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The BCL-2 protein family, BH3-mimetics and cancer
therapy

ARD Delbridge1,2 and A Strasser*,1,2

Escape from apoptosis is a key attribute of tumour cells and facilitates chemo-resistance. The ‘BCL-2-regulated’ or ‘intrinsic’
apoptotic pathway integrates stress and survival signalling to govern whether a cancer cell will live or die. Indeed, many pro-apoptotic
members of the BCL-2 family have demonstrated tumour-suppression activity in mouse models of cancer and are lost or repressed in
certain human cancers. Conversely, overexpression of pro-survival BCL-2 family members promotes tumorigenesis in humans and in
mouse models. Many of the drugs currently used in the clinic mediate their therapeutic effects (at least in part) through the activation
of the BCL-2-regulated apoptotic pathway. However, initiators of this apoptotic pathway, such as p53, are mutated, lost or silenced in
many human cancers rendering them refractory to treatment. To counter such resistance mechanisms, a novel class of therapeutics,
‘BH3-mimetics’, has been developed. These drugs directly activate apoptosis by binding and inhibiting select antiapoptotic BCL-2
family members and thereby bypass the requirement for upstream initiators, such as p53. In this review, we discuss the role of the
BCL-2 protein family in the development and treatment of cancer, with an emphasis on mechanistic studies using well-established
mouse models of cancer, before describing the development and already recognised potential of the BH3-mimetic compounds.
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Facts

� Cancer development and progression are facilitated by
enhanced cell survival signalling.

� Loss of initiators of apoptosis or overexpression of inhibitors
of apoptosis are frequently observed in haematological and
solid cancers.

� BH3-mimetic compounds offer a novel approach for treating
chemo-resistant cancers by blocking select pro-survival
BCL-2 family members.

Open Questions

� Do all cancers require high expression of pro-survival
BCL-2 family members for their development and sustained
growth?

� Can a therapeutic window be established for BH3-
mimetic drugs?

� Will direct induction of apoptosis using BH3-mimetic
compounds reduce the emergence of therapeutic
resistance?

� What are the optimal drugs to partner BH3-mimetics for
combination therapy of different cancers?

The complexity of multicellular animals is built upon a
foundation of cell and tissue specification that facilitates
coordination of intra-organismal processes and interaction
with the surrounding environment. Cooperation between cells
is essential, as are mechanisms to detect and remove ‘rogue’
cells that lose the ability to respond appropriately to develop-
mental and homeostatic cues. Failure of these mechanisms
can have dire consequences, such as the development
of cancer or autoimmune disease.1 A critical tumour-
suppression mechanism is the cell’s intrinsic ability to self-
destruct through a process of programmed cell death known
as apoptosis.2 Indeed, evasion from apoptosis cooperates
with oncogenic mutations that deregulate cell growth and cell
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cycling in tumorigenesis. Evasion of apoptosis is therefore
considered a requisite characteristic of tumour formation, one
of the so-called ‘Hallmarks of Cancer’.3

Apoptosis constitutes the ordered, genetically encoded
process that removes not only damaged cells but also those
that have become superfluous to the function of the organism.4

Apoptosis enables cells to be eliminated with minimal
disruption to surrounding cells and is thereby distinct from
necrotic cell death, which is often unregulated and results in
the release of cellular debris that can prompt tissue
inflammation. It is important to note that some other forms of
programmed cell death, known as pyroptosis,5 and necroptosis
(also called programmed necrosis),4,6 have risen to
prominence. However, the contributions of these forms of cell
death to morphogenesis during animal development, adult
tissue homeostasis as well as the genesis and treatment of
cancer remain to be elucidated.
The term ‘apoptosis’ was first coined by Kerr et al.7 to

describe a form of cell death distinguished from necrosis
by a characteristic morphology. Apoptosis is associated
with cell shrinkage and membrane blebbing to yield small
vesicles, which are subsequently engulfed by neighbouring
phagocytic cells.8–10 In addition, molecular events, such
as inter-nucleosomal DNA cleavage and translocation of
phosphatidyl-serine to the outer leaflet of the plasma
membrane, are indicative of apoptosis and frequently used
experimentally as markers of apoptosis.
In this review, we summarise the literature describing the

mechanisms by which apoptosis signalling is governed with
particular focus on their importance in cancer development as
demonstrated by observations from various experimental
mouse models and also from studies of human cancer. We
close with an analysis of the role of the BCL-2 family for
mediating the activity of many commonly used anticancer
therapeutics, including the promising new class of agents
known as BH3-mimetics.

The BCL-2-Regulated Apoptotic Pathway

The BCL-2-regulated apoptotic pathway (also known as
‘intrinsic’, ‘stress’ or ‘mitochondrial’ pathway) is evolutionarily
highly conserved, with homologues of critical genes found in
animals as distantly related as worms and humans.11–13

Indeed, many of the early insights into the roles of components
of this cell death pathway were derived from studies using the
model organism Caenorhabditis elegans (e.g., Vaux et al.).12

Initiation of the BCL-2-regulated apoptotic pathway is con-
trolled, as the name implies, by interactions betweenmembers
of the BCL-2 protein family.14–19 This family consists of three
groups of structurally related proteins: the pro-survival BCL-2-
like proteins, the multi-BH domain pro-apoptotic BAX/BAK
proteins, and the pro-apoptotic BH3-only proteins.

The BCL-2 protein family. The pro-survival BCL-2 family
proteins (BCL-2, BCL-XL, BCL-W, MCL-1, A1/BFL-1) share
homology within four BCL-2 homology domains (BH1–4).
These proteins form a characteristic helical bundle fold, which
is critical for their ability to bind to the pro-apoptotic BCL-2
family members and thereby exert their antiapoptotic
function.

The pro-apoptotic BAX/BAK subfamily members also
contain four BH domains (BH1–4). In their inactive state, their
structure is very similar to that of BCL-2 pro-survival
proteins,20 but BAX and BAK are able to undergo substantial
conformational change during apoptosis.21 BAX andBAK bind
to and are inhibited by different BCL-2-like pro-survival
proteins to different extents.22,23 BOK shares significant
homology across all four BH domains to BAX and BAK;
however, its role in apoptosis remains unclear,24 although it
may cooperate with BAX in the attrition of primordial follicle
oocytes during ageing.25

The pro-apoptotic BH3-only proteins (BIM, PUMA, BID,
BAD, BIK, BMF, NOXA, HRK) share only the BH3 domain with
each other and their more distant relatives.19,26,27 These
proteins are unstructured in isolation but assume an α-helical
fold when bound to BCL-2 pro-survival family members.28 The
exception to this rule is BID, which is produced as an inactive
globular protein that is converted into its active form, tBID
(truncated BID), through caspase-8-mediated cleavage.29,30

The BH3-only proteins are able to bindmembers of the BCL-2-
like pro-survival subfamily and some of them can also bind to
BAX and BAK, but there are substantial differences in their
selectivity of interaction.17–19,23,31–33
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Figure 1 The BCL-2 family members interact to regulate initiation of apoptosis. In
healthy cells, the BCL-2-like pro-survival proteins safeguard mitochondrial outer
membrane integrity and cell survival by preventing the activation of BAX and BAK.
Under conditions of stress, the BH3-only proteins are activated transcriptionally
and/or posttranscriptionally to induce apoptosis by releasing BAX/BAK from inhibition
by the BCL-2-like proteins or in the case of certain BH3-only proteins (notably
BIM, tBID, PUMA) by activating BAX/BAK through direct binding. Once activated,
BAX/BAK cause mitochondrial outer membrane permeabilisation (MOMP) with
consequent release of apoptogenic molecules (e.g., cytochrome c, SMAC/DIABLO)
that cause activation of the caspase cascade that culminates in cellular demolition
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Activation of the BCL-2-regulated apoptotic pathway.
The BCL-2 regulated apoptotic pathway is initiated through
the transcriptional and/or posttranscriptional activation of the
BH3-only proteins in response to various upstream signalling
events. Some BH3-only proteins (notably BIM, tBID, PUMA)
cause activation of BAX/BAK through direct binding, and all
BH3-only proteins can activate BAX/BAK indirectly by binding
to and inhibiting the pro-survival BCL-2-like proteins
(Figure 1).19,34–39 Activated BAX/BAK cause outer mitochon-
drial membrane permeabilisation (MOMP), which allows
cytosolic release of apoptogenic factors (e.g., cytochrome c,
Smac/DIABLO) that cause activation of the caspase
cascade.40 It remains unclear whether binding of BH3-only
proteins to the pro-survival BCL-2-like proteins or their direct
binding to BAX/BAK is more critical for the initiation of
apoptosis.37,38,41 It is, however, clear that some of the BH3-
only proteins are more potent inducers of apoptosis (e.g.,
BIM, PUMA, tBID) than others (e.g., BAD, NOXA, BMF).
Pertinently, the potent BH3-only proteins bind avidly to all pro-
survival BCL-2 family members and can also engage BAX/
BAK, whereas the less potent ones have more select binding
specificities for the pro-survival BCL-2 family members and
reportedly do not bind to BAX or BAK.31,32

Mechanisms of BH3-only protein activation. Because of
their position at the apex of the BCL-2-regulated apoptotic
pathway, the BH3-only proteins act as a fulcrum, determining
whether the scales tip in favour of cell death or in favour of
cell survival.
The mechanisms that lead to activation of the BH3-only

proteins vary between members of this subfamily and also
according to the apoptotic stimulus.26,27,42 Transcriptional
activation features prominently; however, emerging evidence
also identifies posttranscriptional mechanisms, such as those
involving microRNAs (miRNAs), as important in certain
contexts.
For example, following DNA damage the tumour-

suppressor p53 is posttranslationally activated and then
transcriptionally upregulates PUMA and NOXA.43–45 E2F1 is
also able to induce PUMA and NOXA.46 PUMA as well as BIM
expression were reported to be induced by the transcription
factor FOXO3a in response to cytokine withdrawal.47–49

However, mutation of all known FOXO transcription factor-
binding sites in theBim gene had no impact on haematopoietic

cell homeostasis and apoptosis,50 indicating that this mode of
induction may not be critical for BIM activation. In response to
ER stress, BIM expression can be transcriptionally induced by
CHOP.51

Various posttranslational processes were reported to
regulate the stability and thereby control the activity of BH3-
only proteins. BIM and BAD were reported to be negatively
regulated by phosphorylation.42,52 Phosphorylation of BAD
by AKTwas shown to cause its sequestration in the cytosol by
14-3-3 proteins, thereby restraining its pro-apoptotic activity.53

Mice lacking BAD are largely normal, and their cells do not
show marked resistance to the apoptotic stimuli tested.54,55

The role of BAD in programmed and stress-induced cell death
is therefore probably relatively subtle and ancillary to the
action of more potent BH3-only proteins (e.g., BIM, PUMA).
Phosphorylation of BIM by ERK was reported to be critical for
the antiapoptotic activity of this kinase.56–60 However, a recent
study has shown that ERK-mediated direct phosphorylation of
BIM does not have a major role in the control of the pro-
apoptotic activity of this BH3-only protein within the whole
animal.61 Both BIM and BMF were shown to be sequestered
by binding to elements of the cytoskeleton, thereby restraining
their pro-apoptotic activity.62,63 Interestingly, loss of the
transcription factor ASCIZ, with consequent reduction in its
target dynein light chain 1, which reportedly links BIM to the
dynein motor complex,62 causes abnormal death of B
lymphoid cells, and this can be blocked by concomitant loss of
BIM.64 This suggests that this mode of BIM regulation has a
critical role in normal physiology.
The expression of the BH3-only proteins can be modulated

posttranscriptionally through the activity of miRNA. These
short (17–25 nucleotides) RNA species bind in a sequence-
specific manner to several target mRNA transcripts and inhibit
their translation either through translation inhibition or mRNA
destabilisation. Although the change in mRNA transcript
abundance for any single miRNA target is mostly relatively
minor, individual miRNAs are able to exert marked effects by
targeting multiple mRNA species-encoding proteins that act
within the same signalling pathway.
With respect to the BH3-only proteins, several miRNA have

been implicated in the regulation of BIM expression, including
the miR-17 ~ 92 cluster in mice65,66 and in human cancer cell
lines also (miR-32, miR-17-5p, miR-106-25).67–69 PUMA was

Table 1 The role of the BCL-2 protein family members in tumour development

Gene Role in tumorigenesis Model References

Bim (Bcl2l11, Bod) Tumour suppressor Eμ-Myc 89,90

Puma (Bbc3) Tumour suppressor Eμ-Myc 91

Puma (Bbc3) Required for tumour initiation Irradiation-induced lymphoma 111,112

Bax Tumour suppressor Eμ-Myc 92

Bmf Tumour suppressor Irradiation-induced lymphoma 110

Noxa (Pmaip1) Tumour suppressor Irradiation-induced lymphoma 111

Bad (Bbc2) Conflicting reports Irradiation-induced lymphoma 54,55

Bcl2 Oncogene Eμ-Myc 86

Bclx (Bcl2l1) Oncogene; required for lymphoma initiation Eμ-Myc 87,90,93,94

Mcl1 Oncogene; required for sustained lymphoma growth Eμ-Myc 88,97

Mcl1 Oncogene; required for sustained lymphoma growth p53-deficient thymic lymphoma 108

Mcl1 Required for sustained lymphoma growth AML 113,114
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reported to be regulated by miR-483-3p, miR-221 and
miR-222.70,71

As for the pro-survival BCL-2 family members, BCL-2 and
MCL-1 appear to be the prominent targets of miRNA-mediated
regulation. Both are targeted by miR-29 and miR-153,72–74

and BCL-2 expression is also regulated by miR-15, miR-16,75

miR-19576 and the p53-inducible miR-34.77 BCL-XL expres-
sion appears to be controlled by miR-491.78

Role of the BCL-2-Regulated Apoptotic Pathway in
Mouse Models of Tumorigenesis

Experimental models have been utilised to delineate the roles
of the various BCL-2 family proteins during tumorigenesis
(Table 1). Because of the prominent expression of the pro-
survival BCL-2 family members in the haematopoietic
system,79 a large proportion of these studies have focussed
on the role these proteins have during leukaemia and
lymphoma development.

Eμ-Myc lymphomamodel. MYC expression is thought to be
deregulated in ~ 70% of human cancers.80 In Burkitt
lymphoma (BL), this is due to a chromosomal translocation
that subjugates the c-Myc gene to the control of the
immunoglobulin heavy (IgH) or light chain gene enhancers.
The Eμ-Myc transgenic mice were generated to model this
malignancy with expression of the c-Myc proto-oncogene
driven by the IgH gene enhancer, Eμ.81 Early in life, these
mice contain abnormally increased numbers of large, cycling
B-cell progenitors,82 which comprise the nascent neoplastic
cells.83 Upon acquisition of oncogenic mutations that
cooperate with MYC in neoplastic transformation, clonal
malignant pre-B or sIg+ B lymphomas emerge from the pool
of preleukaemic B lymphoid cells.83 On a C57BL/6 back-
ground, median (50%) survival is ~ 110 days, and all animals
succumb to lymphoma within ~ 350–400 days. Tumour cells
from lymphoma-bearing mice can be readily transplanted into
syngeneic (immune-competent) recipients or adapted to grow
indefinitely in vitro as cell lines.81,83 These two features and
the ability to identify and study a preneoplastic cell population
(see above) made this the most widely used animal model of
human cancer (41400 publications).
Deregulated MYC expression promotes neoplastic trans-

formation by causing aberrant cell proliferation. However,
under conditions of stress, such as limited supply of growth
factors or nutrients, deregulated MYC expression also
increases the predisposition of cells to undergo
apoptosis.84,85 Preleukaemic B lymphoid cells from Eμ-Myc
mice are highly prone to undergo apoptosis,85 and apoptosis
constitutes a major mechanism to suppress/delay lymphoma
development in Eμ-Myc mice. Accordingly, overexpression of
pro-survival BCL-2 family members (e.g., BCL-2,86 BCL-XL87

or MCL-188) greatly accelerate lymphoma development in Eμ-
Myc mice. Loss of BIM,89,90 PUMA91 or BAX92 (but curiously
not loss of BAK) also accelerate MYC-induced lymphomagen-
esis, indicating that these pro-apoptotic proteins are major
tumour suppressors in this context.
Studies using gene-targeted mice or pharmacological

inhibitors revealed that endogenously controlled expression
of BCL-XL,90,93,94 but not BCL-2,95 is essential for MYC-

induced lymphoma development. This may be explained by
the fact that BCL-XL, but not BCL-2, is expressed at readily
detectable levels in pro-B/pre-B cells, the population of
preleukaemic cells from whichmalignant lymphoma is thought
to arise in Eμ-Myc mice. However, lymphomas initiated by
combined overexpression of MYC and BCL-2 need high
BCL-2 expression for their continued survival.96

Interestingly, although BCL-XL is critical for the develop-
ment of pre-B/B lymphoma in Eμ-Myc mice, it is dispensable
for the sustained survival and expansion of these tumours.97

Instead, MCL-1 is essential, with loss of even a single allele of
Mcl-1 abrogating the in vivo growth of malignant Eμ-Myc
lymphomas, unless they have acquired a mutation in the
tumour-suppressor gene p53.97

p53-deficient mice, a model of Li–Fraumeni syndrome.
Mutation or loss of p53 is the most frequent mutation in
human cancer and is frequently associated with poor
prognosis and chemoresistance.98,99 Furthermore, a rare
genetic disorder, Li–Fraumeni syndrome results from the
inheritance of a single mutated copy of the p53 gene.100,101

These patients are characterised by a high incidence of early
onset of various cancers, particularly lymphoma, leukaemia
and several forms of sarcoma, which develop following the
somatic loss of the remaining wild-type p53 allele in cancer-
initiating cells.
The p53+/− heterozygous mice recapitulate the human

condition102,103 and mice completely deficient for p53 rapidly
(within 150–280 days) develop thymic lymphoma with 100%
penetrance on the C57BL/6 genetic background. These mice
have been widely used to examine the importance of p53-
mediated tumour suppression and the consequences of its
loss during lymphomagenesis. As p53 induces apoptosis
through the BH3-only proteins PUMA and (to a lesser
extent) NOXA,43–45 it was a great surprise that mice double
deficient for both PUMA and NOXA displayed no propensity
to tumour formation.104 Even the combined loss of p53’s
ability to induce apoptosis, cell cycle arrest and senescence
(Puma−/−Noxa−/−p21−/− mice) did not render mice tumour
prone.105–107 The precise mechanisms by which p53 sup-
presses tumour development therefore remain unclear.
A recent study has delineated the roles of the different pro-

survival BCL-2 family members required for lymphoma
development and expansion in p53-deficient mice.108 MCL-1
was found to be critical for both the development and
sustained growth of lymphoma initiated by p53 deficiency,
whereas BCL-XL was dispensable. This study showed that
even for p53-deficient tumours therapeutic targeting of MCL-1
may represent an effective treatment strategy.

γ-radiation-induced thymic lymphoma model. Thymic
lymphoma can be induced in mice by repeated exposure to
low doses of γ-radiation.109 This is thought to facilitate
neoplastic transformation through the sequential accumula-
tion of oncogenic mutations in immature haematopoietic
progenitors in the bone marrow, ultimately culminating in
malignant lymphoma. Following exposure to 1.5 Gy γ-irradia-
tion weekly for 4 weeks, mice typically succumb to thymic
lymphoma around 150–200 days. In this experimental model,
NOXA and BMF have been shown to suppress lymphoma
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development,110,111 while the role of BAD remains conten-
tious with one report describing accelerated thymic lympho-
magenesis in BAD-deficient mice while another publication
reported no effect.54,55 Possible explanations for the
discrepancy might include differences in γ-radiation dosing
and schedule used or differences in genetic background
(C57BL/655 versus complicated mixed background54). Loss
of BIM alone did not accelerate lymphoma development;
however, mice deficient for both BAD and BIM showed
accelerated tumour development.55

Remarkably, loss of PUMA completely abrogated γ-radia-
tion-induced thymic lymphoma development.111,112 This strik-
ing finding could be attributed to the profound resistance of
PUMA-deficient white blood cells to DNA damage-induced
apoptosis. The persistence of these cells obviated the need for
mobilisation and burst of proliferation of haematopoietic stem/
progenitor cells that would normally occur to repopulate the
depleted haematopoietic system,111,112 a process that
appears to be required for lymphoma development in this
model.109 These observations suggest that accumulation of
DNA lesions, some of them potentially oncogenic, is not
sufficient to induce tumour formation unless it is also
accompanied by a drive for proliferative expansion of the
mutation bearing leukaemia/lymphoma-initiating cells.

Acute myeloid leukaemia (AML) models. AML can be
induced experimentally in mice by transducing haematopoie-
tic stem/progenitor cells with expression constructs encoding
protein products encoded by recurrent chromosomal translo-
cations found in human AML (e.g., MLL-ENL, AML-ETO9a).
Using this system, MCL-1, but not BCL-XL, BCL-2 or BCL-W,
was shown to be critical for the sustained survival of AML
cells in vitro and in vivo.113,114

Collectively, these results characterise the process of tumour
formation as a sustained effort of nascent neoplastic cells to
copewith stress conditions imposed by the oncogenic lesions,
genomic instability and potentially cytotoxic signals from their
environment. Mutations that sensitise cells to apoptosis, such
as loss of pro-survival BCL-2 family members, act to suppress
tumour development, whereas loss of pro-apoptotic BCL-2
family members expedite neoplastic transformation.

Role of the BCL-2-Regulated Apoptotic Pathway in
Human Cancer

The BCL-2 family of proteins have also been shown to be
critical for the development, progression and treatment
responses of human cancers (Table 2). Indeed, the BCL-2
gene itself was discovered following its identification as the
oncogene activated by the t(14;18) chromosomal transloca-
tion in follicular lymphoma.115 The seminal discovery by Vaux
et al.116 that enforced BCL-2 expression could protect cells
from growth factor deprivation-induced death revealed for the
first time that defects in apoptosis could cause cancer.
Studies using human cancer-derived cell lines and patient

samples revealed abnormalities in the expression of several
anti- aswell as pro-apoptotic BCL-2 family members in a broad
range of malignancies. In addition to the critical role of BCL-2
in follicular lymphoma, high levels of BCL-2 expression have
also been observed in neuroblastoma and chronic lymphocytic
leukaemia (CLL).117–120 In at least some cases of CLL, this is
likely due to loss of miR-15a and miR-16-1, which can repress
BCL-2 expression.75 Amplifications of theMcl-1 or Bcl-x gene
loci have been identified as frequently occurring somatically
acquired copy number aberrations in lung, breast121,122 and
giant-cell tumours of the bone.123 RNAi-mediated knockdown
of MCL-1 or BCL-XL induced killing of some cell lines derived
from such cancers, suggesting that these pro-survival BCL-2-
like proteins are essential for their sustained survival.121

Furthermore, MCL-1 levels were found to be high in primary
AML samples and antagonising MCL-1 activity (using
inducible expression of BIM variants that only bind to and
inhibit MCL-1) impaired the in vitro survival
of primary human AML cells.113,114 BFL-1, the human
homologue of A1, was shown to be overexpressed and
associated with chemo-resistance in various cancers, including
B-CLL.124–126

Pro-apoptotic BCL-2 family members were also found to be
deregulated in human cancers. The genomic regions harbour-
ing PUMA and BOK commonly show somatically acquired
loss of copy number in various cancer types.121 Loss of BAX
function appears likely to have a role in colon cancer
development, with frame-shift mutations in the BAX gene
detected in ~ 50% of colon cancers of the microsatellite
mutator phenotype.127 Combined loss of BAX and BAK was
observed in a small number of AML samples from heavily
pretreated patients; treatment may have selected for tumour

Table 2 Aberrations in BCL-2 protein family members in human cancer

Gene Expression Cancer References

BIM (BCL2l11, BOD) Genomic loss Mantle cell lymphoma 128

BIM (BCL2l11, BOD) Epigenetic silencing Burkitt lymphoma 129

PUMA (BBC3) Genomic loss Various 121

PUMA (BBC3) Epigenetic silencing Burkitt lymphoma 130

BMF Genomic loss Advanced lung, breast cancer 131

BOK Genomic loss Various 121

BAX Genomic loss Colon cancer 127

BCL2 Overexpressed Follicular lymphoma, neuroblastoma, CLL 115,117–120

BCL2L1 (BCLX) Amplified Lung cancer 121,122

MCL1 (BCL2L3) Amplified Lung cancer, breast cancer 121

MCL1 (BCL2L3) Overexpressed AML 114

BFL-1 (BCL2A1) Overexpressed B-CLL; various solid cancer 124
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cells with loss of both of these multi-BH domain pro-apoptotic
BCL-2 family members.113 Homozygous loss of the Bim gene
is seen in ~ 15–20%ofmantle cell lymphomas.128Moreover, in
BL, the BIM and PUMA genes were found to be silenced
by epigenetic alterations, such as hyper-methylation.129,130

Furthermore, the region harbouring the BMF gene is lost in
late stage lung and breast cancer.131

These observations demonstrate that abnormalities in anti-
as well as pro-apoptotic BCL-2 family members can contribute
to the development of cancer in humans.

The Role of the BCL-2-Regulated Apoptotic Pathway in
Cancer Therapy

Because of their role as mediators of apoptosis triggered by
diverse cell stresses, the BCL-2 protein family members are
key determinants of the response of tumour cells to a broad
range of commonly used anticancer therapeutics (Figure 2).
Accordingly, direct activation of the BCL-2-regulated apoptotic
pathway using small-molecule mimetics of the pro-apoptotic

BH3-only proteins is being developed as a novel strategy for
cancer therapy.
The role of the BCL-2-regulated apoptotic pathway in the

response to anticancer therapeutics was first demonstrated
when it was found that non-transformed lymphoid cells from
Bcl-2 transgenic mice132 and BCL-2-overexpressing lym-
phoma cells133 were profoundly resistant to γ-irradiation,
DNA damage-inducing chemotherapeutic drugs (e.g., etopo-
side) and glucocorticoids (e.g., dexamethasone). Similar
protection from chemotherapeutic drug-induced apoptosis
can be afforded by overexpression of any of the other pro-
survival BCL-2 family members.134–137

Studies using gene-targeted mice or RNAi-mediated gene
knockdown in cell lines revealed which pro-apoptotic BCL-2
family members are critical for cell killing by which anticancer
agent. Consistent with the notion that BAX and BAK have
essential overlapping functions in the BCL-2-regulated apop-
totic pathway, cells from Bax−/−Bak−/− mice are markedly
resistant to diverse anticancer agents.138–140 Notably, different
anticancer agents require different BH3-only proteins for cell
killing. PUMA is critical for therapeutic responses to
γ-irradiation as well as to DNA-damaging drugs, with
contributions from NOXA and also BIM (which does not
appear to be a direct transcriptional target of p53) in at least
certain non-transformed and malignant cell types.141–145

PUMA and BIM together account for most of the pro-
apoptotic activity of glucocorticoids.141,143,146–149 BIM is also
critical for taxane-induced cell killing.150,151 Furthermore, BMF
as well as BIM are critical for the killing of non-transformed
lymphoid cells as well as certain lymphoma cells by inhibitors
of histone deacetylases.110,135 BIM (with BAD and BMF also
contributing) is critical for the killing of tumour cells that are
dependent on oncogenic kinases by therapeutic agents that
block their activity, such as inhibitors of MEK (acting down-
stream of mutant B-RAF in melanoma or colon carcinoma),152

EGFR (lung cancer),153–155 BCR-ABL (CML)156,157 and
VEGFR signalling (tumour angiogenesis).158 Notably, a gene
polymorphism that impairs the expression of BIM was found to
explain the de novo resistance of BCR-ABL-driven CML to
Gleevec and mutant EGFR-driven lung cancer to Iressa/
Tarceva in East Asian populations.159

Anticancer drug-induced killing of tumour cells requires
activation of BH3-only proteins by upstream signalling
mediators, such as p53 or the glucocorticoid receptor. These
upstream signal activators are frequently mutated, lost or
silenced (e.g., due to epigenetic modifications) during tumour
development or subsequently during emergence of therapy-
resistant cancer cells.14,27,160 To bypass such resistance
mechanisms, a new class of therapeutics, known as
‘BH3-mimetics’, that directly activate apoptosis have been
developed (Figure 2). BH3-mimetics bind and inhibit the
pro-survival BCL-2 family members and thereby activate
apoptosis in cancer cells.16 ABT-737 and its clinical analogue
ABT-263 (navitoclax) exemplify this new therapeutic class,
with the latter compound currently in phase 2 clinical
trials.161,162 Both compounds bind to BCL-2, BCL-XL and
BCL-W (but not to MCL-1 or A1) displacing the endogenous
BH3-only proteins, which can then bind to MCL-1, A1 and
some of them also to BAX/BAK. This causes killing of
tumour cells via a BAX/BAK-dependent mechanism.162–164

apoptosis

BCL-2-like prosurvival 
proteins

BH3-mimetic 
compunds

BAX/BAK

Direct 
activation

BAD

BIMBMF PUMA

NOXA

DNA damage

taxanes
glucocorticoids

tyrosine kinase
 inhibition

HDAC
inhibitors

p53

Figure 2 Many anticancer agents mediate tumour cell killing though activation of
the BCL-2-regulated apoptotic pathway. BH3-only proteins are activated transcrip-
tionally and/or posttranscriptionally in a cytotoxic stimulus-specific manner by many
anticancer agents, often with 2–3 members cooperating to induce apoptosis. BH3-
mimetic compounds bind directly to and block the BCL-2 pro-survival proteins and
thereby elicit apoptosis even in cells lacking upstream activators of BH3-only proteins,
such as the tumour-suppressor p53, which is critical for transcriptional induction of
Puma and Noxa
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However, as ABT-737 and ABT-263 bind only a subset of the
BCL-2-like pro-survival proteins, overexpression of MCL1 or
A1/BFL-1, both of which are not inhibited by these com-
pounds, has the potential to confer resistance to therapy.164

Some cancers (such as CLL) with very high expression of
BCL-2 (and possibly also cancers expressing high levels of
BCL-XL and/or BCL-W) respond robustly to the existing BH3-
mimetics when used as single agents. However, in order to
maximise treatment efficacy, in many cancers these BH3-
mimetics are probably best employed in combination with
drugs known to activate BH3-only proteins, such as BIM or
PUMA, that can potently neutralise MCL-1 and/or A1.
Indeed BH3-mimetics have been found to potently syner-

gise in vitro with various chemotherapeutic drugs in the killing
of CLL165 and many other cancer cells, including mouse
xenograft models of human breast cancer.152,153,157,166,167

Such combinatorial therapeutic strategies would effectively
neutralise all pro-survival BCL-2 family proteins and thereby
efficiently activate apoptosis in malignant cells.
BH3-mimetics also affect non-transformed cells; for

example, ABT-737 and ABT-263 cause thrombocytopaenia
because platelets rely on BCL-XL for their survival.168,169 This
problem can be circumvented in the context of BCL-2-
dependent tumours by using ABT-199/venetoclax, a BH3-
mimetic that only inhibits BCL-2 and is showing great promise
for the treatment of CLL.170 Moreover, to prevent unacceptable
collateral damage to normal tissues, BH3-mimetics may best
be used in combination therapies with drugs that only affect
cancer cells, such as inhibitors of oncogenic kinases (e.g.,
Gleevec to inhibit BCR-ABL in CML, Vemurafenib to inhibit
mutant BRAF in melanoma), rather than using them with
cytotoxic drugs that cause DNA damage in both malignant as
well as non-transformed cells.160

Concluding Remarks

Changes in expression and activity of members of the BCL-2
family (and their upstream regulators) can exert profound
effects of cell survival and this is of particular relevance to the
development of cancer and its clinical treatment. Mechanisms
delineated using mouse models mimicking human malignan-
cies have greatly advanced our understanding of how
apoptosis suppresses tumour formation. Importantly, these
findings have been mirrored by insights from clinical studies
and this knowledge can now be harnessed to develop
improved treatment strategies for patients. So far, the most
exciting outcome from these advances has been the devel-
opment of the BH3-mimetic drugs that directly activate
apoptosis in cancer cells by binding and inhibiting select pro-
survival BCL-2 family members. The first of such compounds,
ABT-263/navitoclax and ABT-199/venetoclax, are currently
generating much excitement as they progress through clinical
trials and will hopefully prove efficacious for treatment of a
wide variety of both haematological and solid cancers.
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