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Abstract

The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as 

commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, 

yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our 

knowledge of immunity to Candida mainly comes from studies on C. albicans, the most frequent 

species associated with disease. However, non-albicans Candida (NAC) species also cause 

disease and their prevalence is increasing. Although research into immunity to NAC species is still 

at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways 

from non-albicans species, with important implications for treatment, therapy and predicted 

demographic susceptibility. This review will discuss the current understanding of immunity to 

NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered 

questions.

Introduction

Fungi constitute a poorly understood and comparatively under-studied (and under-funded) 

form of infectious disease. To date, there are no vaccines to any fungal pathogens, and the 

correlates of immunity are not well defined. However, fungal infections are on the rise, in 

part due to increasing populations of immunocompromised individuals [1]. Candida species 

comprise the second most frequent cause of fungal infections worldwide. The Candida 

genus contains multiple species that show considerable phylogenetic and phenotypic 

variation. Our knowledge of immunity to Candida has almost exclusively been gleaned from 

studies on C. albicans, the most common disease-causing species. However, the prevalence 

of disease caused by non-albicans Candida (NAC) species is on the rise, and our 

understanding of immunity to these species is the subject of this review.
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Immunity to C. albicans has been studied intensively over the last decade, and a general 

picture of the essential components is now accepted [2]. Broadly, C. albicans is initially 

detected by C-type lectin receptors (CLRs), such as dectin-1, expressed dominantly on 

myeloid antigen presenting cells. In addition, an important antifungal contribution of 

epithelial cells is becoming appreciated, particularly during mucosal infection. Following 

fungal encounter, responding cells produce innate immune cytokines such as TNFα and 

IL-1β. These cytokines drive innate antifungal effector responses and trigger skewing of 

adaptive T cells to dominantly Th17 and Th1 populations. The Th1 and Th17 hallmark 

cytokines, IFNγ and IL-17, in turn act on neutrophils and macrophages to further amplify 

antifungal responses. Although this model is well substantiated for C. albicans, it is much 

less clear whether a similar picture is true of immunity to NAC species.

Infections caused by Candida species

Fungi belonging to the genus Candida are normally found as commensal organisms on 

mucosal and cutaneous surfaces throughout the human body. Only a subset of species are 

associated with disease, which include C. albicans, C. glabrata, C. tropicalis, C. 

parapsilosis, C. krusei and C. dubliniensis [3, 4]. Mucocutaneous Candida infections are 

often mild or self-limiting, such as oral and vaginal candidiasis/thrush. However, these 

superficial infections can be associated with significant morbidity, such as in chronic 

mucocutaneuous candidiasis (CMC) and recurrent vaginal candidiasis. Additionally, 

Candida species cause potentially fatal systemic infection, where mortality rates are 

reported up to 80%. Candida species have also been associated with inflammatory bowel 

disease and asthma, though the link is not directly causal and is likely to be an exacerbating 

effect.

Although C. albicans remains the most frequently isolated species, the prevalence of NAC 

species is on the rise [4]. Risk factors for candidiasis vary by species. For example, C. 

glabrata is particularly associated with oral thrush in the elderly and denture wearers, 

whereas C. dubliniensis is frequently isolated from HIV+/AIDS individuals with oral thrush 

[5]. Neonates, transplant recipients and patients receiving parenteral nutrition are at 

increased risk of C. parapsilosis infection compared to other Candida species. Furthermore, 

geographical differences in Candida species prevalence are apparent. C. albicans and C. 

glabrata are prominent in North America and Europe, while C. tropicalis is typically the 

most frequently isolated Candida species in India and Latin America [6].

With the worldwide rise in fungal infections comes an increase in antifungal drug resistance 

[7]. Worryingly, antifungal drug resistance has been detected for all clinically relevant 

Candida species to some degree [6]. Moreover, the pattern of antifungal drug resistance 

differs among Candida species, making effective treatment with appropriate antifungal 

drugs challenging. A particular problem is present with C. glabrata, which is resistant to the 

most common drug classes, azoles and echinocandins [6–9].

The reasons underlying differences in Candida species prevalence and antifungal drug 

resistance are unclear. However, Candida species are heterogeneous, so understanding their 

phylogenetic differences may help to explain, and ultimately address, these disparities. The 
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most closely related species are C. albicans, C. dubliniensis and C. tropicalis whereas C. 

glabrata is more closely related to Saccharomyces cerevisiae [10]. Accordingly, the 

agglutinin-like sequence (Als) cell wall virulence genes are found in C. albicans, C. 

dubliniensis and C. tropicalis but not C. glabrata [11]. Substantial differences exist even 

among the most related Candida species. For example, Als3 is specifically expressed by C. 

albicans but not C. dubliniensis [12]. Genomic divergence among Candida species thus 

results in considerable phenotypic variation within the Candida genus.

Phenotypic differences among Candida species and consequences for 

immunity

Although Candida species cause grossly similar infections, multiple phenotypic variations 

exist, including include morphology, cellular size, cell wall composition, growth 

requirements and virulence factor composition (Table 1) [13, 14]. Each of these alterations 

may contribute to the development of a distinct immune response. Therefore, it cannot be 

assumed that a ‘one size fits all’ immune response to Candida species is operative.

Cell wall composition

The Candida cell wall is composed of an inner layer of chitin and β-1,3-glucan 

polysaccharides and an outer layer of mannans covalently associated with proteins [15, 16]. 

Many of the known pathogen-associated molecular patterns (PAMPs) derive from the cell 

wall [17], highlighting the importance of this structure in defense against Candida. Indeed, 

differences in cell wall composition and Candida recognition are known to impact the 

immune response. For example, variations in antigenic cell wall-associated proteins were 

detected among C. albicans, C. tropicalis and C. guilliermondii [18]. Moreover, a recent 

study identified a novel antigenic cell wall-associated protein of C. tropicalis, Kgd2p [19]. 

Although not tested in this study, the presence of species-specific antigenic proteins 

indicates that Candida species promote distinct immune responses. Ultrastructure analysis of 

C. glabrata versus C. albicans cell walls revealed ~50% more proteins, higher amounts of 

mannan and lower levels of total glucan in C. glabrata cell walls [20]. Conversely, C. 

albicans, C. tropicalis and C. parapsilosis contain higher chitin content than C. glabrata and 

C. krusei [21]. It has yet to be determined how or whether these cell wall differences among 

Candida species impact immunity.

Candida species morphology

C. albicans is polymorphic, existing in a unicellular yeast cells form, pseudohyphae and/or 

filamentous hyphae, and the transition between morphologies is a key virulence trait [17]. 

However, not all Candida species are polymorphic. Growth as true filamentous hyphae is 

usually associated only with C. albicans and C. dubliniensis. Some strains of C. tropicalis 

can also form true hyphae (Table 1), although many do not in vitro [22, 23]. Similarly, in 

vitro studies have shown that C. parapsilosis, C. krusei and C. glabrata do not form hyphae, 

though they have been reported to form pseudohyphae [24–27]. C. albicans can also switch 

between normal white yeast cell morphology and mating-competent opaque cell growth. 

Although white-opaque switching has been documented in other Candida species such as C. 
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dubliniensis and C. tropicalis, this morphological switch is poorly understood in NAC 

species [28, 29].

Pattern Recognition

C. albicans is recognized by different classes of PRRs. The C-type lectin receptors (CLRs) 

are the most important, and include dectin-1, dectin-2, dectin-3, mannose receptor (MR) and 

Mincle [30]. Although little is known about the PRRs involved in recognition of NAC 

species, several insights have begun to emerge.

Dectin-1 is a key antifungal receptor in host defense against C. albicans infection. Dectin-1 

recognition of C. albicans triggers phagocytosis, cytokine and chemokine production, 

reactive oxygen species (ROS) production and neutrophil extracellular trap (NET) formation 

[31, 32]. Dectin-1−/− mice display heightened susceptibility to disseminated and mucosal C. 

albicans infection, although this varies by strain of fungus and genetic background of the 

host [33–36]. Similarly, loss-of-function DECTIN1 mutations in humans are associated with 

increased Candida species colonization at mucosal surfaces and higher risk of Candida 

infection, as well as susceptibility to CMC [37, 38]. Some evidence supports a protective 

role for dectin-1 against C. tropicalis at mucosal and systemic sites. Dectin1−/− mice are 

more susceptible to colitis induced by dextran sulfate sodium (DSS) colitis, which was 

associated with resident C. tropicalis overgrowth and tissue invasion [39]. We recently 

demonstrated that Dectin1−/− mice were more susceptible to disseminated C. tropicalis 

infection than WT mice [22]. Little is known about whether dectin-1 participates in 

immunity to other NAC species, although phagocytosis of C. parapsilosis by neutrophils 

was not impaired following dectin-1 blockade in vitro [40]. Similarly, no difference in 

binding of C. glabrata was detected between WT and dectin-1−/− bone marrow 

macrophages [41].

Dectin-2 is another CLR that functions in many ways similarly to dectin-1. Dectin2−/− mice 

display increased susceptibility to disseminated C. albicans infection [42]. Concerning other 

Candida species, disseminated C. glabrata infection in Dectin2−/− mice was associated with 

a transient increase in kidney fungal burden and concomitant decreases in splenic TNFα, 

IFNγ and IL-17A production [43]. Additionally, Dectin2−/− macrophages and neutrophils 

were impaired in phagocytosis of C. glabrata, although killing was not affected [43]. 

However, given that WT or Dectin2−/− mice infected with C. glabrata do not succumb to 

disseminated infection, it is difficult to ascertain the importance of this CLR in protection 

against lethal C. glabrata infection. In contrast, Dectin2−/− mice were not impaired in their 

ability to survive a disseminated C. tropicalis infection [22]. Therefore, recognition of 

Candida species is far from uniform.

Another PRR garnering attention in the context of C. albicans infection is galectin-3. This 

soluble lectin receptor is found in many cell types, and possesses direct antifungal activity 

[44]. Lgals3−/− mice display increased mortality following disseminated C. albicans 

infection [45], demonstrating a role in antifungal immunity in vivo. Galectin-3 also appears 

to be involved in immunity to several NAC species. Both C. albicans and C. tropicalis were 

shown to induce secretion of galectin-3 by human gingival epithelial cells [46]. Moreover, 
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galectin-3 directly kills C. albicans and C. glabrata in vitro. However, not all Candida 

species are targeted, since no effects were detected on C. guilliermondii [44]. In a model of 

disseminated C. parapsilosis infection, no difference in mortality was detected between WT 

and Lgals3−/− mice. However, Lgals3−/− mice had elevated kidney fungal burdens, 

suggesting this lectin receptor is required for control of C. parapsilosis in vivo [45]. The role 

of galectin-3 in defense against additional NAC species remains to be determined.

Several different PRRs recognize microbes simultaneously in the context of the immune 

response to a large organism. Indeed, an interaction between dectin-1 and galectin-3 on 

macrophages in response to C. albicans appears to be required for optimal TNFα production 

[47]. Dectin-1 also cooperates with TLR2 to induce maximal downstream responses 

following zymosan stimulation [48]. One study reported that dectin-2 and dectin-3 synergize 

to trigger enhanced NF-κB activation following C. albicans stimulation [49]. Together, 

these in vitro studies indicate that signaling through multiple PRRs mediates optimal 

antifungal immunity in vivo. In this regard, mice lacking downstream signaling molecules 

used by several PRRs tend to be profoundly more susceptible to C. albicans infection than 

mice deficient in individual receptors. This concept is exemplified by CARD9, an adaptor 

activated by numerous CLRs, including dectin-1, dectin-2, dectin-3 and Mincle [49, 50]. 

CARD9−/− mice are severely susceptible to disseminated C. albicans infection [51]. 

Moreover, humans with mutations in CARD9 present with severe CMC and systemic 

candidiasis, as well as other fungal infections [52–54]. Several Candida species were found 

responsible for candidiasis in these patients, including C. albicans, C. dubliniensis and C. 

glabrata. Along these lines, we observed that Card9−/− mice were profoundly more 

susceptible to disseminated C. tropicalis infection than Dectin1−/− mice [22], providing 

evidence that PRR cooperation is a requirement for immunity to NAC species.

The influence of Candida morphology on recognition

Fungal morphogenesis involves changes in cell wall composition, and therefore C. albicans 

morphotypes expose different putative recognition factors. For example, Als3 and hyphally 

regulated protein 1 (Hyr1) are hypha-specific cell wall proteins that contribute to C. albicans 

resistance to host defense mechanisms. Als3 is involved in adhesion and invasion of host 

cells and is also a receptor for ferritin, thus mediating iron acquisition [55]. Hyr1 helps resist 

phagocyte killing [56]. Moreover, both factors are vaccine targets, as vaccination of mice 

with recombinant Als3 or Hyr1 proteins improves clearance of C. albicans [57, 58]. Indeed, 

an experimental vaccine in clinical trials for vulvo-vaginal candidiasis (VVC) is based on 

Als3 [59, 60].

Not surprisingly, different C. albicans morphotypes induce altered downstream immune 

responses. For example, C. albicans yeast cells induce IL-12 in dendritic cells (DCs), 

whereas hyphae promote IL-4 production [61]. In macrophages, C. albicans yeast but not 

hyphae induce IFNγ production [62]. In another study, hyphae but not yeast-locked forms of 

C. albicans triggered IL-1β production by macrophages, which was associated with reduced 

mannan fibrils expression in hyphae compared to yeast cells [63]. Epithelial cells also 

respond differently to C. albicans yeast and hyphae. Yeast cells promote a tolerogenic 

epithelial cell response, whereas inflammatory response stimulated upon recognition of 
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invasive hyphae [64, 65]. Moreover, C. albicans yeast cells and hyphae are differentially 

recognized by dectin-1 and dectin-2 [35, 66, 67]. White-opaque switching is another 

morphological switch that impacts fungal recognition. One study demonstrated that 

neutrophils phagocytose white but not opaque cells in vitro [68].

The ability of different C. albicans morphologies to influence the immune response is 

controversial [34, 69–71]. There are contrasting reports on the ability of yeast and hyphal 

growth forms to activate downstream dectin-2 responses or promote Th17 responses [42, 63, 

69, 71, 72], which may be explained by differences in fungal strains. Alternatively 

differences between in vitro and in vivo experimental conditions may be important, since the 

fungal cell wall is dynamic and the availability of C. albicans PAMPs differs markedly in 

vitro compared to in vivo settings [34, 70].

While our knowledge on the impact of C. albicans morphology on immunity is expanding, 

this area is yet to be probed with respect to other Candida species. However, it is plausible 

that the varying morphologies of NAC species also drive altered immune responses. Given 

the importance of morphogenesis in C. albicans pathogenicity, understanding the impact of 

other Candida species morphotypes on immune responses may prove an important avenue 

of research.

Cellular immunity to Candida species: the first line of defense

Neutrophils

Neutrophils are crucial components of immunity to both mucosal and systemic C. albicans 

infection [73, 74]. They are the first cell type to be recruited to sites of C. albicans infection 

and are regarded as the most potent cell type in killing the fungus. In humans, neutropenia is 

a major risk factor for systemic candidiasis and individuals with dysfunctional neutrophils 

are defective in C. albicans killing [75]. Depleting neutrophils renders mice highly 

susceptible to oral and disseminated C. albicans infection [74, 76]. Furthermore, neutrophils 

are involved in preventing dissemination of C. albicans from the gut [77].

Neutropenia is also a risk factor for invasive candidiasis caused by NAC species, such as C. 

tropicalis and C. krusei [78] [79–81]. Strikingly, invasive C. tropicalis infection is 

associated with higher mortality rates compared to C. albicans infection, though the basis 

for this is unclear [82]. A crucial role for neutrophils in host defense against disseminated C. 

tropicalis has been confirmed in mouse models [22, 83]. Moreover, reduced neutrophil 

responses during intra-abdominal C. glabrata infection were associated with increased 

peritoneal fluid fungal burden [84]. Therefore, neutrophils appear to be key components of 

antifungal immunity against most Candida species.

Numerous studies have investigated neutrophil phagocytosis and downstream responses of 

different Candida species, primarily in vitro. Several NAC species appear to be killed more 

efficiently than C. albicans [40, 85–87]. For example, killing of C. tropicalis, C. 

parapsilosis, C. krusei and C. glabrata by human neutrophils was higher than C. albicans 

killing [85, 86]. In this regard, C. albicans induced more neutrophil cell death compared to 

C. glabrata [88], suggesting that the observed differences may be due in part to an enhanced 
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capacity of C. albicans to kill neutrophils. Indeed, increased phagocytosis of C. dubliniensis 

relative to C. albicans uptake by human neutrophils was associated with reduced neutrophil 

damage, as well as elevated expression of neutrophil killing mechanisms such ROS and 

lactoferrin [89]. However, not all studies demonstrated a difference in neutrophil 

phagocytosis and killing of Candida species. For example, phagocytosis of serum-opsonized 

C. albicans, C. tropicalis, C. parapsilosis and C. glabrata by neutrophils was similar [90]. 

Another study showed that C. krusei was phagocytosed less efficiently than C. albicans by 

human neutrophils [91]. Interestingly, C. parapsilosis may be more resistant to damage by 

neutrophils than C. albicans in some settings [87]. Overall, it is clear that neutrophils 

respond to Candida species differently, though the mechanisms responsible for these 

differences still remain poorly understood.

Monocytes/Macrophages

Monocytes/macrophages can directly kill C. albicans, and these cells produce cytokines and 

chemokines required for immune defense. Mice deficient in monocytes or tissue-resident 

macrophages display increased susceptibility to disseminated C. albicans infection [92–94].

Moreover, individuals with mutations in CX3CR1, the signature chemokine receptor for 

tissue resident macrophages, were shown to be at increased risk of systemic candidiasis [95]. 

More efficient phagocytosis and killing of certain NAC species compared to C. albicans by 

macrophages has been reported, similar to neutrophils. C. parapsilosis is killed more 

efficiently than C. albicans, a process that involves production of oxygen radicals [96, 97]. 

Similarly, C. glabrata is phagocytosed at higher rates by macrophages than C. albicans, 

which was more lethal to macrophages [88, 97, 98]. In this regard, macrophage phagocytosis 

rate of C. albicans is dependent on fungal morphology, and C. albicans hyphae can lyse 

macrophages [98–100]. Therefore, differences in phagocytosis and killing of Candida 

species by macrophages may partly depend on Candida morphogenesis. Interestingly, C. 

glabrata can survive and replicate within macrophages, and be released intact [101]. This 

survival strategy of C. glabrata is based on intrinsic stress resistance and nutrient 

acquisition, and illustrates differences in the interaction of different Candida species with 

immune cells [102].

Not much is known regarding the physiological requirement of monocytes/macrophages in 

controlling NAC species. We observed that monocyte or macrophage depletion with 

clodronate liposomes increased the susceptibility of WT mice to disseminated C. tropicalis 

infection [22]. However, the effects were less profound than neutrophil depletion, 

suggesting that neutrophils are the dominant cell type required for protection against 

systemic infection. Notably, depletion of both neutrophils and monocytes by anti-Gr1 Ab 

treatment significantly increased susceptibility to infection compared to depletion of 

neutrophils or monocytes/macrophages alone. Therefore, the combined actions of 

neutrophils and monocytes are likely to be central to antifungal immunity against systemic 

C. tropicalis infection (Figure 1).
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Dendritic cells

Although DCs can phagocytose and kill C. albicans, their primary role in antifungal 

immunity is to direct adaptive immune responses [103]. DCs produce cytokines involved in 

helper Th cell differentiation in response to C. albicans, which is dependent on C. albicans 

morphology and DC subset [61, 71]. A crucial role for DCs in immunity to C. albicans was 

recently demonstrated using CD11c-specific deletion of Syk. Syk is a kinase activated by 

CLRs acting upstream of CARD9, and its loss in DCs rendered mice more susceptible to 

disseminated C. albicans infection. Notably, this study indicated that DC cooperation with 

NK cells and neutrophils was required for protective immunity against C. albicans [104], 

suggesting that DCs perform important antifungal functions aside from their ability to 

promote adaptive immune responses.

With respect to NAC species, one report showed that C. albicans, C. dubliniensis and C. 

glabrata induced IFNβ expression by BMDCs, with C. glabrata inducing the highest levels 

[105]. Moreover, differences in generation of the DC “fungipod”, a dorsal pseudopodial 

protrusion involved in DC function, were demonstrated among Candida species. C. 

parapsilosis displayed strong induction of fungipods compared to C. albicans and C. 

tropicalis [106]. However, little else is known about the activities of DCs in response to 

NAC species.

Epithelial cells

Epithelial cells are increasingly being appreciated as key components of immune responses. 

They are of particular significance for mucocutaneous Candida infections, where fungi 

normally reside as commensal microbes. Epithelial cells can phagocytose C. albicans. 

However, this does not result in killing of the fungus, and in fact has been shown to damage 

endothelial cells [107]. Oral and vaginal epithelial cells possess candidastatic capacity, 

which is cell-contact dependent [108–111]. Epithelial cells can also produce cytokines, 

chemokines and antimicrobial proteins, such as IL-6, IL-8, TNFα, CCL2 and S100A9, in 

response to C. albicans [112–114]. Moreover, epithelial cells can augment neutrophil 

antifungal activity in vitro [115], suggesting that these cell types are important in promoting 

optimal antifungal immunity, particularly at mucosal surfaces.

In general, NAC species induce weak cytokine and chemokine responses in epithelial cells. 

For example, C. albicans was able to induce efficient expression of IL-6, IL-8, CCL2 and 

adhesion molecules by endothelial cells in vitro, whereas C. tropicalis and C. glabrata did 

not [113]. Similarly, human oral epithelial cells produced GM-CSF and other pro-

inflammatory cytokines in response to C. albicans, but to a much lower degree or not at all 

in response to C. tropicalis or C. glabrata [116]. In contrast, another group documented 

GM-CSF production by oral epithelial cells in response to C. glabrata rather than C. 

albicans. In the same study, oral epithelial cells were more resistant to killing by C. glabrata 

compared to C. albicans [117]. Clearly, much remains to be learned on the interaction 

between epithelial cells and NAC species.
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Adaptive immunity to Candida species: call in the reinforcements

T lymphocytes

CD4+ T cells are vital players in the response to C. albicans, particularly Th17 cells, as 

demonstrated dramatically by both knockout mice and humans with mutations in 

components of the IL-17 pathway. Deficiency in CARD9, IL-17RA, IL-17RC, Act1, 

IL-17A IL-23 and STAT3 drive susceptibility to a variety of C. albicans infections, 

including oral, cutaneous and disseminated candidiasis [118]. HIV+/AIDS patients not only 

have reduced CD4+ cell counts but lose Th17 cells disproportionally to other subsets [119, 

120]. AIDS patients are exquisitely susceptible to OPC, with over 95% of patients 

experiencing oral thrush [121]. In humans, memory T cells specific for C. albicans are of 

the Th17 subset [122, 123]. A similar scenario is observed in mice subjected to recall C. 

albicans infections [124, 125] Furthermore, protective vaccine responses are associated with 

robust Th1 and Th17 responses [58, 126] Protection against oral and cutaneous candidiasis 

is more selectively associated with specific Th17 immunity, whereas both Th1 and Th17 

responses participate against systemic infection [124, 127–130].

Evidence for an involvement of CD4+ T cell responses in immunity to NAC species also 

exists. Sepsis caused by C. parapsilosis in an infant with ectodermal dysplasia and thymic 

hypoplasia was associated with reduced T cell numbers and reduced T cell proliferative 

capacity [131]. Both cross-reactive and distinct T cells are generated in response to different 

Candida species. Human T cells generated following stimulation with C. albicans cellular 

extract displayed cross-reactivity with C. tropicalis but not C. glabrata [132]. Despite the 

generation of CD4+ T cell responses with distinct specificity, it seems that induction of 

IL-17A by CD4+ T cells is a common feature of Candida species. C. albicans and C. 

dubliniensis, which are the most closely related phylogenetically, were found to trigger the 

most IL-17A, whereas the distantly related C. glabrata induced the least [125]. Given the 

protective role of IL-17 responses in immunity to C. albicans, it would be predicted that 

IL-17 immunity is similarly involved in responses to NAC species. However, IL-17-

dependent responses were dispensable for protection against a mouse model of disseminated 

C. tropicalis infection. Rather, CARD9-dependent TNFα responses were crucial for 

protection [22]. Therefore, the dogma that IL-17 immunity is central to host defense against 

Candida may not hold true for all Candida species.

Innate lymphocytes

The recent recognition of various innate lymphocyte populations [133] has prompted 

reassessment of innate vs. adaptive immune responses in antifungal immunity to Candida. 

Such cell types include TCR-expressing subsets (NKT, γδ-T, ‘natural’ T cells) and TCR-

negative cell types (NK, ILC1, ILC2, ILC3) [134]. Depletion of γδ T cells increased 

susceptibility to C. albicans infection, and γδ T cells enhanced macrophage nitric oxide 

production and candidacidal activity in vitro [135]. Since then, several other studies have 

confirmed a key role for γδ T cells in host defense against C. albicans infection, with a 

principle mechanism involving IL-17 production [136–138]. Additionally, we showed that 

“natural” Th17 cells protect against acute oral C. albicans infection in conjunction with γδ T 

cells [136]. Although ILC3 cells were suggested to be involved in antifungal immunity 
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against C. albicans [139], they were not evident in other analyses [136]. NK cells possess 

anti-Candida killing ability and have been implicated in protection against disseminated C. 

albicans infection [140, 141]. However, a protective role for NK cells against C. albicans 

infection is controversial and may depend on host immune status [142]. More recently, 

reduced numbers of NKT and mucosal-associated invariant T (MAIT) cells that showed a 

selective defect in IL-17 production were documented in individuals with mutations in 

STAT3 [143]. STAT3 mutations are consistently associated with CMC [118], implicating 

these poorly understood T cell populations in antifungal immunity to Candida.

Again, little is known about the role of innate lymphocyte populations and NAC species 

immunity. However, emerging data hints at differences. For example, nTh17 cells were not 

induced during oral C. glabrata exposure, in contrast to C. albicans [136]. Furthermore, we 

saw no apparent role for innate T cells, ILCs or NK cells in protection against disseminated 

C. tropicalis infection, based on the observation that Rag2−/−Il2rg−/− mice did not display 

increased susceptibility to systemic infection [22].

Antifungal mechanisms: soluble factors

Cytokines and chemokines

A myriad of cytokines and chemokines are associated with protection against C. albicans 

infection. In addition to IL-17 discussed above, these include factors that promote 

development and recruitment of neutrophils, such as GM-CSF, G-CSF, CXCL1 and CXCL2 

[130, 144]. Similarly, cytokines that promote phagocyte killing and recruitment, such as 

TNFα, IL-6, IL-1β and IFNγ, are key in host defense against C. albicans. Indeed, 

recombinant GM-CSF and IFNγ therapy have been used in the clinic to protect against 

mucosal and systemic C. albicans infections, though the utility of this approach is still under 

investigation [145–147].

Similarities in the induction of cytokines and chemokines by different Candida species have 

been reported, at least in vitro. However, C. glabrata is generally associated with the 

activation of weak cytokine and chemokine responses. For example, C. albicans, C. 

tropicalis and C. krusei induced IL-1β production by BMDMs, whereas C. glabrata did not 

[148]. Similarly, C. albicans but not C. glabrata promoted epithelial cell production of IL-8 

and IL-1α [117]. However, several studies suggest that C. glabrata may favor GM-CSF 

production, as this NAC species induced production of GM-CSF by both epithelial cells and 

BMDMs in vitro [101, 117].

In contrast to the above in vitro studies, disseminated C. glabrata infection is associated 

with the production of TNFα, IL-12p35 and IFNγ [43, 149]. TNFα appears to be central in 

controlling C. glabrata growth, as Ab blockade of TNFα but not other cytokines increased 

kidney fungal burden [149]. We recently showed that depletion of TNFα by etanercept 

treatment renders mice more susceptible to disseminated C. tropicalis infection compared to 

controls [22]. Therefore, TNFα may be a broadly applicable antifungal mechanism.

Certain cytokines enhance phagocyte killing of Candida species. G-CSF augments 

neutrophil damage of C. albicans, C. parapsilosis and C. tropicalis. Interestingly however, 
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IFNγ enhances neutrophil damage of C. albicans and C. parapsilosis but not C. tropicalis 

[87]. Overall, the impact of cytokines and chemokines in response to Candida are not 

identical.

Antimicrobial peptides and reactive chemical species

Other important antifungal events include the production of antimicrobial peptides (AMPs) 

and reactive chemical species, such as ROS. These soluble effectors directly kill C. albicans, 

and are primarily produced by phagocytic cells and epithelial cells. A major AMP associated 

with oral candidiaiss in mice is β-defensin 3 (BD3) [124, 130]. Moreover, deficiencies in 

BD1, S100A8 and S100A9 lead to heightened susceptibility to mucosal and systemic C. 

albicans infection [150–152]. C. albicans dissemination from the GI tract occurs in mice 

deficient in components of the ROS and RNS pathways [153]. In humans, Chronic 

Granulomatous Disease (CGD) patients that have defects in the NADPH oxidase system are 

at increased risk of invasive candidiasis and neutrophils from CGD patients are defective in 

killing opsonized C. albicans [154, 155].

Antimicrobial peptides including β-defensins, histatins, H1 histones and lactoferrin display 

antifungal activity against multiple Candida species [156–158]. Synthetic peptides can also 

kill C. albicans, C. tropicalis and C. glabrata strains in vitro [159] [160] [161]. In general, 

the antifungal activity of AMPs appears to vary among specific Candida strains rather than 

species. However, C. glabrata displays increased resistance to human BD2, BD3 and 

histatin compared to other species [162, 163].

Reactive chemical species are also implicated in immunity to NAC species. For example, 

p47phox−/− mice are significantly more susceptible to disseminated C. glabrata infection 

[164]. Moreover, myeloperoxidase (MPO)−/− mice were impaired in clearance of C. 

albicans and C. tropicalis from the lungs [165]. In contrast, clearance of lung C. glabrata 

was comparable between MPO−/− and WT mice. Therefore, although AMPs and reactive 

chemical species are involved in host defense against NAC species, considerable differences 

exist among Candida species.

Challenges to studying NAC species

It is clear that our understanding of immunity to NAC species is still immature. This is 

partly because C. albicans remains the dominant Candida species isolated in the Western 

world. However, other hurdles have made studying immunity to NAC species difficult. One 

issue is the paucity of NAC species-specific tools. As the Candida field has largely focused 

on C. albicans, a wealth of genetic mutants exist, such as morphotype-locked mutants, 

fluorophore-expressing reporters (e.g., GFP, Luciferase), and epitope-tagged strains for in 

vivo tracking [138, 166]. A parallel collection of genetic mutants does not yet exist for NAC 

species, although progress is being made for C. glabrata [167].

Another roadblock is that many NAC species are not usually pathogenic in mouse models of 

candidiasis, in contrast to C. albicans. For example, in a mouse model of disseminated 

candidiasis, WT mice did not succumb to C. parapsilosis, C. krusei or C. glabrata infection 

[168]. Similarly, C. dubliniensis is far less pathogenic than C. albicans in mouse models of 
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disseminated and gastrointestinal infection [169–171]. In a model of oral candidiasis, even 

WT mice immunosuppressed with high dose cortisone were able to clear C. tropicalis, C. 

dubliniensis and C. glabrata without any signs of disease (NW and SLG, unpublished 

observations). These differences in susceptibility to Candida infection may reflect 

phenotypic variation among Candida species discussed above, but could also be explained 

by immune differences between mice and humans. Regardless of the reason, the field lacks 

tractable animal models with which to study these important pathogens. However, advances 

have been made with a newly described murine model of intra-abdominal C. glabrata 

infection, which closely mimics human disease [84]. Nevertheless, the difficulty in studying 

immune responses to NAC species in vivo means that most information to date has been 

gleaned from in vitro approaches which do not necessarily recapitulate the physiological 

environment. For instance, strains of C. tropicalis that do not form hyphae in vitro have 

been identified, yet it is unknown whether this holds true in vivo [23]. In this regard, we 

observed that a C. tropicalis clinical isolate did not form filamentous hyphae in vitro, yet 

formed invasive hyphae in kidneys [22]. Developing faithful models to understand 

immunity to NAC species is key for future studies in this area.

Consequences for emerging biologics

The first biologics to be approved for clinical use targeted TNFα, and have been successful 

in treating rheumatoid arthritis and other autoimmune conditions for the last 2 decades. 

Although cases have been reported, anti-TNFα therapy is not commonly associated with 

heightened risk of Candida infections [172]. However, meta-analyses have indicated that 

candidiasis may be an under-recognized opportunistic infection associated with this therapy 

[173]. We recently showed that immunity to systemic C. tropicalis infection is TNFα-

dependent [22]. One reason this infection is not commonly reported may be that, although 

anti-TNFα therapy is widely used in the Western world, this is not true in developing 

countries due to high costs. Given the geographical differences in prevalence between C. 

albicans and C. tropicalis, it is conceivable that the risk of Candida infection associated 

with anti-TNFα therapy is underestimated.

Antibodies targeting IL-17 (secukinumab) or IL-12/IL-23 (ustekinumab) have shown 

impressive effects for the treatment of psoriasis and were recently approved for clinical use 

[174]. Given the importance of IL-17 responses in immunity to C. albicans infection, an 

obvious potential risk factor is increased susceptibility to this fungus. Indeed, early reports 

have documented increased mucosal Candida infections in patients receiving sekukinumab, 

although the frequency of particular Candida species was low [175]. However, given our 

finding that the IL-17 pathway is not required for protection against disseminated C. 

tropicalis infection in mice [22], IL-17 pathway biologics may not increase susceptibility to 

all Candida species.

Perspective

The rise in resistance to antifungal drugs and the lack of new medications or vaccines 

against Candida has prompted interest in development of novel treatment strategies. One 

example is immunotherapies that could be used alone or in combination with current 
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treatments. The dogma on immunity to Candida infection is based almost entirely on our 

knowledge of immunity to C. albicans. As described here, important differences exist in 

immunity to Candida species. Given the rise in NAC species infections, it is pertinent to 

understand immunity to these emerging pathogens. Unraveling the similarities and 

differences in immunity to C. albicans and other Candida species will pave the way for 

appropriate immunotherapies and vaccines.
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Figure 1. Model of immunity to disseminated C. tropicalis infection
C. tropicalis is rapidly recognized by neutrophils and monocytes following invasive 

infection. Recognition by dectin-1 and other PRRs activates CARD9, which is crucial for 

host defense against C. tropicalis. CARD9 activation triggers the production of TNFα by 

both neutrophils and monocytes, which acts upon neutrophils to augment antifungal killing 

of C. tropicalis. TNFR = TNFα receptor.
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