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Abstract

the hepatotoxicity and apoptosis induced by CNPs.

The potential toxicity of copper nanoparticles (CNPs) to the human health and environment remains a critical issue.
In the present study, we investigated the protective influence of an aqueous extract of green tea leaves (GTE)
against CNPs-induced (20-30 nm) hepatotoxicity. Four different groups of rats were used: group | was the control,
group Il received CNPs (40 mg/kg BW), group Il received CNPs plus GTE, and group IV received GTE alone. We
highlighted the hepatoprotective effect of GTE against CNPs toxicity through monitoring the alteration of liver
enzyme activity, antioxidant defense mechanism, histopathological alterations, and DNA damage evaluation. The
rats that were given CNPs only had a highly significant elevation in liver enzymes, alteration in oxidant-antioxidant
balance, and severe pathological changes. In addition, we detected a significant elevation of DNA fragmentation
percentage, marked DNA laddering, and significance over expression of both caspase-3 and Bax proteins. The
findings for group Il clarify the efficacy of GTE as a hepatoprotectant on CNPs through improving the liver enzyme
activity, antioxidant status, as well as suppressing DNA fragmentation and the expression of the caspase-3 and Bax
proteins. In conclusion, GTE was proved to be a potential hepatoprotective additive as it significantly ameliorates
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Background

As more and more nanomaterials are introduced in our
daily life, serious environmental hazard could occur.
Copper nanoparticles (CNPs) are one of the first engi-
neered nanoparticles (NPs) involved in a variety of in-
dustrial applications, such as facial spray, lubricants
additive, metallic coating, and inks [1]. Effluent, spillage
during shipping, and handling are considered as the
main routes of entry for CNPs to human body [2].
Regarding their small size and high reactivity, various
studies showed that CNPs could causes a diversity of
toxic effects including hepatotoxicity [3, 4]. Chen et al.
[4] reported that CNPs’ toxicity is triggered by reactive
oxygen species (ROS) over production. Usually, cells re-
spond to oxidative burden through fortifying their anti-
oxidant defense mechanism. However, the imbalance
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between oxidative burden and defense mechanism in-
duces protein oxidation, lipid peroxidation (LPO), DNA
damage, and apoptosis [5, 6]. Recently, much interest
had been focused on the role of naturally occurred
herbal plant extracts as protective agents for various
toxins [7]. Green tea extract (GTE) had attracted a great
attention for its health benefits against a variety of toxins
associated with oxidative stress [7, 8]. Many studies
proved the hepatoprotective role of GTE [9, 10]. The
great beneficial influence of GTE was attributed to the
high content of catechins. Epicatechin, epicatechin gall-
ate (ECQ), epigallocatechin (EGC), and epigallocatechin
gallate (EGCQ) are the major catechins present in GTE
[11]. Those catechins chemically possess multiple
hydroxyl substituents responsible for its antioxidant activ-
ity [12]. Besides catechins, GTE contains additional anti-
oxidants such as vitamins E and C [13], as well as
minerals that function as co-factors for antioxidant
enzymes. The discovery of novel protective agents against
NPs’ toxicity remains a challenge. Therefore, regarding
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the mentioned impacts of GTE, as a strong hepatoprotec-
tive antioxidant, the present study was designed to evalu-
ate the ameliorative influence of the GTE against CNP-
induced hepatotoxicity in male rats.

Methods

Animals

Forty-eight male albino rats, weighing 100-120 g, were
maintained in stainless steel cages under standard condi-
tions in accordance with the Animal Care and Use Com-
mittee of Beni-Suef University. All efforts were made to
minimize animal suffering.

Chemicals

CNPs (20-30 nm), 99.5 % purity, spherical in shape,
mineral in nature, were purchased from Sigma Aldrich.
A stock suspension of CNPs was prepared by dispersing
CNP powder in deionized water followed by vigorous
vortexing and sonication [4]. Prior to each use, the stock
solution was sonicated for approximately 20 s to ensure
proper particle suspension. The green tea was obtained
from Lipton green tea Unilever brand, packed in the
United Arab Emirates Unilever Gulf FZE. The GTE was
prepared according to [14]. Fifteen gram of instant green
tea powder was socked in 100 ml of boiling distilled
water for 5 min. The solution was filtered to make 1.5 %
GTE. The dose of 1.5 % w/v GTE had been reported as
hepatoprotective for rats [15]. The GTE contained
EGCG (337 mg/l), EGC (268 mg/l), epicatechin (90 mg/l),
ECG (60 mg/l), and caffeic acid (35 mg/l) as determined
by the HPLC method [7].

Experimental Protocol

The rats were equally divided into four different groups.
Group I (control) received distilled water only. Group II
received CNPs (40 mg/kg BW) via oral gavage. Group
III orally received CNPs (40 mg\kg BW) plus GTE
(1.5 %, w/v). Finally, group IV was given GTE (1.5 %, w/v)
alone. The GTE solution was provided to the rats as their
sole source of drinking water. The rats were treated for
5 days/week for 2 months. The selected dose of CNPs was
1/10 of the LD50 which was reported by Chen et al. [4].
Throughout the experimental period, there were no
signs of toxicity in the animals treated with CNPs de-
tected. At the end of the experiment, the animals were
fasted overnight, anesthetized, and sacrificed by cervical
dislocation. Blood and liver samples were collected for
further estimations.

Liver Function Tests

The blood samples were collected in plain tubes and
centrifuged, and the serum were stored at -20 °C for
subsequent serum alanine aminotransferase (ALT), as-
partate aminotransferase (AST), and total bilirubin (TB)
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concentration measurement according to the instruc-
tions provided by the manufacturer of the kits.

Oxidative Stress Parameters

The liver tissue was homogenized in ice-cold 0.1 M
phosphate buffer saline (PBS) (pH 7.4) using a Teflon
tissue homogenizer. The crude tissue homogenate was
centrifuged and used for the measurement of malondial-
dehyde (MDA) [16], superoxide dismutase (SOD) activ-
ity [17], catalase (CAT) activity [18], reduced glutathione
concentration (GSH) [19], and total protein concentra-
tion [20].

DNA Fragmentation Assays for Apoptosis

Apoptotic changes in the liver tissue were evaluated by
DNA fragmentation percentage using diphenylamine
assay (DPA) and DNA laddering assay using agarose gel
electrophoresis [21].

Copper Bioaccumulation in the Liver Tissue

The concentration of copper in the liver tissue was ana-
lyzed using an atomic absorption spectrophotometer
according to method disrobed by Zheng et al. [22].

Histopathological Examinations

The liver specimens were fixed in 10 % neutral formalin
solution, and dehydrated and embedded in paraffin wax.
Blocks were sectioned at a thickness of 5 um and stained
with hematoxylin and eosin [23].

Immunohistochemical Analysis

For Bax and activated caspase-3 immunostaining, the liver
sections were deparaffinized, microwaved, incubated in
3 % HyO,, and placed in PBS. Blocking of non-specific
antibody binding was performed by incubation with nor-
mal goat serum at 37 °C. Rabbit anti-caspase-3 (diluted to
1:1000, Abcam, Ltd., USA) and Bax (1:200, Abcam, Ltd.,
USA) were used as biotinylated primary antibodies. The
sections were incubated with peroxidase-conjugated goat
anti-rabbit IgG (1:1000). Diaminobenzidine (DAB) was
applied as a chromogen to visualize the immune reaction.
Images were captured using a digital camera. A hepatocyte
with dark brown cytoplasm and nucleus was considered
positive cells [24]. Positively immune stained cells were
counted in five x400 magnification fields selected ran-
domly and analyzed according to Yuan et al. [25].

Statistical Analysis

The data were statistically analyzed using SPSS version 16.0
statistical package. The data are expressed as mean + SE.
Differences between the groups were assessed using one-
way analysis of variance (ANOVA). The differences were
considered statistically significant for P < 0.05.
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Results

Liver Function Tests

The results revealed that the group II showed a signifi-
cant elevation in ALT and AST activity and TB concen-
tration compared to group I. Group III protected with
GTE showed a significant decrease in ALT by 28.9 %,
AST by 27.67 %, and TB by 42.6 % compared to group
IT whereas non-significant changes were detected com-
pared to the control. Non-significant changes were
detected for all parameters between the control and
group IV (Table 1).

Oxidative Stress Parameters

It was obvious that MDA, the indicative marker for LPO,
showed a significant elevation in group II (7.56 + 0. 43)
compared to group I (3.39 + 0.33). Administration of GTE
in group III caused significant reduction in the elevated
MDA by 53.9 %. Under normal condition, the over ROS
production were neutralized by the antioxidant defense
mechanisms. GSH is an important non-enzymatic antioxi-
dant that plays a crucial role in the detoxification of ROS.
SOD and CAT enzymes are the first line of cellular
defense against oxidative injury. In the current study, the
oral administration of CNPs for group II led to a signifi-
cant reduction in GSH (from 29.39 £ 043 to 17.12 + 1.3),
CAT (from 140.7 +7.6 to 55.2+6.5), and SOD (from
28.25 + 3.1 to 18.37 + 1.03) activities compared to the con-
trol. Co-administration of GTE to group III caused a sig-
nificant increase in GSH by 37.1 % and both enzymes
activities CAT by 101.1 % and SOD by 31.4 % which
nearly returned to its normal values when compared to
group I. Both groups I and IV showed non-significant dif-
ferences among all oxidative stress parameters except
SOD (Fig. 1).

DNA Damage Assay

DNA fragmentation is a very typical feature for apop-
tosis. Both quantitative and qualitative DNA fragmenta-
tion in hepatic tissue were evaluated in the current
study (Fig. 2). CNPs caused marked elevation in DNA
fragmentation percentage (39.48 +1.9) in group II com-
pared to group I (20.79 £1.3). Oral administration of
GTE for group III caused significant reduction in DNA
fragmentation percentage by 26.2 %. There are non-
significant changes between group I and IV detected.
Marked DNA laddering induced by CNPs was observed
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in group II compared to group I. GTE administration
for group III showed a marked decrease in DNA ladder-
ing. Lacking of DNA laddering was observed in both
groups I and IV.

Copper Bioaccumulation in the Liver Tissue

According to our study, a significant elevation in copper
accumulation was observed in group II intoxicated with
CNPs (3.44 + 0.22) compared to the control (1.93 +0.19).
The protective group III treated with GTE showed a sig-
nificant reduction in the copper accumulation by 26.1 %.
No significant differences were detected between the
group I and group IV (Fig. 3).

Histopathological Analysis

The liver of group I showed normal hepatic parenchyma
with no evidence of hepatocellular necrosis or inflamma-
tory reaction (Fig. 4a). Meanwhile, the liver of group II re-
vealed various histopathological alterations characterized
by focal area of hepatocellular necrosis infiltrated by
mononuclear cells (Fig. 4b) and polyploidy hepatocytes
represented by hepatic cytokaryomegaly, binucleated he-
patocytes associated with activation of Kupffer cells and
sporadic cell necrosis (Fig. 4c) as well as apoptosis (Fig. 4d).
Portal triad revealed oval cell proliferation, hyperplasia of
biliary epithelium, and formation of newly formed bile
ductules (Fig. 4e) in addition to periportal sporadic hepatic
cell necrosis and apoptosis (Fig. 4f). These histopathological
alterations were markedly reduced in the group III treated
with GTE as the liver showed mild granular degeneration
of hepatocytes and individual cell necrosis (Fig. 4g). The
liver of group IV showed nearly similar picture to those
demonstrated in the control one (Fig. 4h).

Immunohistochemical Analysis

Figures 5 and 6 summarized the results of immunobhis-
tochemical evaluation of caspase-3 and Bax proteins
expression in the different experimental groups. A
significant elevation in caspase-3 immuno-positive he-
patocytes was detected in group II (20.35 £ 0.46) com-
pared to group I (4.25 + 0.30). The number of caspase-3
immunopositive cells was significantly reduced in
response to GTE administration in group III (Fig. 5).
Similarly, the Bax protein expression showed a signifi-
cant increase in group II as indicated with elevation of
immune reactive hepatocytes (30.2 + 1.34) compared to

Table 1 The influence of GTE on serum ALT and AST activities and TB concentration in CNP-intoxicated rats

Parameters Group | Group I Group Il Group IV

ALT U/I 354+642° 805 +53° 57.2+512° 334+650%
AST U/l 7325+1.2° 1225+12° 887 + 23 66.6+2.1%

TB mg/d 0.109 +0.002° 0521+001° 0.299 + 0,032 0.009 +0.005%

Data are expressed as mean * SE for 12 animals per group. Different superscript letters within the same row are significantly different
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Fig. 1 a-d Influence of GTE on the oxidative stress parameters in liver of CNP-intoxicated rats. Values are expressed as mean + S.E. Different
superscript letters are significantly different (p < 0.05). GI (group |, control), Gl (group Il treated with CNPs), GlIl (group Il treated with CNPs plus

group I (5.32 + 1.23). Reduction of Bax protein expres-
sion by GTE co-administration was clearly observed in
group III (17.4+0.99). Non-significant changed in
caspase-3 and Bax immunostaining were detected in
group IV compared to the control.

Discussion

Manufactured NPs and their applications are expanding
in the fields of technology. With massive introduction of
these materials in our life, it was important to investigate
their possible adverse effects on human health. The
small size and large surface area of NPs were the main
reason attributed for ROS over production which is the

main mechanism of NPs’ toxicity [4]. Excessive produc-
tion of ROS plays a crucial role in the induction and
progression of several diseases such as the liver [26]. In
the present investigation, we highlighted on the hepato-
protective influences of GTE on CNP-induced apoptotic
effects triggered over production of ROS. The liver tis-
sue is a critical organ for metal storage, metabolism, and
detoxification [27]. According to our results reported in
Table 1, we observed a significant elevation in ALT and
AST enzyme activity and TB level, the efficient indica-
tors for liver damage, in group II. In the liver injury, the
transport function of hepatocytes is disturbed, resulting
in leakage of plasma membrane and elevation of the
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Fig. 2 a Influence of GTE on DNA fragmentation percentage in the liver of CNP-intoxicated rats. Values are expressed as mean + SE. Different

superscript letters are significantly different (p < 0.05). G/ (group |, control), Gl (group Il treated with CNPs), GlIl (group Il treated with CNPs plus
GTE), and GIV (group IV treated with GTE). b Agarose gel electrophoresis for the fragmented DNA from the liver tissue. Lanes 1 and 2 showed
smear patterns for group Ill, lanes 3 and 4 showed lack of DNA laddering for group |, lane 5 marked DNA ladder in group I, and lanes 6 and 7
showed lack of DNA laddering for group IV. M 100-bp DNA marker
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Fig. 3 Influence of oral administration of GTE on copper
bicaccumulation in the liver of CNP-intoxicated rats. Values are
expressed as mean + SE. Different superscript letters are significantly
different (p < 0.05). GI (group |, control), G/l (group Il treated with
CNPs), Glil (group Il treated with CNPs plus GTE), and GIV (group IV
treated with GTE)
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serum level of liver enzymes [28, 29]. The increased TB
concentration might be attributed to the failure of nor-
mal uptake, conjugation and excretion by the damaged
hepatic parenchyma [30]. Recent experimental studies
had shed a new light on the chemical and biological
aspects of ROS and its role in pathogenesis of many dis-
eases. Transition metals including copper are involved in
ROS generation via mechanism of Fenton-type reaction
in which the metal ion reacts with H,O, to yield
hydroxyl radical that is extremely reactive and toxic to
biological molecules in addition to the oxidized metal
ion itself [31]. In the same sequence, CNPs consumed
hydrogen ions in the stomach at a faster rate and converted
into cupric ions with higher toxicity [32]. Once CNPs gain
access into the mitochondria, they stimulate ROS produc-
tion via impairment of electron transport chain, activation
of NADPH-like enzyme system, and damage to mem-
brane phospholipids inducing membrane depolarization
[33]. In the present study, the significant elevation in
liver MDA and reduction of GSH level, SOD and CAT
enzyme activity in group II (Fig. 1) was widely accepted
sign of oxidative stress. When the production of ROS
exceeds the capacity of cellular antioxidant machineries,
accumulation of pro-oxidants occurred leading to a
state of oxidative stress [34]. Our data represented in

Fig. 4 Photomicrograph of sections in rat liver intoxicated with CNPs (H and E x400). a Group | showing normal hepatic parenchyma. Group I
showing b focal area of hepatocellular necrosis infiltrated by mononuclear cells, ¢ polyploidy hepatocytes represented by hepatic cytokaryomegaly,
binucleated hepatocytes associated with activation of Kupffer cells and sporadic cell necrosis d apoptosis, e oval cell proliferationhyperplasia of biliary
epithelium and formation of newly formed bile ductule and f periportal sporadic hepaticcell necrosis. g Group Il showing individual cell necrosis.

h Group IV showing normal hepatic parenchyma
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Fig. 5 Influence of oral administration of GTE on caspase-3 protein expression in the liver of CNP-intoxicated rats. a Group | and d group IV
showed negatively immune stained cells for caspase-3 protein expression. Group Il (b) showing marked elevation for the positively immune
stained cells. Group Il (c) showing reduced number of positively stained cell. e The bar chart represents the relative number of immune positive
cells for caspase-3 protein in liver tissue of different groups. Values are expressed as mean + SE. Different superscript letters are significantly different
(p <0.05). GI (group |, control), Gl (group Il treated with CNPs), Gl (group Il treated with CNPs plus GTE), and GIV (group IV treated with GTE)

Fig. 1 are consistent with recently published data dem-
onstrating that CNPs were able to generate oxidative
damage [35, 36]. The metal NPs are mainly accumulated
in the liver regardless of their size, shape, dose, and
types of materials. According to our results detected in
Fig. 3, the oral administration of CNPs to group II led to
significant accumulation of copper in the liver tissue,
our results are in the same consequence with the data
reported by Privalova et al. [37]. The greater bio-
accumulation of CNPs in the liver may be attributed to
the fenestrated, discontinuous endothelia of the liver
which allow the passage of NPs up to 100 nm from the
blood into the liver parenchyma. In addition, liver can

efficiently accumulate high amounts of NPs via
opsonization [38]. Previous studies indicate that copper
can be metabolized in hepatic tissue and be transferred
to metallothionein by GSH thus, the copper overload is
reached and depletion of GSH instantaneously results in
enhanced cellular toxicity [39]. Excess ROS production
could damage hepatocytes and activate hepatic satellite
cells, which play a central role in liver damage and fi-
brosis [40]. Although apoptosis is an essential process
for development of multicellular organisms, its abnor-
mal induction could motivate various diseases [41]. NPs
are able to induce mitochondrial damage through the
direct interaction with undissolved NPs following
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Fig. 6 Influence of oral administration of GTE on Bax protein expression in the liver of CNP-intoxicated rats. a Group | and d group IV showing
negatively immune stained cells for Bax protein. Group Il (b) showing greater number of positively immune stained cells. Group Il (c) showing
moderate number of positively stained cell. e The bar chart represents the relative number of immune positive cells for Bax protein in the liver
tissue of the different groups. Values are expressed as mean + SE. Different superscript letters are significantly different (p < 0.05). G/ (group |,
control), Gl (group Il treated with CNPs), GlIf (group Il treated with CNPs plus GTE), and GIV (group IV treated with GTE)
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endocytotic uptake and/or ROS-derived LPO with dis-
ruption of the membrane integrity and release of apop-
totic enzymes [42]. To monitor the ability of GTE to
counteract the apoptotic effects induced by CNPs, DNA
fragmentation percentage, DNA laddering assay, and
the expression of some apoptotic genes were evaluated.
DNA fragmentation is a very ideal form for the apop-
totic process with generation of multiples fragments
through the action of endonuclease. According to our
study, higher DNA fragmentation percentage and
marked DNA laddering (Fig. 2) were detected in group
II. Findings from several studies were in the same con-
sequence with our results [36, 43]. Excessive ROS pro-
duction induced by CNPs caused oxidative damage to
single base and sugar phosphate of DNA and breaks
DNA strands [44]. In addition, Cu®" decreases cell via-
bility by binding to DNA resulting in cell death [45].
Apoptosis is tightly regulated by the expression or acti-
vation of several genes and proteins [46]. Accumulating
evidences have indicated that NPs could induce a cellu-
lar apoptosis by targeting the mitochondrial apoptotic
pathway, through activation cytochrome c release from
the mitochondria, decreasing Bcl-2 protein expression
over expression of Bax, translocation of Bax into mito-
chondrial membrane, and activation of caspase-3 activ-
ity [47, 48]. Caspase activation plays a central role in the
execution of apoptosis. According to our results, a sig-
nificant increase of caspase-3 and Bax proteins expres-
sion in group II were detected (Figs. 5 and 6). Our
finding is supported by other previous studies that re-
ported that CNPs induced apoptosis directly through
the alteration of apoptotic genes expression [4, 35]. All
those changes occurred on the molecular level were
confirmed by histopathological analysis as observed in
Fig. 4. These alterations could be attributed to the cyto-
and genotoxic effects of CNPs correlated with higher
copper accumulation in the hepatocytes. Those histo-
pathological observations were in quite agreement with
the results reported by [49]. Several epidemiologic data
showed that special dietary additives could provide ef-
fective defenses against oxidative stress and thus have
potential as protective and or treatment for a variety of
diseases. Since ancient times, green tea consumption is
considered as nature’s gift for promoting human health.
The present study demonstrates that GTE offered par-
tial hepatic protection through reduction of serum ALT
and AST enzyme activity and TB (Table 1), as well as re-
storing the antioxidant enzymes (SOD, CAT) activity
and GSH concentration (Fig. 1), reduction of MDA level
(Fig. 1a), minimization of DNA fragmentation percent-
age, DNA laddering, and downregulation of some apop-
totic genes caspase-3 (Fig. 5e) and Bax protein
expression (Fig. 6e). All these observations were sup-
ported by the healing view of hepatic parenchyma and
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regeneration of hepatocytes observed through the histo-
logical analysis (Fig. 4). The underlying mechanisms at-
tributed to the hepatoprotective influence of GTE
against CNPs could be contributed to the following: the
gallate groups of catechins (EGCG, ECG, and EGC)
present in GTE are thought to inhibit the Fenton-like
reaction [50], those catechins act as a powerful
hydrogen-donating radical scavenger, thus, the forma-
tion of highly reactive hydroxyl radicals (OH:) were
inhibited and this in turn, could prevent LPO; the cate-
chins present in GTE chelate divalent transition metal
ions via their ortho-hydroxy-phenolic groups, prevent-
ing the CNP-induced formation of free radicals by
restricting the access of the metal ion toward lipid bio-
membranes [51]; EGCG and other catechins induce
mild level of oxidative stress which may lead to the in-
duction of expression of intracellular endogenous anti-
oxidants [52]; in addition, the catechins exert their
antioxidant and anti-apoptotic effects through the ultra
rapid electron transfer from catechins to ROS-induced
radical sites on DNA molecules [53]. Pan et al. [54] re-
ported that EGCG could induce the activation of intra-
cellular signaling cascades such as the mitogen-
activated kinase pathway and phosphoinositol-3-kinase
pathway which had potent roles in anti-apoptotic signal-
ing. In the same line, EGCG and its methylated metab-
olite protect against necrosis and apoptosis by
suppressing caspase-3  expression, reducing the
expression of proapoptotic genes and inducing the anti-
apoptotic genes expression [55, 56]. Tea catechins, espe-
cialy EGCG and EGC, reduced the cytotoxicity by
suppressing the cytochrome c release from mitochondria to
cytosol and subsequent caspase activation [57]. Catechins
also attenuates the expression of a-smooth muscle actin (a-
SMA) which had crucial roles in the pathogenesis of tissue
fibrosis through inhibiting the signal transduction of TGF-3
binding to its receptors [58]; GTE contains also minerals
that function as co-factors for antioxidant enzymes. Zinc
traces present in GTE considered as a selective inhibitor of
apoptosis [59]. The hepatoprotective effect of GTE against
liver dysfunction was reported by Safer et al. [60] and Gad
and Zaghloul [9]. Numerous studies based on in vivo and
in vitro study confirmed that GTE and their constituents
show health-promoting protective effect at a certain dose
concentration [61]. Low to moderate doses of GTE or
EGCG have reported no serious adverse effects [62]. On
the other hand, GTE or EGCG overdose causes adverse
complications including liver failure and hepatotoxicity
[63]. An experiment based on rat model revealed that oral
dose of 2000 mg EGCG/kg was lethal but dose with
200 mg EGCG/kg induced no toxicity [64]. The GTE was
more stable than pure ECGC because of the presence of
other antioxidant constituents in the extract [65]. In gen-
eral, herbal medicines are complex mixtures of different
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compounds that act synergistically and exert their full bene-
ficial effect as total extracts [66]. This is the cause why we
choose to work on the natural extracts and not one of its
ingredients.

Conclusions

Excessive accumulation of CNPs in the liver caused sev-
eral adverse effects including changes in liver enzyme ac-
tivities, generation of ROS, marked pathological changes,
DNA damage, and apoptosis. Based on our results, we
propose that GTE could provide a cushion for prolonged
protective benefit against CNP-induced hepatotoxicity
without harmful side effects through its potent antioxi-
dant and antiapoptotic properties.
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