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A Functional SNP in BNC2 Is Associated
with Adolescent Idiopathic Scoliosis
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Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity. We previously conducted a genome-wide association study

(GWAS) and detected two loci associated with AIS. To identify additional loci, we extended our GWAS by increasing the number of

cohorts (2,109 affected subjects and 11,140 control subjects in total) and conducting a whole-genome imputation. Through the

extended GWAS and replication studies using independent Japanese and Chinese populations, we identified a susceptibility locus on

chromosome 9p22.2 (p ¼ 2.46 3 10�13; odds ratio ¼ 1.21). The most significantly associated SNPs were in intron 3 of BNC2, which

encodes a zinc finger transcription factor, basonuclin-2. Expression quantitative trait loci data suggested that the associated SNPs

have the potential to regulate the BNC2 transcriptional activity and that the susceptibility alleles increase BNC2 expression. We

identified a functional SNP, rs10738445 in BNC2, whose susceptibility allele showed both higher binding to a transcription factor,

YY1 (yin and yang 1), and higher BNC2 enhancer activity than the non-susceptibility allele. BNC2 overexpression produced body

curvature in developing zebrafish in a gene-dosage-dependent manner. Our results suggest that increased BNC2 expression is implicated

in the etiology of AIS.
Adolescent idiopathic scoliosis (AIS) is defined by lateral

spinal curvature with a Cobb angle of at least 10� that

occurs in otherwise healthy children from the age of 10

to the end of the pubertal growth spurt.1 AIS affects

2%–3% of adolescents worldwide.1 Female preponderance

of AIS has been described;2 the prevalence of AIS in females

with Cobb angles>10� and>20� is 11 and 20 times higher,

respectively, than that in males with Cobb angles >10�

and >20�.2 A multifactorial etiology with a polygenic

component has been suggested.3,4 The heritability of AIS

is estimated as 87.5%, and is higher for females than for

males, in a previous study examining first-degree rela-

tives.5 A female-specific gene associated with AIS, PAX1

(MIM: 167411), has been reported recently.6

We previously conducted a genome-wide association

study (GWAS) of Japanese females (1,033 affected subjects

and 1,473 control subjects) and identified two loci on

chromosomes 10q24.317 and 6q24.1.8 The association of
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these loci with AIS was replicated in Chinese and

Caucasian populations;9–11 however, these loci only

explain ~1% of the total genetic variance in AIS.8

To identify additional susceptibility gene(s) for AIS, we

extended our GWAS by increasing the numbers of subjects

(Table S1) and conducting a whole-genome imputation. A

total of 2,142 AIS-affected subjects were recruited for the

GWAS from ten collaborating hospitals (Japanese Scoliosis

Clinical Research Group), according to the criteria previ-

ously described.7,8,12 All underwent clinical and radiologic

examinations by expert scoliosis surgeons. 11,144 control

subjects for the GWAS were drawn from the BioBank Japan

Project (see Web Resources) and its related projects, as pre-

viously described.13–15 The study was approved by the

institutional review boards of RIKEN and participating

hospitals. A written informed consent was obtained from

all participants and/or guardians on the behalf of the

minors and/or children participants.
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Table 1. Association of rs3904778 with Adolescent Idiopathic Scoliosis

Population Study

Number of Samples RAF

p Valuea

Odds Ratio

Affected Control Affected Control (95% CI)

Japanese GWAS 2,109 11,140 0.459 0.414 2.10 3 10�7 1.20 (1.12–1.28)

replication 955 3,551 0.476 0.424 4.46 3 10�5 1.23 (1.12–1.37)

Japanese combined 3,064 14,691 – – 5.08 3 10�11 1.21 (1.14–1.28)

Chinese replication 1,268 1,173 0.429 0.384 1.14 3 10�3 1.20 (1.07–1.35)

Allb all combined 4,332 15,864 – – 2.46 3 10�13 1.21 (1.15–1.27)

Abbreviations are as follows: RAF, risk-allele frequency; CI, confidence interval.
aCockran-Armitage trend test.
bJapanese and Chinese.
We genotyped 1,289 AIS-affected subjects and 3,345

control subjects by using the Illumina Human610

Genotyping BeadChip and Illumina HumanHap550v3

Genotyping BeadChip and 853 AIS-affected subjects and

7,799 control subjects by using the Illumina Human

OmniExpress Genotyping BeadChip and Illumina Human

Exome Genotyping BeadChip (Table S1). Quality-control

measures have been described previously.7 For quality con-

trol of the samples, we checked gender information by us-

ing SNPs on the X chromosome and evaluated cryptic

relatedness for each sample with the identity-by-state

method and removed samples that showed second-degree

relatedness or closer. To check population stratification of

this study, we performed principal-component analysis

(PCA) with four reference populations from the HapMap

data: CEU (Utah residents with ancestry from northern

and western Europe from the CEPH collection), YRI

(Yoruba in Ibadan, Nigeria), JPT (Japanese from Tokyo,

Japan), and CHB (Han Chinese from Beijing, China) (Fig-

ures S1A and S1B). We plotted the scatter plot by using

the top two associated principal components (eigenvec-

tors) to identify outliers who did not belong to the JPT

and CHB cluster. Subsequently, we performed PCA by

using only the genotype information of the affected and

control subjects to further evaluate the population sub-

structure (Figures S1C and S1D). After quality-control

filtering, 458,596 SNPs in the Illumina Human610 Geno-

typing BeadChip and 605,478 SNPs in the Illumina Hu-

man OmniExpress Genotyping BeadChip were examined

for association. We checked for possible population-strati-

fication effects by constructing a quantile-quantile (Q-Q)

plot using observed p values against expected p values

(Figure S2) and obtained genomic inflation factors

(l-value) of 1.06 and 0.97 in each platform, respectively,

implying that the possibility of false-positive associations

due to population structure or cryptic relatedness was low.

Because the tag SNPs involved in the two platforms were

different, we performed a whole-genome imputation and a

meta-analysis. In brief, we used the 1000 Genomes Inte-

grated Phase I release version 2 dataset of East Asian popu-

lations (JPT, CHB, and CHS [Southern Han Chinese]) as a

reference panel to infer missing genotypes. After quality
338 The American Journal of Human Genetics 97, 337–342, August 6
control, we prepared the input files, which excluded

SNPs with a genotyping rate of <99% and a MAF

of <0.01 and those that deviated from Hardy-Weinberg

equilibrium (p % 1.0 3 10�6). We also excluded SNPs

whose allele frequencies had differences of >0.16 between

the GWAS dataset and the reference panel. We used SNPs

with an imputation quality score Rsq (R-square) R 0.9

for the association study. The associations of the imputed

SNPs were generated with mach2dat software, which

utilized the output results from Minimac. Combined

meta-analysis of the discovery and validation phases was

performed with the inverse-variance method; heterogene-

ity between the two phases was evaluated by the Breslow-

Day test, and SNPs with a p value < 0.05 were removed. In

total, we analyzed the association of 4,420,789 SNPs for

2,109 Japanese subjects with AIS and for 11,140 control

subjects. Three loci surpassed the genome-wide signifi-

cance level of p < 5 3 10�8; the two previously identified

loci on 10q24.317 and 6q24.18 topped the list (Table S2).

To confirm the association of the loci, we recruited an

independent set of 958 AIS-affected subjects from the

collaborating hospitals and 3,551 control subjects (Table

S1) and conducted a replication study. We selected 27

SNPs that surpassed p < 1.0 3 10�5 in the GWAS (Table

S2) and genotyped the subjects with a multiplex PCR–

based Invader assay (Third Wave Technologies), as previ-

ously described.8 In the replication study, we found

evidence for association with one locus represented by

the SNP, rs3904778, on chromosome 9p22.2 and with a

p value of 4.46 3 10�5 (Bonferroni-corrected p < 1.85 3

10�3; Table 1).When the results of the GWAS and the repli-

cation study were combined, rs3904778 reached a

genome-wide significance threshold of p < 53 10�8 (com-

bined p ¼ 5.08 3 10�11; odds ratio [OR] ¼ 1.21, 95% con-

fidence interval ¼ 1.14–1.28; Table 1).

To further test this association, we genotyped rs3904778

in a Han Chinese population recruited by the Nanjing

Drum Tower Hospital, affiliated with the Nanjing Univer-

sity Medical School. AIS-affected subjects were diagnosed

through clinical and radiological examinations according

to the previously described criteria.8 The control subjects

were healthy volunteers whose absence of scoliosis was
, 2015



Figure 1. Regional Association Plot for the BNC2 Locus on 9p22
The�log10 (p value) of SNP association with adolescent idiopathic
scoliosis was plotted against the chromosome positions (NCBI
build 37) with LocusZoom software. The recombination rate
estimate (blue line) is based on East Asian genotype data from
1000 Genomes. The SNP with the highest association signal
(rs3904778) is represented by a purple circle. Other SNPs are
colored according to their linkage disequilibrium (r2) with
rs3904778. The most significantly associated SNPs are clustered
in intron 3 of BNC2.
confirmed through the Adam’s forward bend test by an

experienced spinal surgeon of the hospital (Y.Q.; Table

S1). We genotyped 1,268 affected subjects and 1,173 con-

trol subjects by using a TaqMan SNP Genotyping Assay

read with an ABI PRISM 7900HT Sequence Detection

System (Applied Biosystems). The association was repli-

cated in the Chinese population. The p value of the overall

meta-analysis was 2.46 3 10�13 and the OR was 1.21

(Table 1).

To characterize the locus on chromosome 9p22.2, we

plotted, genotyped, and imputed SNPs around rs3904778

(Figure 1). Three additional SNPs yielded evidence for

association and were strongly correlated (r2 R 0.9)

with rs3904778 (Table S3). All of these SNPs were located

in intron 3 of BNC2 (basonuclin-2 [MIM: 608669];

Figure 1).

BNC2 is a highly conserved protein that belongs to the

group of C2H2 zinc finger proteins. Mouse BNC2 has

97.0% amino-acid identity with human BNC2, and zebra-

fish Bnc2 has 60.8% identity.16 BNC2 is concentrated in

the nuclear speckles, suggesting a function in nuclear

processing of mRNA.17 In mice, Bnc2 expression has

been observed in the craniofacial bones, ovary, uterus,

and brain.18–20 In zebrafish, bnc2 expression has been

observed in the ovary and CNS, namely the sensory

ganglia, hindbrain, and eyes.21 However, BNC2 expression

in human musculoskeletal tissues had not previously been

explored. Therefore, we examined the expression of BNC2

mRNA by using qRT-PCR in various human tissues (Table

S4). We found that BNC2 was most highly expressed in

the uterus and spinal cord, followed by bone and cartilage

(Figure S4).

We investigated possible functional effects of the associ-

ated SNPs by cross-referencing expression quantitative
The Amer
trait locus (eQTL) data for the locus of chromosome

9p22.2 with the Genevar (Gene Expression Variation) data-

base.22 Only rs10738445 was found in the database of

fibroblast experiments, and its susceptibility allele signifi-

cantly increased BNC2 expression (p ¼ 0.048 [Mexican

population in Genevar]). We also evaluated the overlap

of associated SNPs with Encyclopedia of DNA Elements

(ENCODE)-annotated genomic elements by using the

UCSC Genome Browser. Only rs3850444 was located

within DNase-I-hypersensitive regions across multiple tis-

sues. Three SNPs had enhancer histone marks: rs3850444

and rs3904778 in H1 embryonic stem cells and NHLFs

(normal human-lung fibroblasts) and rs10738445 in hu-

man skeletal-muscle myoblasts and NHLFs. These findings

suggest that the SNPs have the potential to regulate the

transcriptional activity of BNC2.

We examined the transcriptional activity of the SNPs by

using luciferase assays. We constructed reporter vectors by

cloning oligonucleotides around each SNP (Table S5) into a

pGL3 promoter vector (Promega). HeLa cells were trans-

fected with the reporter vectors and pRL-TK vector

(Promega) by a FuGene6 transfection reagent (Promega),

according to the manufacturer’s protocol. After 48 hr incu-

bation, we compared the luciferase activities between the

constructs with risk alleles and those with non-risk alleles.

Only rs10738445 had enhancer activity and significant

allelic difference. The construct containing the risk allele

showed approximately 1.3-fold higher luciferase activity

than the construct containing the non-risk allele (Fig-

ure 2A), suggesting that the risk allele of rs10738445 is

implicated in AIS by increasing the sequences’ enhancer

activity. Experiments using other cell lines (HEK293 and

A172) yielded similar results (data not shown).

To evaluate whether the allelic difference had an effect

on rs10738445 binding, we performed an electrophoretic

mobility shift assay (EMSA) for nuclear extracts from

HeLa cells by using the DIG (digoxigenin) Gel Shift Kit,

2nd generation (Roche) and double-stranded oligonucleo-

tides (Table S5). A specific band to the oligonucleotide con-

taining the risk allele was detected (Figure 2B). Using the

JASPAR database, we looked for a transcription factor that

might have altered binding.23 We found that rs10738445

is located within a YY1 binding site and speculated that

it might have altered binding. We performed an EMSA by

using a YY1 antibody (Santa Cruz). The band specific to

the risk-allele disappeared and shifted with the addition

of an antibody against YY1 (Figure 2B). We next examined

the effects of YY1 on rs10738445 by using a luciferase

assay. We constructed a YY1 expression vector by cloning

the coding sequence into pcDNA3.1(þ). We co-transfected

rs10738445 reporter plasmids and YY1 expression plas-

mids or empty pcDNA3.1(þ) to HeLa cells. The YY1 expres-

sion vector significantly increased the luciferase activity

with significant allelic difference (Figure 2C).

To examine in vivo effects of BNC2 overexpression, we

utilized the tol2-mediated transgenesis system24,25 in

zebrafish. We PCR-amplified the BNC2 coding region
ican Journal of Human Genetics 97, 337–342, August 6, 2015 339



Figure 2. AllelicDifferenceof rs10738445
Function In Vitro
(A) Transcriptional enhancer activities of
rs10738445 constructs and pGL3 promoter
vector (�). The construct containing risk
(susceptibility)-allele (R) showed approxi-
mately 1.3-fold higher luciferase activity
than the construct containing non-risk
allele (N). *p value < 0.01 (t test). Error
bar: standard error. The experiment was
repeated three times.
(B) Electrophoretic mobility shift assay.
Unlabelled probes (a 200-fold excess) were
used as competitors. Addition of an anti-
body against YY1 resulted in the disappear-
ance of a risk-allele-specific band (arrow)
and supershift (arrowhead).
(C)Transcriptional enhancer activities of
rs10738445 constructs with and without a
YY1 expression vector. Addition of YY1
increased the luciferase activity in both
R and N. The luciferase activity was higher
in the construct containing R than in that
containing N. *p value < 0.05 (t test). Error
bar: standard error.
from a cDNA clone (IMAGE: 100069207) by using specific

primers attached to restriction-enzyme sequences (Table

S4). To generate Tol2 transgenesis constructs, p5E-bactin2,

pME-MCS BNC2 clone, and p3E-polyA were recombined

into pDest-Tol2pA2 by Gateway LR Clonase II enzyme

mix (Life Technologies). We co-injected plasmid DNA

(10 ng/ml) into one-cell-stage embryos of the RIKEN wild-

type strain (Danio rerio, provided by the National

BioResource Project of the Ministry of Education, Culture,

Sports, Science and Technology, Japan) with capped Tol2

transposase mRNA (50 ng/ml) that was synthesized with a

mMESSAGE mMACHINE SP6 Kit (Ambion). We stably

expressed BNC2 in zebrafish embryos and analyzed

founder transgenic embryos between 24 and 72 hr post-

fertilization (hpf). Overexpression of BNC2 in zebrafish

embryos resulted in body curvature to various degrees

(65%, n ¼ 150) and embryonic lethality (18%, n ¼ 41),

whereas EGFP-overexpressing control embryos underwent

normal development (Figures 3A and 3B). Most of the

abnormal embryos that were delivered with the BNC2 tran-

gene exhibited severe body curvature, and some displayed

malformation of the somite, resulting in larval death

within one week.

We next injected BNC2 mRNA into the one-cell-stage

embryos to analyze phenotypes at various doses. We

cloned the BNC2 coding sequence into pcDNA3.1, synthe-

sized capped mRNA, and injected it at doses of 10–200 pg

into the one-cell-stage embryos. Increasing doses of BNC2

mRNA were correlated with the severity of embryonic

body curvature (Figures 3C and 3D). Abnormal somite for-

mation of BNC2-overexpressing embryos was evident from

somite stages 13 to 20 (Figure S5). BNC2-overexpressing

embryos exhibited axial body curvature (Figure 3) at

24 hpf and also lacked a normal segmental expression

pattern of myod, which was expressed in the myotome

occupying a large part of the zebrafish somites (Figure S6).
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At higher doses, delayed or disturbed pigmentation

was also observed in the embryos with severe body curva-

ture (Figure 3C, arrowheads). These results suggest that

increased expression of BNC2 leads to embryonic body cur-

vature, which is likely to be relevant to scoliosis.

The mechanism behind how BNC2 causes AIS remains

to be examined. Neuropathic abnormality and abnormal

musculoskeletal growth have been implicated in the etiol-

ogy of AIS. BNC2 could play a role under either hypothesis.

We found that BNC2 is highly expressed in the spinal cord,

bone, cartilage, and, to a lesser extent, human muscle.

Mouse Bnc2 is also observed in the CNS and craniofacial

bones, and the knock-out mice are small with craniofacial

abnormalities.18–20 Knock-down zebrafish also exhibit

small size, suggesting a role of bnc2 in skeletal develop-

ment.21 Scoliosis was not observed in the knock-down

mice or zebrafish. We overexpressed bnc2 and observed

embryonic body curvature in zebrafish. Body curvature at

the early stages later develops into scoliosis in skolios, a

recessive mutant with a nonsense mutation in kinesin

family member 6.26 Further studies are necessary to

examine whether scoliosis caused by increased BNC2 is

due to neuronal and/or musculoskeletal (bone, cartilage,

and muscle) abnormality.

In summary, through an extended GWAS using ~13,000

Japanese subjects, we have identified a AIS-susceptibility

gene, BNC2. The association of the most significant SNP

in the gene was replicated in independent Japanese and

Han-Chinese populations, and the overall p value was

2.463 10�13. The highly associated SNPs were all in intron

3 of BNC2. eQTL data for the locus suggested both that the

associated SNPs have the potential to regulate the tran-

scription of BNC2 and that the susceptibility alleles have

the potential to significantly increase BNC2 expression.

In vitro studies showed that a genomic region containing

one of the significantly associated SNPs, rs10738445, had
, 2015



Figure 3. Overexpression of BNC2 in Zebrafish Embryos
(A) Embryos (24 hpf) overexpressing EGFP (control) and BNC2.
Transgenes were stably expressed by tol2-mediated transgenesis.
Ubiquitous transgene expression was confirmed by green fluores-
cence in control founder embryos (left). The BNC2 transgenic em-
bryos exhibited severe body curvature and malformation of the
somite. Scale bars, 1 mm.
(B) Quantification of developmental phenotypes of embryos over-
expressing EGFP (control) or BNC2. The percentages of the num-
ber of embryos that died by 24 hpf (lethal), had deformed somites
and body curvature (body curvature), or had no apparent abnor-
mality in the somites (normal), are shown along with the repre-
sentative images of embryos exhibiting the ‘‘normal’’ or ‘‘body
curvature’’ phenotypes. Scale bars, 300 mm.
(C) Zebrafish embryos (24 hpf) injected with increasing doses of
BNC2 mRNA. The mRNA injection caused body curvature and
severe malformation of the somites in a dose-dependent manner.
Arrowheads indicate delayed pigmentation of the embryo injected
with the mRNA at the higher doses (100 and 200 pg). Scale bars,
500 mm.
(D) Quantification of developmental phenotypes of embryos in-
jected with BNC2 mRNA. Embryos between 24 and 28 hpf were
evaluated morphologically as in (B).
an enhancer activity, which is stronger in the disease-asso-

ciated allele. YY1 binds to the genomic region containing

rs10738445 and upregulates BNC2 expression. Both bind-

ing and upregulation were stronger in the disease-associ-

ated allele of rs10738445. The zebrafish experiments

supported the hypothesis that increased BNC2 expression

predisposes individuals to AIS.
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The URLs for data presented herein are as follows:

1000 Genomes, http://www.1000genomes.org/

BioBank Japan Project, http://biobankjp.org/

ENCODE, http://genome.ucsc.edu/ENCODE/

Genevar (Gene Expression Variation), http://www.sanger.ac.uk/

resources/software/genevar/

JASPAR, http://jaspar.genereg.net/

LocusZoom, http://locuszoom.sph.umich.edu/locuszoom/

MACH 1.0, http://www.sph.umich.edu/csg/abecasis/MACH/

index.html

Minimac, http://genome.sph.umich.edu/wiki/Minimac

OMIM, http://www.omim.org/

The R Project for Statistical Computing, R v.2.13.0, http://www.

r-project.org/

UCSC Genome Browser, http://genome.ucsc.edu
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