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Abstract

The Gibbs sampler has been used extensively in the statistics literature. It relies on iteratively 

sampling from a set of compatible conditional distributions and the sampler is known to converge 

to a unique invariant joint distribution. However, the Gibbs sampler behaves rather differently 

when the conditional distributions are not compatible. Such applications have seen increasing use 

in areas such as multiple imputation. In this paper, we demonstrate that what a Gibbs sampler 

converges to is a function of the order of the sampling scheme. Besides providing the 

mathematical background of this behavior, we also explain how that happens through a thorough 

analysis of the examples.
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1. INTRDUCTION

The Gibbs sampler is, if not singularly, one of the most prominent Markov chain Monte 

Carlo (MCMC)-based methods. Partly because of its conceptual simplicity and elegance in 

implementation, the Gibbs sampler has been increasingly used across a very broad range of 

subject areas including bioinformatics and spatial analysis. While its root dates back to 

earlier work (e.g., [1]), the popularity of the Gibbs sampling is commonly credited to Geman 

and Geman [2], in which the algorithm was used as a tool for image processing. Its use in 

statistics, especially Bayesian analysis, has since grown very rapidly [3–5]. For a quick 

introduction of the algorithm, see Casella and George [6].

One of the recent developments of the Gibbs sampler is in its application to potentially 

incompatible conditional-specified distributions (PICSD) [7, 8]. When statistical models 

involve high-dimensional data, it is often easier to specify conditional distributions instead 

of the entire joint distributions. However, the approach of specifying a conditional 
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distribution has the risk of not forming a compatible joint model. Consider a system of d 

discrete random variables X = {X1, X2, ⋯, Xd}, whose fully conditional model is specified 

by F = {f1, f2, ⋯, fd}, where . If the 

conditional models are individually specified, then there may not exist a joint distribution 

that will give rise to the specified set of conditional distributions. In such a case, we call F 
incompatible.

The study of PICSD is closely related to the Gibbs sampler because the latter relies on 

iteratively drawing samples from F to form a Markov chain. Under mild conditions, the 

Markov chain converges to the desired joint distribution, if F is compatible. However, if F 
is not compatible, then the Gibbs sampler could exhibit erratic behavior [9].

In this paper, our goal is to demonstrate the behavior of the Gibbs sampler (or the pseudo 

Gibbs sampler as it is not a true Gibbs sampler in the traditional sense of presumed 

compatible conditional distributions) for PICSD. By using several simple examples, we 

show mathematically that what a Gibbs sampler converges to is a function of the order of 

the sampling scheme in the Gibbs sampler. Furthermore, we show that if we follow a 

random order in sampling conditional distributions at each iteration—i.e., using a random-

scan Gibbs sampler [10]—then the Gibbs sampling will lead to a mixture of the joint 

distributions formed by each combination of fixed-order (or more formally, fixed-scan) 

when d = 2 but the result is not true when d > 2. This result is a refinement of a conjecture 

put forward in Liu [11].

Two recent developments in the statistical and machine-learning literature underscore the 

importance of the current work. The first is in the application of the Gibbs sampler to a 

dependency network, which is a type of generalized graphical model specified by 

conditional probability distributions [7]. One approach to learning a dependency network is 

to first specify individual conditional models and then apply a (pseudo) Gibbs sampler to 

estimate the joint model. Heckerman et al. [7] acknowledged the possibility of incompatible 

conditional models but argued that when the sample size is large, the degree of 

incompatibility will not be substantial and the Gibbs sampler is still applicable. Yet another 

example is the use of the fully conditional specification for multiple imputation of missing 

data [12, 13]. The method, which is also called multiple imputation by chained equations 

(MICE), makes use of a Gibbs sampler or other MCMC-based methods that operate on a set 

of conditionally specified models. For each variable with a missing value, an imputed value 

is created under an individual conditional-regression model. This kind of procedure was 

viewed as combining the best features of many currently available multiple imputation 

approaches [14]. Due to its flexibility over compatible multivariate-imputation models [15] 

and ability to handle different variable types (continuous, binary, and categorical) the MICE 

has gained acceptance for its practical treatment of missing data, especially in high-

dimensional data sets [16]. Popular as it is, the MICE has the limitation of potentially 

encountering incompatible conditional-regression models and it has been shown that an 

incompatible imputation model can lead to biased estimates from imputed data [17]. So far, 

very little theory has been developed in supporting the use of MICE [18]. A better 
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understanding of the theoretical properties of applying the Gibbs sampler to PICSD could 

lead to important refinements of these imputation methods in practice.

The article is organized as follows: First, we provide basic background to the Gibbs chain 

and Gibbs sampler and define the scan order of a Gibbs sampler. In Section 3, we offer 

several analytic results concerning the stationary distributions of the Gibbs sampler under 

different scan patterns and a counter-example to a surmise about the Gibbs sampler under a 

random order of scan pattern. Section 4 describes two simple examples to numerically 

demonstrate the convergence behavior of a Gibbs sampler as a function of scan order, both 

by applying matrix algebra to the transition kernel as well as using MCMC-based 

computation. Finally in Section 5 we provide a brief discussion.

2. GIBBS CHAIN AND GIBBS SAMPLER

Continuing the notation in the previous section, let a = (a1, a2, ⋯, ad) denote a permutation 

of {1, 2, ⋯, d}, x = {x1, x2, ⋯, xd} denote a realization of X with xk ∈ {1, 2, ⋯, Ck}, where 

Ck is the number of categories of the kth variable. Thus, xa ≡ (xa1, xa2, ⋯, xad) is a 

realization of X defined in the order of a. We also denote 

, the relative complement of xak with respect to xa.

For a specified F, the associated fixed (systemic)-scan Gibbs chain governed by a scan 

pattern a can be implemented as follows:

1. Pick an arbitrary starting vector .

2. On the tth cycle, successively draw from the full conditional distributions according 

to scan pattern a = (a1, a2, ⋯, ad) as follows:

The series , ⋯ obtained by a single draw (iteration) is called a 

realization of Gibbs chain defined by F with scan pattern a; and the series 

, ⋯ obtained by a single cycle is a realization of the associated 

Gibbs sampler. For example, let = {X1, X2, X3, X4}, a = (2, 4, 1, 3), and given initial value 
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, the Gibbs chain in cycle 1 performs the following draws and 

produces the corresponding states:

In this example, the series , ⋯, is the realization of 

Gibbs sampler defined by F with scan pattern a.

We can also express a Gibbs sampler of random scan order as a Gibbs chain. Let r = {r1, r2, 

⋯, rd} be the set of selection probabilities, where rk > 0 is the probability of visiting a 

conditional fk, and . The random-scan Gibbs sampler can be stated as follows 

[19]:

1. Pick an arbitrary starting vector .

2. At the sth iteration, s = 1, 2, ⋯,

i. Randomly choose k ∈ {1,2, ⋯, d} with probability rk;

ii.

3. Repeat step 2 until a convergence criterion is reached.

Example 1

Consider the following bivariate 2 × 2 joint distribution π and for (X1, X2) defined on the 

domain {1, 2}, with its corresponding conditional distributions f1 (x1|x2) and f2 (x2|x1) [20, 

page 242]:
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There are 4 possible states, (1, 1), (1, 2), (2, 1), and (2, 2) for the Gibbs chain. The transition 

from one state to another is governed by the conditional matrices f1 and f2 as shown in 

Figure 1. As a shorthand, we denote an entry in the matrix as f1 (·,·); e.g. f1 (1,2) = 1/3. In 

order to keep track of the scan order, we denote the state in the Gibbs chain as (x(s)|fk), if the 

current state x(s) at iteration s is the result of drawing from the conditional fk. To fix ideas, 

we use a fixed-scan Gibbs sampler with a = (1,2) and the conditional distributions {f1, f2}. 

In such case, the realization of this Gibbs sampler is the collection of states {(x(2t)|f2)|t = 1,2, 

⋯}.

The local transition probability Pak [21, page 71] for two successive states of Gibbs chain, 

(x(s−1)|fak−1) and (x(s)|fak), can be defined by

For example, as shown in Figure 1, the local transition probability from (x(2t) = (1,1)|f2) to 

(x(2t+1) = (1,1)|f1) is f1 (1,1) = 1/4, and (x(2t) = (1,1)|f2) to (x(2t+1) = (1,2)|f1) is 0.

By arranging the state in lexicographical order such that the first index changes the fastest 

and the last index the slowest (as shown in Figure 1), a transition probability matrix Tak can 

be constructed according to local transition probability Pak. In Example 1, the transition 

probability matrices T1 and T2 that correspond respectively to matrices P1, and P2:

The matrices T1 and T2 have two pairs of identical rows and are idempotent but not 

irreducible.

As the above example illustrates, the local transition probability matrices defined by the 

given conditional distributions are in general not identical. Thus a Gibbs chain implemented 

using either fixed or random scan order is not homogeneous. However, if one defines a 

surrogate transition probability matrix Ta ≡ Ta1Ta2Ta3 ⋯ Tad, then a homogeneous chain 

with transition matrix Ta can be formed for the scan pattern a = (a1, a2, ⋯, ad) [21]. In other 

words, for a collection of full conditional distributions F and a scan pattern a the fixed-scan 

Gibbs sampler is a homogeneous Markov chain with transition matrix Ta. Analogously, a 

random-scan Gibbs sampler with selection probability r = (r1, r2, ⋯, rd) can be also 

transferred to a homogeneous Markov chain by defining  as the surrogate 

transition probability matrix [21]. Their corresponding stationary distributions πa and πr can 

be directly computed (under a mild condition) respectively by evaluating 

 and , where , and 1C is a C-dimensional 

vector of 1’s [22].
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3. SOME ANALYTIC RESULTS

In this section, we offer several general results regarding the behaviors of the fixed-scan and 

the random-scan Gibbs sampler for discrete variables in which the transition matrices are 

finite. For these results, it is not necessary to assume compatibility, unless stated otherwise. 

Besides providing theoretical underpinning to the previous illustrative examples, the results 

here allow a closer look at the mechanisms through which incompatibility impacts the 

behaviors of the different Gibbs sampling schemes. Note that these results are special cases 

that can be derived from more general theories for Markov chains, but for our purpose, 

focusing on the special case of discrete variables and scan patterns makes it easier to 

examine the dynamics of convergence. General results regarding convergence of Markov 

chains can be found elsewhere [5, 24]. All of the proofs of the following results are included 

in the Appendix.

Theorem 1

If F is positive (fk > 0, ∀ k) then the Gibbs sampler, either fixed-scan with a scan 

pattern a or random scan with selection probability r > 0, converges to a unique 

stationary distribution πa and πr respectively.

Note that Theorem 1 does not require F to be compatible. The result assures that when F is 

positive—a stronger condition than F being non-negative—any scan pattern can have one 

and only one stationary distribution. Furthermore, the transition for any fixed-scan pattern is 

governed by the following theorem:

Theorem 2

If F is positive then for each state set, (x1, x2, ⋯, xd|fak), k = 1, ⋯, d, of the Gibbs 

chain with scan pattern a = (a1, a2, ⋯, ad) has exactly one stationary distribution 

πak. In particular,  and , k = 2, ⋯, d, and πad = πa.

A direct consequence of Theorem 2 is that for any fixed-scan pattern, one of the specified 

conditional distributions in F can always be derived from its stationary distribution. This is 

summarized in the following corollary:

Corollary 1

If F is positive then the stationary distribution πa of the Gibbs sampler has fad as 

one of its conditional distributions for the scan pattern a = (a1, a2, ⋯, ad), i.e., πa 

(xad|xa1, xa2, ⋯, xad−1) = fad.

When F is compatible, all scan patterns converge to the same joint distribution. The 

following theorem provides a formal statement.

Theorem 3

Given F is positive. F is compatible if and only if there exists a unique joint 

distribution π with either πa = π, ∀ a or πr = π, ∀ r. Furthermore, π is the joint 

distribution characterized by F.
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An interesting observation about the random scan is that it forms a mixture of the fixed-scan 

patterns only for d = 2. We state the Corollary for the case d = 2 and give a counter-example 

for d = 3.

Corollary 2

If F > 0 and d = 2 then πr, r = (r, 1 − r), is formed by the convex combination of 

πa2 = (2,1) and πa1 = (1,2); i.e., for all r ∈ [0, 1], πr = (1 − r) πa1 + rπa2.

A three-dimensional counter example to Corollary 2 for the case d = 3 is presented in Table 

1. In this example, F = {f1, f2, ⋯, f3} is positive but not compatible. There are a total of six 

scan patterns and for each scan pattern, the solution to which the individual Gibbs sampler 

converges (using matrix multiplication) is shown as a row in Table 1. Convergence is 

defined here as all cell-wise differences between estimates from two consecutive iterations 

to be less than 0.5 × 10−4. The average of all six fixed-scan Gibbs sampler  is 

provided, as well as a reference. In order to solve for a non-negative linear combination 

(mixture) of the fixed-scan distributions,

(1)

where , we treated equation (1) as a system of linear equations and solved for c 
= (ci), i = 1, ⋯, 6. As it turned out, our result indicated that there was no solution that 

satisfied c > 0. This observation led us to believe that the surmise [11] that the stationary 

distribution for a random-scan Gibbs sampler is a mixture of the stationary distributions for 

all systematic scan Gibbs samplers is not true in general. It only holds for d = 2.

4. NUMERICL EXAMPLES

We illustrate the mathematical results using two numerical examples. In Example 1, the 

transition matrices for fixed- and random-scans are respectively Ta1 = T1T2 for a1 = (1,2) 

and Ta2 = T2T1 for a2 = (2,1) and Tr = (T1 + T2)/2. Table 2 directly compares the joint 

distributions obtained from the following computations: (i) direct MCMC Gibbs sampler for 

the only two possible fixed-scan patterns a1 = (1,2) and a2 = (2,1); (ii) direct MCMC Gibbs 

sampler for random-scan patterns with the following selection probabilities: ; 

, and , and (iii) matrix multiplication using (Ta)m and (Tr)m with 

power m. To achieve numerical convergence, we used the first 5,000 cycles as burn-in and 

the subsequent 1,000,000 cycles for sampling for both (i) and (ii). And the smallest m ∈ {2k|

k = 0,1,2,⋯} such that all cell-wise differences between estimates from two consecutive 

iterations to be less than 0.5 × 10−4 is adopted for (iii).

As expected, both the fixed-scan, regardless of scan order, and the random-scan Gibbs 

samplers numerically converge to the same joint distribution. Table 2 also demonstrates that 

direct matrix multiplication of the transition probabilities produces rapid convergence even 

for a small m and different values of r. However, we also observed that if r was heavily 
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imbalanced, it took many more iterations to achieve numerical convergence (not shown). 

For example, if , it took m > 120 to achieve the same numerical convergence 

(up to 4 decimal places).

Example 2

(Incompatible conditional distributions). Consider a pair of 2 × 2 conditional distributions f1 

(x1|x2) and f2 (x2|x1) defined on the domain {1, 2} as follows [20, page 242]:

These two conditional distributions are not compatible. Table 3 shows the results for the 

joint distributions derived from the simulated Gibbs samplers and matrix-multiplication of 

Example 2 for conditions that are identical to those presented in Table 2. Several 

observations can be made here: (1) The Gibbs samplers that use the fixed-scan pattern a1 

and a2 respectively converge to two distinct joint distributions; (2) Each individual fixed-

scan Gibbs sampler converges to the corresponding solution computed from the matrix-

multiplication method; (3) The random-scan Gibbs sampler converges to the mixture 

distribution of the individual fixed-scan distributions—i.e., πr = (1 − r) πa1 + rπa2; and (4) 

Regardless F is compatible or not, a random-scan Gibbs sampler always needs much larger 

m (using matrix-multiplication) to achieve numerical convergence than a fixed-scan Gibbs 

sampler does. Such phenomena should result from the idempotent property of the transition 

probability matrices, and it also implies slower convergence of random-scan Gibbs sampler 

should be expected in a MCMC simulation.

5. DISUSSION

In this paper, we show that for a given scan pattern, a homogeneous Markov chain is formed 

by the Gibbs sampling procedure and under mild conditions, the Gibbs sampler converges to 

a unique stationary distribution. Unlike compatible distributions, different scan patterns lead 

to different stationary distributions for PICSD. The random-scan Gibbs sampler generally 

converges to “something in between” but the exact weighted equation only holds for simple 

cases – i.e., when the dimension is two.

Our findings have several implications for the practical application of the Gibbs sampler, 

especially when they operate on PICSD. For example, the MICE often relies on a single 

fixed-scan pattern. This implies that the imputed missing values could change beyond 

expected statistical bounds when a seemingly innocuous change in the order of the variable 

is being made. Although in this paper we have not studied the issue of which fixed-scan 

pattern produces the “best” joint distribution, some recent work has been done in that 

direction. For example, Chen, Ip, and Wang [8] proposed using an ensemble approach to 

derive an optimal joint density. The authors also showed that the random-scan procedure 

generally produces promising joint distributions. It is possible that in some cases the gain 

from using multiple Gibbs chains, as in the case of random-scan, is marginal. As argued by 
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Heckerman et al. [7], the single-chain fixed-scan (pseudo) Gibbs sampler asymptotically 

works well when the extent to which the specified conditional distributions are incompatible 

is minimal. This may be true for models that are applied to one single data set with a large 

sample size. However, the extent of incompatibility could be much higher when multiple 

data sets are used and when multiple sets of conditional models are specified. While it is 

likely that even in more complex applications a brute-force implementation of the (pseudo) 

Gibbs sampler will still provide some kinds of solutions, the qualities and behaviors of such 

“solutions” will need to be rigorously evaluated.
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APPENDIX: PROOFS OF ANALYTIC RESULTS

Proof of Theorem 1

We need a lemma to prove Theorem 1 about irreducibility (ability to reach all interesting 

points of the state-space) and aperiodicity (returning to a given state-space at irregular 

times).

Lemma 1

If F is positive then Ta and Tr are irreducible and aperiodic w.r.t. any given a and r 
> 0.

Proof—Let  d and  be two states for the 

chain induced by Ta or Tr, and define (T)ij as the (ij)th element in the matrix T. Without loss 

of generality, we also let a = (1,2, ⋯, d) and , Ta = T1T2T3 ⋯ Td and 

.

To prove that Ta and Tr are aperiodic, we must have (Ta)ii > 0 and (Ta)ii > 0, ∀ i. By the 

definition of local transition probability, we have (Tk)ii > 0, ∀ k, if F is positive. 

Consequently,  and .

To prove that Ta and Tr are irreducible is equivalent to prove that x1 and x2 commute, i.e., to 

show the transition probability P (x1 → x2) > 0 and P (x2 → x1) > 0. Given the scan pattern 

a we have

And

Similarly, for the random-scan case we have
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and

It is well known that if a Markov chain is irreducible and aperiodic, then it converges to a 

unique stationary distribution [24]. Consequently, we have the uniqueness and existence 

theorem (Theorem 1) for the Gibbs sampler.

Proof of Theorem 2

We need a lemma to prove Theorem 2.

Lemma 2

If F is positive then the stationary distribution πa of the Gibbs sampler has fad as 

one of its conditional distribution for the scan pattern a = (a1, a2, ⋯, ad), i.e., 

πa(xad|xa1, xa2, ⋯, xad−1) = fad.

Proof—Since , t = 1,2,3, ⋯, it follows πa ∝ fad (xad|xa1, xa2, 

⋯, xad−1). Consequently, πa (xad|(xad)c) = fad(xad|(xad)c).

Theorem 2 easily follows from Lemma 2.

Proof of Theorem 3

“If” part. Since F is positive and compatible, there exists a positive joint distribution π > 0 

characterized by F. Under the positivity assumption of π, it is well known that the Gibbs 

sampler governed by F determines π [25].

“Only if” part. Let a = (a1, a2, ⋯, ad) be a scan pattern with ad = i, i = 1, ⋯, d. Assuming 

that there exists a π such that πa = π, ∀ a. From Theorem 1 and Lemma 2, it follows that πa 

(xad|(xad)c) = fad(xad|(xad)c), ∀ a. Thus, π (xi|(xi)c) = πai(xi|(xi)c) = fi (xi|(xi)c), ∀ i. Hence F is 

compatible and π is the joint distribution of F.

Assuming that there exists a π such that πr = π, ∀ r. We only need to prove that πa = π, ∀ a. 

From Theorem 1, we have πaTa = πa. By the definition of random-scan Gibbs sampler, we 

have πrTk = πr = π, ∀ k, ∀ r. It follows that

Form Theorem 1, π is uniquely determined by Ta. As a result, πr = π = πa, ∀ r, ∀ a.
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Proof of Corollary 1

The proof follows directly from Theorem 2 and 3.

Proof of Corollary 2

Since F is positive, πa1, πa2 and π are stationary distributions uniquely determined by a1, a2 

and r, respectively. Therefore,

Because Tr = rT1 + (1 − r) T2 is the transition kernel for the random-scan Gibbs chain with 

selection probability r, we have the uniquely determined πr which equals rπa2 + (1 − r) 

πa1.■
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Figure 1. 
Transition probabilities of the Gibbs chain in Example 1.

Chen and Ip Page 13

J Stat Comput Simul. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen and Ip Page 14

Table 1

A three-dimensional counter example for Corollary 2.

(1,1,1) (2,1,1) (1,2,1) (2,2,1) (1,1,2) (2,1,2) (1,2,2) (2,2,2)

f1 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6

f2 0.5 0.6 0.5 0.4 0.7 0.8 0.3 0.2

f3 0.9 0.1 0.1 0.9 0.1 0.9 0.9 0.1

πa1 = (2,3,1) 0.0199 0.1795 0.0411 0.1646 0.1484 0.3462 0.0401 0.0602

πa2 = (3,1,2) 0.0305 0.2064 0.0305 0.1376 0.1319 0.3251 0.0565 0.0813

πa3 = (1,2,3) 0.1462 0.0532 0.0087 0.1970 0.0162 0.4784 0.0784 0.0219

πa4 = (3,2,1) 0.0228 0.2050 0.0355 0.1421 0.1399 0.3263 0.0513 0.0770

πa5 = (1,3,2) 0.0775 0.1502 0.0775 0.1002 0.0661 0.4001 0.0283 0.1000

πa6 = (2,1,3) 0.1464 0.0531 0.0087 0.1972 0.0163 0.4782 0.0782 0.0219

π̄ 0.0739 0.1412 0.0337 0.1565 0.0865 0.3924 0.0555 0.0604

0.0728 0.1406 0.0331 0.1532 0.0873 0.3944 0.0575 0.0613
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Table 2

Joint distributiuons produced by various Gibbs samplers for Example 1.

(1,1) (2,1) (1,2) (2,2)

π 0.1 0.3 0.2 0.4

a1 = (1,2) 0.1002 0.3002 0.2000 0.3997

a1 = (1,2) 0.0998 0.3004 0.1999 0.4000

0.1007 0.2998 0.2000 0.3995

πa1(m = 4) 0.1000 0.3000 0.2000 0.4000

πa2(m = 4) 0.1000 0.3000 0.2000 0.4000

πr0(m = 32) 0.1000 0.3000 0.2000 0.4000

πr1(m = 32) 0.1000 0.3000 0.2000 0.4000

πr2(m = 32) 0.1000 0.3000 0.2000 0.4000
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Table 3

Joint distributiuons produced by various Gibbs samplers for Example 2.

(1,1) (2,1) (1,2) (2,1)

a1 = (1,2) 0.1062 0.0680 0.2128 0.6130

a1 = (1,2) 0.0435 0.1314 0.2753 0.5498

0.0748 0.0990 0.2447 0.5815

πa1(m = 4) 0.1063 0.0681 0.2125 0.6131

πa2(m = 4) 0.0436 0.1308 0.2752 0.5504

πr0(m = 32) 0.0749 0.0995 0.2439 0.5817

πr1(m = 32) 0.0854 0.0890 0.2334 0.5922

πr2(m = 32) 0.0645 0.1099 0.2543 0.5713
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