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Abstract

Drug addiction is a serious disease with damaging effects on the brain and physical health. Despite 

the increase in the number of affected individuals, there are few effective pharmacological 

treatment options for substance use disorders. The study of the influence of an individual's genetic 

features on the treatment response may help to identify more efficacious treatment options. This 

systematic review focuses on the serotonergic system because of its relevant role in mood and 

impulse control disorders, and its contribution to the development and maintenance of drug use 

disorders. In particular, we examine the role of serotonergic genes in the response to 

pharmacotherapy for alcohol, cocaine and nicotine addiction. Current evidence suggests that 

genetic variability of the serotonergic biosynthesis enzyme tryptophan hydroxylase 2 (TPH2) and 

the serotonin transporter (SLC6A4) genes mediates the efficacy of several addiction treatments, 

such as ondansetron and disulfiram, and the antidepressants bupropion, nortriptyline and 

sertraline.
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Background

Despite being a preventable disease, drug addiction is the leading cause of disability, illness 

and health-related economic burden in the USA [1]. For instance, it is estimated that over 

$122 billion per year is lost due to decreased productivity and addiction-related behavior [2]. 

The development of addiction disorders is primarily based on motivational factors. 

Alongside the habituation to increased drug intake, prolonged drug use may affect the 

individuals' ability to cope with cravings and lead to relapse following abstinence [3]. 
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Therefore, there is a need for efficacious treatments that break the cessation and relapse 

cycle, and inhibit impulsive drug-seeking behaviors.

The understanding of the neurochemical mechanisms implicated in drug use disorders is 

essential for the development of novel treatments for addiction. Abused drugs have a potent 

effect on the brain reward mechanisms and on neurotransmitter systems, such as serotonin 

(5-hydroxytryptamine; 5-HT), dopamine (DA) [4] and opioid [5]. Drugs, such as alcohol, 

nicotine and psychostimulants alter the activity of the 5-HT, DA [6] and opioidergic systems 

[7]. In particular, abnormally low 5-HT levels increase the risk for vulnerability to develop 

mood disorders and increase reward seeking behaviors, as well as contributing to the 

maintenance of addictive behaviors [8]. In this review, first we will describe the serotonergic 

system given the relevant role of serotonin within the brain reward network and, second, we 

will systematically search the literature for papers illustrating the role of variants of 

serotonergic receptor genes in the pharmacologic treatment of alcohol, cocaine and nicotine 

use disorders. In a previous review, we systematically examined the role of variation in the 

opioid system in the treatment of drug-use disorders [9].

Serotonergic system

Dysregulation of the serotonergic system has been found to be associated with mood 

disorders, suicidality, impulsivity and substance-related disorders [10]. The majority of the 

serotonergic neurons of the central nervous system originate in the raphe nucleus of the 

brain stem and project throughout the entire brain [14]. The precursor of serotonin, L-

tryptophan, is obtained via dietary intake and is transported into the brain via the blood–

brain barrier. The synthesis of serotonin occurs via the hydroxylation of L-tryptophan to 5-

hydroxytryptophan (5-HTP) by the biosynthesis enzyme tryptophan hydroxylase. 5-HTP is 

subsequently decarboxylated to serotonin (5-HT) [11].

Tryptophan hydroxylase is the rate-limiting enzyme in the production of serotonin [12] and 

is encoded by the TPH2 and TPH1 genes. TPH2 is localized to chromosome 12q21.1 and is 

the major isoform expressed in the brain [13]. Substance use disorders have been associated 

with a synonymous variant 1125A>T (rs4290270) in exon 9 of TPH2 and an intron 7 variant 

of TPH1 [14,15]. The TPH2 variant 1125A>T (rs4290270) has been demonstrated to be a 

marker for allelic imbalance with the T allele being expressed at twice the level of the A 

allele [16]. As a result, individuals with a TT genotype may produce more serotonin than do 

A-allele carriers.

In the brain, 5-HT is released into the synaptic cleft following membrane depolarization 

where it binds to pre- and postsynaptic serotonergic receptors. Synaptic serotonin levels are 

regulated by reuptake by the serotonin transporter (5-HTT) that is located in the presynaptic 

terminal of serotonergic neurons [13]. 5-HTT is encoded by the SLC6A4 gene that is situated 

on chromosome 17q11.2. There is a trial-lelic variable number tandem repeat 

polymorphism, 5-HTTLPR [17] in the promoter region of this gene. Two common forms of 

this polymorphism are the long (L) version containing 16 repeats of 20–23 nucleotides and 

the short (S) version containing 14 repeats. The L allele has higher transcriptional activity 

than does the S allele [17]. An A–G transition (rs25531) is found within the L allele of the 5-
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HTTLPR. The G form of the allele has lower transcriptional activity and its expression is 

similar to that of the S allele [18,19]. The two low-expressing alleles (LG and S) are often 

referred to as S′, while the higher activity LA allele is referred to as L′. If the rs25531 

variation was not assessed, L is used for the LA and LG alleles. Another serotonin 

transporter variant, rs1042173, is located in in a putative microRNA binding and 

polyadenylation signal site in the 3' untranslated region (3_UTR) of the 5-HTT gene. 

Constructs with the rs10421731 G allele expressed higher mRNA and protein levels in 

cellular transfection assays than did T allele constructs [20].

Drug use disorders & the serotonergic system

The most investigated neurotransmitters associated with drug use disorders are the 5-HT and 

the DA systems. In particular, postsynaptic 5-HT1A and 5-HT2A receptors enhance 

mesocorticolimbic DA activity via their action on ventral tegmental area neurons [21]. 

Similarly, 5-HT1B and 5-HT2C postsynaptic receptors situated in the ventral tegmental area 

inhibit the release of GABA and lead to enhanced mesocorticolimbic DA release. Binding of 

5-HT to the 5-HT2C receptor increases synaptic DA levels further regulates DA exocytosis 

and DA neuronal firing [22] and is centrally involved in cocaine seeking behavior in rodents 

[23]. Drugs of abuse such as cocaine block the functioning of the 5-HT, DA and 

norepinephrine transporters, leading to increased levels of their respective neurotransmitters 

[24]. In addition, 5-HT2A receptor antagonists blocks cocaine sensitization while 5-HT2A 

agonists amplify the stimulant effects of cocaine [25]. In summary, 5-HT modulates DA 

release and plays a large role in the development of drug use disorders.

Literature search

Scopus (all databases) and PubMed were systematically searched with no language or year 

restrictions up to August 2014 for research articles addressing the relationship among gene 

polymorphism, pharmacogenetics, serotonin and response. Selected search terms were 

`serotonin,' `gene,' `polymorphism,' `substance abuse,' `treatment' and `response' occurring 

either anywhere in the article (for PubMed) or in the case of Scopus, in the title, abstract or 

keywords only. Inclusion was restricted to studies with clinical populations suffering from 

addictive disorders, such as substance use and dependence for drugs of abuse, that 

investigated gene polymorphisms, and reported specific measures of treatment response. 

Excluded studies were those using animal models, clinical populations with mood disorders 

and clinical trials with psychotropic drugs. All data were extracted by three nonblinded 

reviewers (IB, DG and DN) to determine if studies met inclusion criteria and, in cases where 

this information was not provided in the abstract, full text was obtained. All papers 

identified were published in English. Duplicates, review articles and articles not fulfilling 

the search criteria were removed (Figure 1). Table 1 summarizes the findings of the eight 

studies included in this systematic review. Figure 1.
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Alcohol

Ondansetron

The 5-HT3 receptor antagonist ondansetron is effective in inhibiting heavy drinking 

behaviors in those with early-onset alcoholism. The advantages of this treatment include 

mood enhancing and anticraving properties [26]. There is strong evidence that ondansetron-

treated patients experience longer periods of abstinence and reduced alcohol consumption 

compared with individuals on a placebo treatment. Furthermore, 5-HTTLPR L′L′ 

homozygous subjects respond better to ondansetron in terms of reduced alcohol 

consumption and increased abstinence duration than did those with at least one S′ allele 

[27]. In addition, the genetic variant rs1042173 in the 3'UTR of the 5-HTT gene has been 

linked to increased response to ondansetron. In particular, subjects with the 5-HTTLPR L′L′ 

and the rs1042173 TT 3′UTR genotype pattern treated with ondansetron consumed less 

alcohol and experienced extended abstinence periods compared with those without this 

genotype pattern.

A recent study investigated treatment response to ondansetron in relation to 18 common 

polymorphisms in the 5-HTR3A (HRT3A) and 5-HTR3B (HTR3B) genes [28]. The authors 

reported that patients carrying one or more of the genotypes rs1150226-AG or rs1176713-

GG (in HTR3A), rs17614942-AC (in HTR3B) or rs1042173-TT (in SLC6A4) is predictive of a 

reduced number of daily drinks and enhanced abstinence in ondansetron-treated alcohol-

dependent individuals. Seneviratne et al. compared the effects of an 11-week ondansetron 

treatment on the severity of drinking in those carrying the LL genotype compared with the 

LS/SS genotypes of the 5-HTT gene [29]. Only in those with the 5-HTTLPR L′L′ genotypes 

was drinking severity found to be associated positively with 5-HTT mRNA levels in white 

blood cells. The decreased drinking severity found in ondansetron-treated L′L′ homozygotes 

may be linked to a decrease in 5-HTT mRNA levels. The authors concluded that these two 

markers, 5-HTTLPR genotype and 5-HTT mRNA levels, may assist in predicting treatment 

response to ondansetron.

Sertraline

Another treatment option for alcohol use disorders is sertraline, a selective serotonin 

reuptake inhibitor. One study has shown that late-onset 5-HTTLPR L′L′ homozygous 

subjects responded better to sertraline than did S′-allele carriers [30]. A follow-up study on 

the same cohort [31] found that the beneficial effect of sertraline on alcohol consumption 

persisted for 3–6 months in the late-onset alcohol users with the L′L′ genotype, but was not 

maintained in the S′ carriers.

Kenna et al. investigated the effects of sertraline and ondansetron on alcohol use and found 

that untreated alcohol-dependent 5-HTTLPR LL subjects drank less alcohol when treated 

with ondansetron or sertraline compared with individuals carrying a 5-HTTLPR S allele 

[32]. By comparison, sertraline did not lead to beneficial effect in either group. Hence, 

treatment response to ondansetron and sertraline may be driven by the high-activity 5-

HTTLPR L allele.
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Cocaine

Disulfiram

Disulfiram has been shown to be an effective treatment for alcohol disorders and cocaine 

addiction [33–38]. Clinical evidence indicates that this treatment reduces cocaine cravings 

[39,40], possibly by increasing DA levels and decreasing central and peripheral 

norepinephrine levels [41,42]. Disulfiram-treated cocaine addicts carrying the TPH2 

rs4290270 low-activity A allele have been shown to be better treatment responders than TT 

homozygous individuals [43]. This suggests that individuals who produce less serotonin 

exhibit a better response to disulfiram than those with a more efficient serotonergic 

metabolism. The same study showed that the 5-HTTLPR S′-allele carriers had fewer 

cocaine-positive urines over the course of the interventional study than did L′L′ 

homozygous subjects [43]. This suggests that cocaine-dependent S′ carriers respond better to 

disulfiram [44–46] than L'L' subjects. Neuroimaging findings show that the S′ carriers of the 

5-HTT (SLC6A4) gene display abnormalities in functional activation in the amygdala in 

response to emotional stimuli [47]. Further S-carrier individuals have been shown to be at 

greater risk to develop depression and have more suicidal tendencies when exposed to 

stressful situations [17–19,48,49]. Thus, disulfiram appears to be more effective in S 

carriers, who may have increased vulnerability to emotional distress and substance abuse.

Nicotine

Quaak et al.'s study on the effects of the antidepressants bupropion and nortriptyline on 

smoking cessation found a strong relationship between three variants of the 5-HTT gene 

SLC6A4 (5-HTTLPR, STin2 and rs25531) and nicotine consumption [50]. Bupropion-

treated individuals carrying the high-activity 5-HTTLPR L′ allele displayed better long-term 

cessation rates than did placebo-treated subjects. Nortriptyline-improved abstinence rates 

but results were not statistically significant. The presence of the high-activity alleles L′ (for 

5-HTTLPR), STin2.12 (for STin2) and the A-rs25531 allele led to enhanced cessation and 

abstinence rates in response to bupropion and nortriptyline. The inhibition of tobacco 

cravings may be associated with the inhibitory action of bupropion and nortriptyline on 

mechanisms of action of the serotonin transporter and reuptake of serotonin. The authors 

argued that, although bupropion acts as a dopamine and norepinephrine reuptake inhibitor, 

its action on norepinephrine may lead to an increase in the firing rate of serotonergic 

neurons.

Conclusion

The serotonergic and dopaminergic systems play important roles in the development and 

maintenance of substance abuse and in relapse following abstinence. Within this context, 

this review illustrates how variants in the serotonergic biosynthetic enzyme tryptophan 

hydroxylase (TPH2) and the 5-HTT SLC6A4 genes moderate response to treatments for 

substance use disorders, such as disulfiram, ondansetron, sertraline and the a ntidepressants 

bupropion and nortriptyline.
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It becomes apparent that there are a lack of studies that focus on the role of genetic variation 

in genes coding for the serotonergic receptors in addiction pharmacotherapy. Among the 

eight articles reviewed here (Table 1) the first three were from the same sample, the fifth and 

sixth articles were from another sample and the fourth was from a sample of only 15 

subjects. This high degree of overlap, combined with a single article covering cocaine 

dependence and one on nicotine dependence shows that this research area is still in its 

infancy. Further, only one longitudinal study [31] has examined the association between 

treatment response and serotonergic genetic variants over time. Another methodological 

limitation of the studies reviewed here is related to the demographics of the populations. 

Most of the subjects were living in the USA and Europe, with a large majority in middle to 

early adulthood and being males. The frequencies of many polymorphisms vary by ethnicity 

making it essential to evaluate the majority of e thnicities found in the general population as 

well as to control population structure in the subsequent analyses.

In the last decade a number of initiatives have attempted to integrate pharmacogenomics 

data into the development of pharmacotherapies as well as in clinical practice [51]. For 

example, new guidelines have recently been developed to adjust the dosage of the 

antidepressant amitriptyline [52] and the antipsychotic aripiprazole [53] based on the 

presence of polymorphisms in the CYP2D6 and CYP2C19 genes. However, data cannot be 

easily translated into medical decision making given the inconsistencies in the literature and, 

as such, potential guidelines should be considered as optional.

In conclusion, addiction pharmacogenetics is a promising field and additional research is 

needed to identify genes and variants that predict the success of treatments, their clinical 

outcomes and potential side effects.

Future perspective

One could expect that inconsistencies in the literature will be addressed by providing 

specific scientific and ethical guidelines for the conduct of clinical trials in 

pharmacogenetics, by agreeing on levels of evidence that would define whether a finding 

can be used as a clinical decision-making tool, and by encouraging closer collaboration and 

communication among researchers and health professionals. Further, given that serotonergic 

gene variants mediate the efficacy of several addiction treatments, future studies should 

focus on investigating the physiological response associated with a wide range of 

polymorphisms to predict adverse side effects and treatment oucomes. Additionally, one can 

envisage that in the next 5 to 10 years clinical trials will start testing the effectiveness of i 

ndividualized drug addiction treatments.
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Executive summary

• Pharmacogenetics is a promising field that has the potential to improve patient 

care and reduce healthcare costs related to drug addiction.

• Genetic variability of the serotonergic biosynthesis enzyme tryptophan 

hydroxylase 2 (TPH2) and the serotonin transporter (SLC6A4) genes mediates 

the efficacy of several addiction treatments, such as ondansetron, disulfiram and 

the antidepressants bupropion, sertraline and nortriptyline.

• More research is needed to identify additional serotonergic gene variants that 

predict the success of treatments, their clinical outcomes and potential side 

effects of therapeutic interventions for drug addiction.
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Figure 1. 
PRISMA flowchart showing the filtering process used to select the eight studies included in 

the systematic review of studies investigating the relationship between variants of 

serotonergic receptors gene and treatment response in substance use pharmacotherapy.
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