacements Δφi and Δθi. The warp g is thus parameterized by: {φ̃
i, θ̃

i, i = 1, …, Nv}.

The warp g must be regularized to avoid undesired topological distortions (e.g. folding and 

excessive expansion) and to avoid over-fitting the data. This is achieved by adding a 

regularization term to the objective that penalizes such distortions. There are several ways 

this can be done. Here we follow [14] and regularize g by penalizing both metric and areal 

distortion. The metric distortion term penalizes warps that disrupt local distances between 

neighboring mesh nodes. This has the effect of limiting the expansion/contraction of cortex. 

The areal distortion term seeks to preserve a consistent orientation of the surface. Given a 

triangularization of the spherical mesh, each triangle is given an oriented normal vector that 

initially points radially outward from the sphere. Constraining the oriented area of all 

triangles to be positive prevents folds in the surface [14].

Step 4: Optimization of the objective

We optimize (3) over g by gradient descent. Denote the objective by S(g), let ãij = aijdj be 

the (i, j)-th entry of Ã = AD and . From the 

parameterization of the warp (17), we see that ãij = Φi(x(φ̃
j, θ̃

j))||TF a(x(φ̃
j, θj̃))||−1 depends 

only on the warp parameters of the jth mesh node, φ̃
j and θ̃j. Then, by the chain rule, the 

partial derivative of S(g) with respect to φ̃
j is given by:

(18)

A similar expression is obtained for the partial derivative with respect to θj̃. Since the 

interpolation kernel is supported locally, the summation in (18) is taken over a small number 

of terms. A full expression for ∂S/∂φ̃
j is given in the supplemental, and that of ∂Reg(g)/∂φ̃

j 

in [14].
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To help avoid local minima we take a multi-resolution optimization approach [19]. The 

registration is run on a sequence of spatial resolutions r1 > r2 > ··· > rM, with rM given by the 

original resolution of the data. The result at resolution rm is used to initialize the alignment 

at resolution rm+1. The alignment for rm is performed by matching the kernel parameter r in 

(10) to rm. Note that the reference dataset is also spatially smoothed at each rm by the 

transformation in (11), with A = [a(p1) a(p2) ··· a(pNv)]. The pairwise algorithm is 

summarized as Algorithm 1 in Figure 1.

4 Multi-Subject Alignment: Computing Leave-one-out Templates

We now return to the multi-subject alignment problem, which is summarized as Algorithm 2 

in Figure 1. It only remains to discuss efficient computation of the leave-one-out-template 

(7). Since C̄
k is an average of Ns − 1 positive semi-definite matrices each of rank d, the rank 

d ̄ of C̄
k is bounded as follows d ≤ d̄ ≤ (Ns − 1)d. Assume that C̃

n, the connectivity matrix of 

subject n after warp gn (see (11)), has an efficient d ≪ Nv dimensional SVD representation 

.

To compute the SVD for C̄
k, we exploit the sequential nature of the multi-subject alignment 

algorithm by refining the SVD of the leave-one-out template for subject k−1, 

, computed in the previous iteration. This is achieved by expressing 

C̄
k in terms of C̄

k−1:

(19)

and computing matrix decompositions for the singular vectors of C̃
k−1 and C̃

k in terms of 

V ̄
k−1:

(20a)

(20b)

where , for j = k − 1, k, projects the columns of Ṽj onto the columns of 

V̄k−1. The second term of (20a), Qk−1Rk−1, is the QR-decomposition of the residual 

components of Ṽk−1 after projection onto range(V̄
k−1). Since C̄

k−1 is an average of positive 

semi-definite matrices that includes C̃
k, we are sure that range(Ṽk) ⊆ range(V̄

k−1), 

(supplementary material).

Using the matrix decompositions (20a) and (20b), C̄
k in (19) above can be expressed as:

(21)

where G is the symmetric (d̄ + d) × (d̄ + d) matrix:
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(22)

We now compute the SVD of . Then, using (21), we obtain the SVD for C̄
k 

as:

(23)

For a moderate number of subjects, (d̄ + d) ≤ Nsd ≪ Nv, this approach is more efficient than 

a brute-force . Additionally, it works directly on the singular values Σ̃
k and 

vectors Ṽk of each warped connectivity matrix C̃
k, alleviating the need to store large Nv × Nv 

matrices.

5 Experimental Results

We tested the algorithm using fMRI data collected from 10 subjects viewing a movie split 

into 2 sessions separated by a short break. The data was preprocessed following [5]. For 

each subject, a structural scan was acquired before each session, from which the cortical 

surface model was derived (§2) and then anatomically aligned to a template using 

FreeSurfer (Fischl, http://surfer.nmr.mgh.harvard.edu). Similar to [5], we find that 

anatomical alignment based on cortical curvature serves as a superior starting point for 

functional alignment over Talairach alignment.

First, functional connectivity was found for each subject and session: Ck,i, k = 1, …, Ns, i = 

1, 2. These were then aligned within subjects, Ck,1 ↔ Ck,2, and across subjects, Ck,1 ↔ Cj,2, 

using Algorithm 1. Since the data starts in anatomical correspondence, we expect small warp 

displacements within subject and larger ones across subjects. The mean intra-subject warp 

displacement was 0.72 mm (σ = 0.48), with 77% of the mesh nodes warped less than 1 mm 

and fewer than 1.5% warped by more than the data spatial resolution (2 mm). In contrast, the 

mean inter-subject warp displacement was 1.46 mm (σ = 0.92 mm), with 22% of nodes 

warped more than 2 mm. See Figures 2(a)–(b).

In a separate analysis, each subject was aligned to its leave-one-out template on each session 

using Algorithm 1, yielding a set of warps gk,i(pj), k = 1, …, Ns, i = 1, 2, j = 1, …, Nv. To 

evaluate the consistency of the correspondence derived from different sessions, we 

compared the warps gk,1 to gk,2 for each subject k. Here, we only consider nodes that are 

warped by at least the data resolution. This analysis provides a measure of the sensitivity to 

noise present in the fMRI data. At node pj, we compute the angle 0 ≤ θ ≤ π between the 

warp tangent vectors of gk,1(pj) and gk,2(pj). This measures the consistency of the direction 

of the warp across sessions: smaller values of θ suggest a greater warp coherence across 

sessions. Figure 2(c) shows a histogram of θ averaged across the cortical nodes of all 10 

subjects. The tight distribution centered near θ = 0 suggests significant consistency in the 

warp direction across sessions. In particular, 93% of the density for θ lies inside π/2, 81% 
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inside π/4, and 58% inside π/8. As a secondary comparison, we compute a normalized 

consistency measure WNC(pj) = d(gk,1(pj), gk,2(pj))/(d(gk,1(pj), pj) + d(gk,2(pj), pj)), where 

d(·, ·) is spherical geodesic distance. The measure takes variability in both warp angle and 

magnitude into account; it is bounded between 0 and 1, and WNC(pj) = 0 only if gk,1(pj) = 

gk,2(pj). A histogram for WNC is given in 2(d); WNC exhibits a peak at 0.15, with a mean 

of 0.28 (σ = 0.22).

Finally, Algorithm 2 was applied to the first session fMRI data to learn a set of warps g = 

(g1, …, gNs) for 10 subjects. The alignment required approximately 10 hours on a Intel 

3.8GHz Nehalem quad-core processor with 12GB RAM. To evaluate the alignment, we 

apply the warps to the held out second session fMRI data, where subjects viewed a different 

segment of the movie. This warping yields data { } for each subject k, with 

interpolation performed in the original volume to avoid artificial smoothing. The cross-

validated inter-subject correlation ISC(pi) is the mean correlation of each subject’s 

functional time series with the mean time series of the other subjects:

(24)

We also compute the mean inter-subject correlation, .

We compare the cross-validated ISC map with the ISC map of the second session movie 

viewing computed under anatomical correspondence. Mean ISC improved by 18%, from 

0.072 to 0.085. In addition, the number of significant inter-subject correlations (ISC(pi) > 

0.1, P < 0.01) increased by 22.9%, from 19, 362 to 23, 789. Figure 3 shows the ISC maps 

computed under anatomical alignment and functional alignment on the inflated right cortical 

hemisphere. As expected, the areas of improvement in inter-subject correlation are 

consistent with the extrinsic regions of cortex [6].

6 Conclusion

We have proposed a novel cortical registration algorithm that produces a functional 

correspondence across a set of subjects. The algorithm uses the fMRI data directly to align 

the spatial patterns of functional response elicited by a movie viewing. Despite the high-

dimensionality of the data under consideration, the algorithm is efficient in both space and 

time complexity.

By comparing the inter-subject alignments derived from different fMRI experimental 

sessions, we show that the correspondence is consistent and robust to noise and variability in 

the fMRI temporal response. We also cross-validate the correspondence on independent test 

data that was not used to derive the alignment. On the test data, the algorithm produces a 

consistent increase in inter-subject correlation of fMRI time series, suggesting that 

functional alignment of extrinsic regions of cortex that are directly driven by the movie 

viewing experiment, such as visual and auditory areas, is improved considerably. Further 

testing is warranted to evaluate improvement in intrinsic areas of cortex whose response is 

not temporally synchronized with the experimental stimulus.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The registration algorithms.
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Figure 2. 
Consistency Histograms. (a) Intra-subject warp distances; (b) Inter-subject warp distances; 

(c) Angle between warp vectors across sessions; (d) Across-session normalized warp 

consistency measure WNC.
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Figure 3. 
Map of ISC on right cortical hemisphere, alignment: anatomical (top), functional (bottom).
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