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Intellectual disability (ID) affects approximately 1%–3% of humans with a gender bias toward males. Previous studies have identified

mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the

X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole

exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems,

corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID,

accounting for 1%–3% of unexplained ID in females. Although no de novoDDX3Xmutations were identified inmales, we present three

families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all

males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting

for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants,

we used canonicalWnt defects in zebrafish as a surrogatemeasure of DDX3X function in vivo.We demonstrate a consistent loss-of-func-

tion effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential

activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy

males, which reflects the complex biological nature of DDX3X mutations.
Intellectual disability (ID) affects approximately 1%–3% of

humans with a gender bias toward males.1–4 It is character-

ized by serious limitations in intellectual functioning and

adaptive behavior, starting before the age of 18 years.5

Though mutations causing monogenic recessive X-linked

intellectual disability (XLID) have been reported in more

than 100 genes,6,7 the identification of conditions caused

by de novo mutations on the X chromosome affecting

females only is limited.8,9

By undertaking a systematic analysis of whole exome

sequencing (WES) data on 820 individuals (461 males,

359 females) with unexplained ID or developmental delay
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Netherlands), we identified de novo variants in DDX3X

(MIM: 300160; GenBank: NM_001356.4) in seven females

(1.9% of females). Exome sequencing and data analysis

were performed essentially as previously described,10 and

sequencing was performed in the probands and their

unaffected parents (trio approach).11 To replicate these

findings, we examined a second cohort of 957 individuals

(543 males, 414 females) with intellectual disability or

developmental delay from GeneDx (sequencing methods

as previously published12) and a third cohort of 4,295 indi-

viduals with developmental disorders (2,409 males, 1,886
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females) from the Deciphering Developmental Disorders

(DDD) study (UK).13 In most individuals in these cohorts,

a SNP array or array CGH had been performed as well and,

based on the clinical findings, in several individuals addi-

tional metabolic testing, Fragile X testing, or targeted

Sanger analysis of different genes associated with ID was

completed previously. None of these prior analyses re-

vealed the genetic cause in these individuals. We therefore

refer to the individuals in these cohorts as individuals with

unexplained ID. We identified 12 de novo alleles in

DDX3X in the second cohort (2.9% of females) and 20

de novo alleles in the DDD cohort (1.1% of females).

Consequently, based on our findings, mutations in

DDX3X are one of the more common causes of ID,

accounting for 1%–3% of unexplained ID in females.

Altogether, 39 females with de novo variants in DDX3X

were identified in our three cohorts and no de novo vari-

ants in DDX3X were identified in males (Fisher’s exact

test: p ¼ 4.815 3 10�9).

To further define this neurodevelopmental disorder,

additional females with de novo DDX3X variants were

collected from other clinical and diagnostic centers in

the Netherlands, Belgium, Germany, Italy, and Canada.

In total, we obtained the complete clinical and molecular

details of 38 females from across cohorts, which we present
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The 38 females had 35 distinct de novo variants in

DDX3X (Table 1). 19 of the 35 different alleles are pre-

dicted to be loss-of-function alleles (9 frameshift mutations

leading to premature stop codon, 6 nonsense mutations,

and 4 splice site mutations that possibly cause exon skip-

ping), suggesting haploinsufficiency as the most likely

pathological mechanism. The other variants, 15 missense

variants and 1 in-frame deletion, are all located in the heli-

case ATP-binding domain or helicase C-terminal domain

(Figure 1). One recurrent missense mutation was present

in three females (c.1126C>T [p.Arg376Cys]), and in two

females the same frameshift mutation, c.1535_1536del

(p.His512Argfs*5), was identified.

Analysis of the clinical data suggested a syndromic

disorder with variable clinical presentation. The females

(age range 1–33 years) showed varying degrees of ID

(mild to severe) or developmental delay with associated

neurological abnormalities, including hypotonia (29/38,

76%), movement disorders comprising dyskinesia, spas-

ticity, and a stiff-legged or wide-based gait (17/38, 45%),

microcephaly (12/38, 32%), behavior problems including
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autism spectrum disorder (ASD), hyperactivity, and aggres-

sion (20/38, 53%), and epilepsy (6/38, 16%). Several

recurrent additional features were noted, including joint

hyperlaxity, skin abnormalities (mosaic-like pigmentary

changes in some females), cleft lip and/or palate, hearing

and visual impairment, and precocious puberty. Abnormal

brain MRIs were reported in various females, with corpus

callosum hypoplasia (13/37, 35%), ventricular enlarge-

ment (13/37, 35%), and evidence of cortical dysplasia

(e.g., polymicrogyria) in four individuals. A summary of

the clinical data is presented in Tables 2 and S1, and facial

profiles of 30 of the 38 females are shown in Figure 2.

Although common dysmorphic features are reported,

there is no consistent recognizable phenotype. Based on

these clinical and molecular data, there is no evidence for

an obvious genotype-phenotype correlation between the

different types of mutations and degree of ID.

DDX3X is known as one of the genes that are able to

escape X inactivation.14,15 X-linked dominant conditions

often show a remarkable variability among affected fe-

males which in particular holds true for genes that escape

X inactivation.9,16 It is known that most of the transcripts

escaping X inactivation are not fully expressed from the

inactivated X chromosome, which means that the escape

is often partial and incomplete.9 Based on this, phenotypic

severity might be influenced by the amount of gene

expression of DDX3X in females, which could be affected

by possibly skewed X inactivation or incompleteness of

the escape. Different expression of DDX3X in different

tissues could also be a contributing factor. To further

explore the possible skewing of X inactivation, we deter-

mined X inactivation via the androgen receptor gene

(AR) methylation assay17 on DNA from lymphocytes in

15 females. We found an almost complete skewing

(>95%) of X inactivation in seven individuals and random

skewing in the remainder. This is more than would be ex-

pected by chance, because it is known that a high degree

of skewing of X inactivation is a statistically rare event in

young women.18 However, in our affected females, there

is no evidence of correlation of skewing of X inactivation

with disease severity.

Given the high frequency (1%–2%) of DDX3X muta-

tions in females with unexplained ID, we sought to

determine whether males carry deleterious alleles. We

identified no de novo variants in DDX3X males in any of

our cohorts. However, upon sequencing of the X chromo-

some (X-exome) of ID-affected families with apparent

X-linked inheritance pattern,7 we identified two families

with segregating missense variants in DDX3X. Moreover,

one additional family was identified by diagnostic whole

exome sequencing in Antwerp, Belgium. In these three

families, males with the DDX3X variant have borderline

to severe ID and carrier females are unaffected. Pedigrees

of these three families are shown in Figure S1, and a sum-

mary of the clinical features of the affected males is pre-

sented in Table S2. All three missense mutations were

predicted to be deleterious by prediction programs Poly-
The Amer
Phen-2 and SIFT (Table 1) and map within the helicase

ATP-binding domain (Figure 2). With three-dimensional

protein analysis, we could not discern any clear difference

between the missense mutations found in affected males

and the de novo mutations found in females that could

possibly explain the gender-specific pathogenicity

(Figure S2, Table S3). Although in the first two families

with affected males the phenotype consisted mainly of in-

tellectual disability, family 3 was more complex. The male

proband had severe ID and various other features such as a

dysplastic pulmonary valve, hypertonia, and strabismus.

In this male a SNP-array analysis was performed, as well

as DNA analysis of PTEN (MIM: 601728) and FMR1

(MIM: 309550) andmethylation studies on Angelman syn-

drome (MIM: 105830), all without abnormalities. With

exome sequencing no other candidate genes were found.

Hismother had recurrentmiscarriages of unknown gender.

A second initially viable pregnancy was terminated

because of ultrasound anomalies that had also been noted

in the proband, including a thickened nuchal fold and ab-

sent nasal bone. After termination of the pregnancy, the

male fetus was tested and found to have the samemissense

mutation in DDX3X as his brother. Sequencing of other

family members demonstrated that the mutation arose

de novo in the proband’s mother. X-inactivation studies

in this mother demonstrated a random X-inactivation

pattern (68/32). X-inactivation studies in female carriers

in the other families showed that in family 1, the obligate

carrier female (II-2) had highly skewed X inactivation

(>95%), whereas X-inactivation studies in family 2 were

not informative.

None of the three DDX3X variants found in these

families with affected males were reported in the ExAC

database or in the Exome Variant Server (ESP), nor was

one of the de novo variants found in females reported in

these databases. Moreover, none of the DDX3X mutations

identified in males were detected in affected females. As far

as we are aware, in addition to the de novo missense muta-

tion identified in family 3, no other de novo mutations

in DDX3X are reported in healthy individuals or control

cohorts. We downloaded all variants from the ExAC data-

base, containing exome data of 60,706 individuals, and

calculated per gene the number of missense and synony-

mous variants. These numbers were then normalized by

dividing through the total number of possible missense

and synonymous variants per gene. The ratio of corrected

missense over synonymous variants was then used as a

measure for tolerance of the gene to normal variation,

similarly as was done previously.19 When genes were

ranked according to their tolerance score, DDX3X was

among the most intolerant genes (1.09% of genes, rank

194 out of 17,856), showing that normal variation in this

gene is extremely rare.

DDX3X encodes a conserved DEAD-box RNA helicase

important in a variety of fundamental cellular processes

that include transcription, splicing, RNA transport, and

translation.20,21 DDX3X has been associated with many
ican Journal of Human Genetics 97, 343–352, August 6, 2015 345



Table 1. Mutation Characteristics

Nucleotide Change
(GenBank:
NM_001356.4) Amino Acid Change SIFT PolyPhen-2 Cohort

Previously
Reported

Females

Individual 1 c.1126C>T p.Arg376Cys not tolerated probably damaging Nijmegen –

Individual 2 c.233C>G p.Ser78* NA NA Nijmegen –

Individual 3 c.1126C>T p.Arg376Cys not tolerated probably damaging DDD Study DDD Study13

Individual 4 c.136C>T p.Arg46* NA NA DDD Study DDD Study13

Individual 5 c.1601G>A p.Arg534His not tolerated probably damaging DDD Study DDD Study13

Individual 6 c.641T>C p.Ile214Thr not tolerated probably damaging DDD Study DDD Study13

Individual 7 c.1520T>C p.Ile507Thr not tolerated probably damaging other –

Individual 8 c.977G>A p.Arg326His not tolerated probably damaging other –

Individual 9 c.868del p.Ser290Hisfs*31 NA NA other Rauch et al.41

Individual 10 c.1229_1230dup p.Thr411Leufs*10 NA NA Nijmegen –

Individual 11 c.1105dup p.Thr369Asnfs*14 NA NA Nijmegen –

Individual 12 c.865�2A>G p.? NA NA Nijmegen –

Individual 13 c.1600dup p.Arg534Profs*13 NA NA other –

Individual 14 c.269dup p.Ser90Argfs*8 NA NA Nijmegen –

Individual 15 c.1440A>T p.Arg480Ser not tolerated probably damaging Nijmegen –

Individual 16 c.873C>A p.Tyr291* NA NA Nijmegen –

Individual 17 c.1693C>T p.Gln565* NA NA Nijmegen –

Individual 18 c.1535_1536del p.His512Argfs*5 NA NA DDD Study –

Individual 19 c.766�1G>C p.? NA NA other –

Individual 20 c.599dup p.Tyr200* NA NA USA –

Individual 21 c.1321del p.Asp441Ilefs*3 NA NA USA –

Individual 22 c.1383dup p.Tyr462Ilefs*3 NA NA USA –

Individual 23 c.1384_1385dup p.His463Thrfs*34 NA NA USA –

Individual 24 c.1535_1536del p.His512Argfs*5 NA NA USA –

Individual 25 c.1541T>C p.Ile514Thr not tolerated probably damaging USA –

Individual 26 c.704T>C p.Leu235Pro not tolerated probably damaging USA –

Individual 27 c.1175T>C p.Leu392Pro not tolerated probably damaging USA –

Individual 28 c.1463G>A p.Arg488His not tolerated possibly damaging USA –

Individual 29 c.1126C>T p.Arg376Cys not tolerated probably damaging USA –

Individual 30 c.1250A>C p.Gln417Pro not tolerated probably damaging USA –

Individual 31 c.698C>T p.Ala233Val not tolerated probably damaging DDD Study –

Individual 32 c.931C>T p.Arg311* NA NA DDD Study –

Individual 33 c.46-2A>C p.? NA NA DDD Study –

Individual 34 c.1678_1680del p.Leu560del NA NA DDD Study –

Individual 35 c.1423C>G p.Arg475Gly not tolerated probably damaging DDD Study –

Individual 36 c.46-2A>G p.? NA NA DDD Study –

Individual 37 c.1703C>T p.Pro568Leu not tolerated probably damaging DDD Study –

Individual 38 c.1526A>T p.Asn509Ile not tolerated probably damaging DDD Study –

(Continued on next page)
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Table 1. Continued

Nucleotide Change
(GenBank:
NM_001356.4) Amino Acid Change SIFT PolyPhen-2 Cohort

Previously
Reported

Males

Family 1 c.1084C>T p.Arg362Cys not tolerated probably damaging – –

Family 2 c.1052G>A p.Arg351Gln not tolerated possibly damaging – Hu et al.7

Family 3 c.898G>T p.Val300Phe not tolerated probably damaging – –

‘‘Other’’ indicates additional females with de novo DDX3Xmutations collected from different diagnostic centers in the Netherlands, Belgium, Germany, Italy, and
Canada.
cellular processes, such as cell cycle control, apoptosis, and

tumorigenesis.22,23 It is also thought to be an essential fac-

tor in the RNAi pathway24 and it is a key regulator of the

Wnt/b-catenin pathway, acting as a regulatory subunit of

CSNK1E and stimulating its kinase activity.25

Notably, of the 35 different de novo variants, 19 alleles

are predicted to give a loss-of-function effect. Antisense-

based knockdown of the DDX3X-ortholog PL10 in zebra-

fish (72% identical, 78% similar) is already described and

shows a reduced brain size and head size in zebrafish em-

bryos at 2 days postfertilization (dpf).13 The missense

changes in affected females were located in the same pro-

tein domain as the missense changes in affected males,

so we explored the pathogenic mechanisms accounting

for the differences in disease transmission and phenotype

between affected females and affected males with DDX3X

missense variants. We therefore employed a combination

of in vitro and in vivo assays based on the known role of

DDX3X in the regulation of Wnt/b-catenin signaling.25

Wnt signaling is a critical developmental pathway;

the zebrafish is a tractable model in which to study Wnt

output26–31 and to interrogate alleles relevant to neurocog-

nitive traits.32 We tested several representative missense

variants, including the female-specific de novo vari-

ants c.641T>C (p.Ile214Thr), c.977G>A (p.Arg326His),

c.1126C>T (p.Arg376Cys), c.1520T>C (p.Ile507Thr), and

c.1601G>A (p.Arg534His) as well as the inherited variants

c.898G>T (p.Val300Phe), c.1052G>A (p.Arg351Gln), and

c.1084C>T (p.Arg362Cys) identified in males. A variant

from the Exome Variant Server (c.586G>A [p.Glu196Lys])
The Amer
was chosen as a negative control (rs375996245; MAF <

0.002).

We first tested whether the missense variants identified

in our ID cohort resulted in dominant effects by overex-

pressing either WT or mutant DDX3X human transcript

in zebrafish embryos and examining the phenotype. Ze-

brafish (Danio rerio) were raised and mated as described.33

Embryos from ZDR strain fish were injected into the

yolk with 1 nl of solution containing mRNA at the 1- to

2-cell stage using a Picospritzer III microinjector (Parker).

The wild-type (WT) human DDX3X open reading frame

(ORF) construct was obtained from the Ultimate ORF

Collection (LifeTechnologies; clone ID: IOH13891),

sequenced fully, and sub-cloned into the pCS2þ vector

using Gateway LR clonase II- mediated cloning (LifeTech-

nologies). Capped mRNA was generated using linearized

constructs as a template with the mMessage mMachine

SP6 transcription kit (LifeTechnologies). Injection of 100

pg of WT or mutant DDX3X transcripts did not produce

a discernible phenotype at 36 hr postfertilization (hpf)

(n¼ 50–75 embryos/injection; repeated twice withmasked

scoring; Figure S3A) or at 72 hpf (not shown). To corrobo-

rate these data in a different system, we used a mammalian

cell-based assay of canonical Wnt signaling (TOPFlash).34

In brief, HEK293T cells and mouse L-cells (both control

and WNT3A expressing) were grown in 10% FBS/DMEM.

WNT3A-containing media was prepared by incubating

confluent L-cells with serum-free media for 24 hr and

removing and filtering the media. This was subsequently

used to stimulate transfected HEK293Tcells. HEK293Tcells
Figure 1. Location of Amino Acid Substi-
tutions in DDX3X
Schematic view of DDX3X with the 15
different amino acid substitutions (and
one in-frame deletion) found in affected
females and the 3 different amino acid sub-
stitutions found in affected males. DDX3X
consists of two subdomains: a helicase
ATP-binding domain and a helicase C-ter-
minal domain. All amino acid substitu-
tions found in affected females are located
within these two protein domains. The
three amino acid substitutions found in
affected males are all located within the
helicase ATP-binding domain.
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Table 2. Clinical Features of Females with De Novo DDX3X
Mutations

Percentage Number

Development

Intellectual disability or developmental delay 100% 38/38

Mild or mild-moderate disability 26% 10/38

Moderate or moderate-severe disability 26% 10/38

Severe disability 40% 15/38

Developmental delay 8% 3/38

Growth

Low weight 32% 12/38

Microcephaly 32% 12/38

Neurology

Hypotonia 76% 29/38

Epilepsy 16% 6/38

Movement disorder (including spasticity) 45% 17/38

Behavior problems 53% 20/38

Brain MRI

Corpus callosum hypoplasia 35% 13/37

Cortical malformation 11% 4/37

Ventricular enlargement 35% 13/37

Other

Skin abnormalities 37% 14/38

Hyperlaxity 37% 14/38

Visual problems 34% 13/38

Hearing loss 8% 3/38

Cleft lip or palate 8% 3/38

Precocious puberty 13% 5/38

Scoliosis 11% 4/38
at a density of 1 3 104 cells/well on 24-well plates were

transfected with 1.025 mg total of DNA containing 0.5 mg

of pGL4.18 TOPFLASH vector, 25 ng of renilla luciferase

plasmid (pRL-SV40), and 0.5 mg of pCS2þ with or without

DDX3X using XtremeGene9 (Roche). After 24 hr the me-

dia was removed and replaced with serum-free media

collected as above from L-cells with and without WNT3A

(MIM: 606359). After 24 hr, cells were harvested and

luciferase activity measured by the Dual-Luciferase Re-

porter Assay System (Promega). Results were normalized

internally for each well to renilla luciferase activity and

then to the unstimulated wells (conditioned with control

L-cell media). Consistent with the in vivo result, transfec-

tion of expression constructs harboring DDX3X variants

did not differ from WT in the modulation of WNT3A-

b-catenin mediated luciferase activity (Figure S3B; tripli-

cate wells with 3–5 biological replicates). Taken together,

our results suggest that neither the female nor the male
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DDX3X variants produce detectable dominant changes

in the context of Wnt signaling. These results are in line

with the high number of de novo truncating mutations

in females, suggesting haploinsufficiency as themost likely

pathogenic mechanism. As a consequence, we pursued a

loss-of-function paradigm.

Previous studies have shown that co-expression of a

canonical Wnt ligand and DDX3X is necessary to produce

a phenotype in vivo.25 Expression of either of the canoni-

cal Wnt ligands WNT3A orWNT8A (MIM: 606360) results

in ventralization of zebrafish embryos that ranges from

mild (hypoplasia of the eyes, which we term class I em-

bryos) to moderate (absence of one or both eyes; class II),

severe (loss of all anterior neural structures; class III), and

radialized (class IV) phenotypes at 2 dpf.28 We recapitu-

lated these defects by injecting increasing doses of human

WNT3A or WNT8A mRNA into embryos (Figures 3A

and 3B). Full-length human WNT3A and WNT8A ORFs

were cloned into pCS2þ from the Ultimate ORF Collec-

tion (Clone ID WNT8A: IOH35591; Clone ID WNT3A:

IOH80731). The WNT3A clone required site-directed

mutagenesis to introduce a stop codon using primers

(50-ctgcaaggccgccaggcacTAGGGTGGGCGCGCCGA-30 and
its reverse complement). We selected a dose of WNT3A

mRNA (200 fg), which produced a modest effect (15%–

20% class IþII embryos, no class III or IV) and we co-

injected it with progressively increasing concentrations

of human DDX3X mRNA. At 2 dpf, we observed a dose-

response curve concomitant with increasing doses

of DDX3X (Figure 3D). At low doses of mutant DDX3X

(15–20 pg/embryo), the ventralization phenotype pro-

duced by WNT3A is exacerbated, producing 40%–50%

class IþII embryos, with a greater percentage in class II

(10%–15%), indicative of augmented severity (Figure 3D).

Because of the significant (p < 0.0001) augmentation of

WNT3A-mediated ventralization at 15 pg of DDX3X, we

next used this combination of doses to test the effect of

the missense alleles on Wnt signaling. WNT3A mRNA

(200 fg) was co-injected with 15 pg of WT or variant

DDX3X mRNA, and we scored embryos for ventralization

at 2dpf.We founddifferential effects of the variants on ven-

tralization (Figure 3E; triplicate experiments; pooled for the

final result). All de novo variants tested were significantly

different from WT (p < 0.001) and indistinguishable from

WNT3A alone, suggesting that they all confer complete

loss of function toDDX3X. By contrast, the control variant

c.586G>A (p.Glu196Lys) resulted in phenotypes similar

to WT. Notably, all three inherited variants found in the

affected males were also indistinguishable from WT in-

jected and each was statistically different from WNT3A

alone (p < 0.0001). Given this apparent dichotomization

of effect between female denovo andmale inherited alleles,

we tested whether pooling of results from the female versus

male variants would exhibit a ‘‘class effect’’ separation

between the two groups. We found this to be true; there

was significant differential effect of the gender-specific

sets of variants on Wnt signaling (Figure 3F).
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Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 7 

Individual 8 Individual 9 Individual 10 Individual 11 Individual 12 Individual 13 

Individual 14 Individual 15 Individual 16 Individual 17 Individual 18 Individual 19 

Individual 20 Individual 22 Individual 23 Individual 24 Individual 26 Individual 27 

Individual 31 Individual 32 Individual 33 Individual 34 Individual 35 Individual 37 

Figure 2. Facial Profiles of Females with
De Novo DDX3X Mutations
Facial features of 30 of 38 females with a de
novo variant in DDX3X. Common facial
features include a long and/or hypotonic
face (e.g., individuals 2, 4, 5, 12, 22, 32),
a high and/or broad forehead (e.g., individ-
uals 1, 7, 9, 23, 24, 26), a wide nasal
bridge and/or bulbous nasal tip (e.g., indi-
viduals 11, 13, 15, 16), narrow alae nasi
and/or anteverted nostrils (e.g., individ-
uals 2, 8, 9, 12, 14, 18, 24, 27, 32, 35),
and hypertelorism (e.g., individuals 5,
7, 8, 20, 27). Informed consent was
obtained for all 30 individuals shown.
The individual numbers correspond to the
numbers mentioned in Tables 1 and S1.
Taken together, our in vivo testing of the nonsynony-

mous DDX3X mutations demonstrated marked alteration

in Wnt-mediated ventralization for changes arising de

novo in affected females. Our data also reinforce the

notion that disruption of b-catenin signaling during

neurodevelopment has profound consequences. Loss of

Wnt signaling inhibits neuroblast migration, neural

differentiation, and suppression of the development of

the forebrain.35–38 Moreover, we previously reported that

mutations in b-catenin contribute to ID in humans,39,40

and mutations in d-catenin, some of which abrogate its

biochemical interaction with b-catenin, can contribute to

severe autism in females,32 strengthening further the link

between Wnt signaling and human neurodevelopmental

disorders.

DDX3X has recently been proposed as a candidate ID

gene.13,41 Our data substantiate this hypothesis and sug-

gest that mutated DDX3X is among the most common

causes of simplex cases of intellectual disability in females.

Our data also suggest that the genetic architecture of

DDX3X-mediated pathology in males is different. All
The American Journal of Human G
detected male alleles were inherited

from unaffected mothers, suggesting

either a gender-specific buffering

effect or a milder effect of those

inherited alleles on protein function.

Both our in vivo and our in vitro

studies indicate that none of the

tested alleles (male or female) confer

dominant effects and that the male

alleles are indistinguishable from WT

in our system. Given that human ge-

netics and computational predictions

support the causality of these alleles

in the families studied, we speculate

that the effect of these alleles is

beyond the dynamic range of our as-

says and thus could not be detected;

a substantially larger assay of embryos

might detect a signal, although the
transient nature of our system will always be limited at

detecting mild allele effects. Alternatively, the mechanism

of the male-derived alleles might be qualitatively different

from the de novo female variants and reflective of the

complex biology of DDX3X. Of note, we found that

increased amounts of wild-type DDX3X ameliorated the

Wnt3a-induced ventralization phenotype (Figure S4B),

an observation that we reproduced with Wnt8a, another

b-catenin-dependent ligand (Figure S4A) and our TOPFlash

reporter assay (Figure S3B). This bimodal activity of

DDX3X has been intimated previously by Cruciat et al.,

in which knockdown of DDX3X caused loss of WNT3A

signaling that was restored by transfection with WT

construct whereas overexpression alone resulted in

decreased WNT3A signaling.25 We reproduced this latter

finding when solely overexpressing DDX3X in HEK293

cells (Figure S3B).

Summarized, these data suggest that DDX3X is dosage

sensitive and might have a differential activity in females

than in males. Contribution of the DDX3X homolog at

the Y chromosome,DDX3Y (MIM: 400010), to phenotypic
enetics 97, 343–352, August 6, 2015 349
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Figure 3. The Effect of Wild-Type and Variant DDX3X mRNA on WNT3A-Mediated Ventralization
(A–C) Zebrafish embryos at 2 dpf either uninjected (A) or injected with human WNT3Awithout (B) or with (C) human DDX3X show a
range of ventralized phenotypes. These were scored according to Kelly et al.28 as normal, class I, or class II ventralization. No injection
condition resulted in severe ventralization (class III or IV).
(D) Co-injection of WNT3A and DDX3X shows an augmentation of WNT3A-mediated ventralization with increasing dose up to 15 pg.
(E) Individual variants of DDX3X were tested for their effect on increasing WNT3A-mediated ventralization using 200 fg of WNT3A
mRNA and 15 pg of DDX3X mRNA per embryo (dose of maximal response from D). Scoring is the same as in (D). The female de
novo variants and the male familial variants are shown together. The substitution p.Glu196Lys is a rare allele from the Exome Variant
Server (EVS). The red horizontal line delineates a division between those variants that behave as ‘‘wild-type’’ (e.g., the male variants and
p.Glu196Lys) and those that do not. All female de novo variants are significantly different fromwild-type but not different fromWNT3A
alone. Male variants are significantly different from WNT3A alone but not different from DDX3X þ WT. *p < 0.001 compared with
WNT3A þ wild-type DDX3X co-injection. #p < 0.0001 versus WNT3A alone.
(F) Graph illustrating the effect of combining the results from the female de novo variants and comparing to the male familial variants
and to the p.Glu196Lys variant from the EVS. There is clear segregation of effect based on the source of the genetic variant. **p< 0.0001
versus WNT3A þ wild-type DDX3X. ##p < 0.0001 versus WNT3A alone. For each graph, total (n) is shown at the bottom of each bar.
variability is unlikely.42 DDX3X and DDX3Y have 92%

amino acid sequence in common14 but DDX3Y is trans-

lated only in spermatocytes and is essential for spermato-

genesis.43,44 Deletions or mutations of DDX3Y cause

spermatogenic failure but are not associated with cognitive

dysfunction or other abnormalities.44,45

In conclusion, de novo variants inDDX3X are a frequent

cause of intellectual disability, affecting 1%–3% of all so far

unexplained ID in females. Although no de novo muta-

tions were identified in males, we found missense variants

in DDX3X in males from three families with ID suggestive

of X-linked recessive inheritance. Our phenotypic read

out in zebrafish shows a gender difference in identified

variants with a loss-of-function effect of all tested de

novo mutations on the Wnt pathway. The differential

activity possibly indicates a dose-dependent effect of

DDX3X expression in the context of functional mosaic
350 The American Journal of Human Genetics 97, 343–352, August 6
females versus one-copy males, which reflects the complex

biological nature of pathogenic DDX3X variants.
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