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Abstract

Early adverse life events (EALs) have been associated with regional thinning of the subgenual 

cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and 

affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). 

Regional neuroinflammation related to chronic stress system activation has been suggested as a 

possible mechanism underlying these neuroplastic changes. However, the interaction of genetic 

and environmental factors in these changes is poorly understood. The current study aimed to 

evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of 

the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and 

inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC 

thickness was examined, while controlling for race, age, and total brain volume. Compared to 

HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS 

vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment 

interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). 

Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total 

scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major 

IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common 

NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms 

related to stress and inflammation and early adverse life events in modulating a key region of the 

emotion arousal circuit.
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Introduction

Early adverse life events (EALs) have been implicated in the vulnerability and morbidity 

related to various psychiatric and chronic medical disorders (McGowan and Szyf 2010; Chu 

et al. 2013; Drevets et al. 2008; Provencal et al. 2012), including functional pain syndromes 

such as irritable bowel syndrome (IBS) and fibromyalgia (Bradford et al. 2012; Berman et 

al. 2012; Labus et al. 2014; Jiang et al. 2013). Converging evidence suggests that by 

interacting with genetic variance, EALs may have negative effects on the development of 

brain mechanisms concerned with emotional arousal, stress, and resilience (de Rooij et al. 

2012; Ducci et al. 2008; Chen et al. 2011; van der Doelen et al. 2013; Cousijn et al. 2010). 

Early adverse life events have been implicated in the epigenetic modification of genes 

related to the stress system, and have been shown to alter the translational expression of 

genes in peripheral mononuclear blood cells (“conserved transcriptional response to 

adversity”) (Slavich and Cole 2013) related to the hypothalamus–pituitary–adrenal (HPA) 

axis (Cottrell and Seckl 2009; Bale et al. 2010). The processes that influence transcription 

factor binding affinity (e.g. gene polymorphism, methylation, histone modification) can 

substantially affect a person's propensity to develop certain diseases or endophenotypes 

(Slavich and Cole 2013), and variations in these processes may explain why only a fraction 

of individuals with a history of EALs develop adult pathology (Schmidt 2011; Homberg 

2012).

Changes in stress sensitivity and functioning of the HPA axis may underlie the association 

between EALs and risk for disease. For example, animal studies indicate that exposure to 

EALs results in increased basal corticosterone levels, and significant decreases in the 

glucocorticoid (GC) receptor total cells in the hilus and granule cell layers (Uys et al. 2006). 

Epigenetic regulation of the GCR is associated with prolonged decreased levels of GCR 

mRNA (McGowan et al. 2009). Human studies have shown that adults with a history of 

EALs have increased cytosine methylation in the promoter region of the GC receptor gene 

NR3C1 and methylation of this region leads to attenuated cortisol responses to the 

dexamethasone/corticotropin releasing hormone test (a standardized neuroendocrine 

challenge test) (Tyrka et al. 2012). These studies suggest that in the face of real or perceived 

threats (stressors), GC signaling redistributes energy to promote cell survival (Herman et al. 

2012). This in turn promotes neurogenesis required to restore normal behavior after stress 

(Lehmann et al. 2013). In this respect, GC signaling controls stress reactivity through 

inhibition of the HPA axis (Herman et al. 2012).

A history of EALs is also associated with elevated pro-inflammatory cytokines, which in 

turn can cause neuroinflammation and increased risk for disease (Dantzer et al. 2008; 

McAfoose and Baune 2009; Miller et al. 2009; Groer and Morgan 2007; Hartwell et al. 

2013). For example, individuals with post-traumatic stress disorder (PTSD) had increased 
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proinflammatory levels and lower anti-inflammatory levels than healthy control subjects 

(von Kanel et al. 2007). In the presence of stress or with exposure to EALs, GC and 

cytokines interact to influence cell proliferation. Glucocorticoids can also cause the release 

of macrophage inhibitory factor, an inflammatory cytokine, from macrophages and T cells 

(Calandra et al. 1995). These studies, therefore, provided a basis for selecting genes 

associated with the HPA axis (stress) for further analysis in this study.

Recent research has shown that individuals with exposure to different types of stress (long 

term, acute, or chronic) have increased vulnerability for neuroplastic changes in brain 

regions known to precipitate or exacerbate disorders of mood (McEwen 2005) and chronic 

pain (Rodriguez-Raecke et al. 2013). The stress-related brain changes are related to GC 

signaling (Solomon et al. 2012), modulating gene transcription by either repressing or 

facilitating the transcription of target genes (Herman et al. 2005; Anacker et al. 2011). The 

sgACC and adjacent ventromedial prefrontal cortex (vmPFC) are key regions of an emotion 

arousal circuit, which play important roles in the modulation of sensory perception and pain 

modulation (Labus et al. 2013a), memory, autonomic function, and neuroendocrine 

responses (Radley et al. 2008). Various studies have demonstrated that the sgACC is part of 

the emotional arousal network, which is involved in the feedback inhibition of the amygdala 

(Labus et al. 2008; Berman et al. 2012; Jiang et al. 2013; Kilpatrick et al. 2010; Hong et al. 

2014b; Pezawas et al. 2005; Stein et al. 2007), and IBS patients show abnormalities in the 

connectivity of this circuit (Labus et al. 2013b). Morphological reductions in the left sgACC 

have been reported in patients with disorders of mood and affect (Ansell et al. 2012; 

Lipsman et al. 2010; Singh et al. 2012) and functional gastrointestinal pain (Jiang et al. 

2013). Decreased right and left sgACC volumes have been observed in subjects with PTSD 

compared to non-PTSD subjects exposed to trauma (Kitayama et al. 2006; Rauch et al. 

2003). In postmortem studies of suicide victims, reduced grey matter volume of the bilateral 

sgACC was attributed to the presence of genes that were associated with a decrease in 

neuronal and glial cell size, number, and density (Ongur et al. 1998; Gerritsen et al. 2012; 

McEwen 2005), while deep brain stimulation of the sgACC has shown improved symptoms 

of refractory depression (Johansen-Berg et al. 2008).

Functional pain syndromes are characterized by widespread somatic symptoms, generalized 

hypersensitivity to somatic, visceral and auditory stimuli, and a high comorbidity with 

disorders of mood and affect (Ellingson et al. 2013; Gupta et al. 2014; Labus et al. 2013b; 

Hong et al. 2014a). Structural and functional brain imaging studies in several of these 

disorders have shown alterations in sensory and affective brain circuits and regions, 

including grey matter reductions in the cingulate and specifically in the left sgACC, even in 

patients without psychiatric comorbidity (Jiang et al. 2013; Labus et al. 2013a, 2014). It 

remains unclear if the observed structural alterations are a consequence of the experience of 

chronic pain (somatic or emotional), or are due to genetically/epigenetically determined 

vulnerability factors associated with stress or EALs, which contribute to chronic somatic and 

emotional pain.

By studying a large sample of female subjects including a subgroup of IBS subjects without 

psychiatric comorbidity, we aimed to evaluate interactions between regional thinning of 

sgACC, self-reported EALs, and several candidate HPA axis gene polymorphisms, which 
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have been implicated in stress and inflammation. Specifically, we aimed to address the 

following questions—(1) Is a history of EALs associated with a reduction in sgACC 

thickness? (2) Is there an interaction between EALs and candidate single nucleotide 

polymorphisms (SNPs) related to stress and inflammation in influencing sgACC structure? 

(3) Is there a difference in these interactions between healthy control subjects and patients 

with chronic abdominal pain?

Subjects and methods

Subjects

Five hundred and twenty-seven individuals (304 HCs, 223 IBS) were recruited through the 

Digestive Disease Clinic at the University of California Los Angeles (UCLA), and 

advertisements in the local community. The UCLA Medical Institutional Review Board 

approved all procedures, and all subjects provided informed written consent. Exclusion 

criteria comprised pregnancy, substance abuse, abdominal surgery, tobacco dependence, and 

psychiatric illness. From the original sample, a subset of 210 right-handed premenopausal 

female subjects (137 HCs, 73 IBS) completed structural MRI scans. During a clinical 

assessment, a gastroenterologist or a nurse practitioner with expertise in functional 

gastroenterological disorders made a diagnosis of IBS, based on the ROME II or ROME III 

symptoms at the time of the study (Drossman 2007). Bowel habit was also determined at this 

time. Subjects were asked to indicate their race in terms of African, Caucasian, Asian, 

Hawaiian, or American Indian ancestry. Subjects claiming at least partial African ancestry 

were classified as African. Remaining subjects claiming Caucasian ancestry were classified 

as Caucasian, and subjects claiming Asian, Hawaiian or American Indian ancestry were 

classified as Asian.

Behavioral measures

The Early Traumatic Inventory-Self Report (ETI-SR) covers four domains of childhood/

early adverse life events that occurred before the age of 18 years—general trauma (31 

items), physical (9 items), emotional (7 items), and sexual abuse (15 items) (Bremner et al. 

2005). In addition to calculating subscale scores, the number of items receiving a positive 

response was calculated for each subject, resulting in a total ETI score. Prevalence of ETI 

was calculated using a cutoff score ≥9 on the ETI total score. This value was determined by 

conducting a median split on the ETI total score plus one standard deviation to determine the 

cutoffs (Bremner et al. 2007), a procedure consistent with other studies (Rooks et al. 2012). 

Comorbid affective and mood disorders were measured using the Hospital Anxiety and 

Depression Scale (HAD) (Zigmond and Snaith 1983).

Genotyping

Genomic DNA was extracted from saliva samples at the UCLA Biological Samples 

Processing Core (BSPC). Samples for DNA isolation were collected using the Oragene™ 

DNA Self-Collection Kit (DNA Genotek Inc., Ottawa, Canada). DNA obtained using this kit 

is comparable in quality and quantity to DNA extracted from blood (Reynolds et al. 2007). 

SNPType genotyping was done using the Fluidigm Biomark system (Dube et al. 2008). A 

sample of DNA (10–60 ng) was pre-amplified using Qiagen Multiple PCR master mix 
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(Qiagen Inc., Valencia CA, USA). Samples were diluted and partitioned uniformly into 765 

reaction chambers for each panel, which were then thermocycled under hot conditions at 

95uC for 10 min followed by 40 cycles of two-step PCR—15 s at 95uC for denaturing, and 

1 min at 60uC for annealing and extension, and then amplification. Signals from all 

chambers were recorded at the end of each PCR cycle. The assays were designed using 

Fluidigm's proprietary technology described in detail by Dube et al. (2008). The samples 

and assays were loaded onto a GT 96*96 Dynamic array and processed as per Fluidigm 

protocol. The genotyping calls were made using Fluidigm SNP genotyping software. This 

included counting the number of positive FAM chambers (target gene) and number of 

positive VIC chambers (RNase P-reference gene) from each panel to calculate the target 

gene/reference gene ratios. To our knowledge, all participants were genetically unrelated.

MRI

A high resolution structural image was acquired with a magnetization-prepared rapid 

acquisition gradient echo (MP-RAGE) sequence with the following parameters— repetition 

time (TR) = 2,200 and 20 ms, echo time (TE) = 3.26 and 3 ms, slice thickness = 1 mm, 176 

slices, 256 × 256 voxel matrices, and 1.0 × 1.0 × 1.0 mm voxel size. Since studies from 

different protocols were combined, we applied a general linear model to determine protocol 

influences on total gray matter volume and controlling for age. Results indicated that the 

protocols were similar to each other. Some of the female subjects used in this study have 

been used in other published studies (Jiang et al. 2013; Labus et al. 2011, 2013b, 2014; 

Hong et al. 2014a; Gupta et al. 2014; Kurth et al. 2012).

Cortical thickness (CT)

The LONI (Laboratory of Neuroimaging) pipeline (http://pipeline.loni.usc.edu/), a graphical 

workflow environment, was utilized for image preprocessing and CT analysis. For details of 

the methodological procedure method, see recent investigations of neuroplastic differences 

between IBS patients and HC (Jiang et al. 2013; Hong et al. 2014b). Briefly, cortical 

thickness maps estimated in FreeSurfer 4.0 (Fischl and Dale 2000) were registered to 

International Consortium for Brain Mapping (ICBM) brain surface and then vertex-wise 

correspondences were established between all cortical surface models. A separate tissue-

classification pipeline workflow was employed to obtain total gray matter volume (TGMV), 

which was used as a covariate in analysis. Data are available on our Pain website (http://

painrepository.org/) as part of the Pain and Interoception Network (PAIN) repository. In each 

hemisphere, sgACC was manually delineated on the 3D ICBM brain atlas by two well-

trained technicians with good command of neuroanatomical knowledge. The 3D region of 

interest masks was mapped back onto the ICBM surface space based on their Euclidean 

coordinates (Fig. 1).

Statistical analysis

To study the interactions of EALs with candidate genes that may play a role in observed 

structural brain changes due to neuroinflammation, we focused on HPA axis genes 

(Blackwell and Christman 1997). To determine the potential gene predictors of sgACC 

thickness, a penalized ordinary least squares linear regression analysis controlling for 

TGMV, race and age was performed using Mendel software, version 13 (Lange et al. 2013; 
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Zhou et al. 2010). This initial analysis was conducted on 11 available HPA-related 

genotyped SNPs (NR3C1, CRHR1, FKBP5, CRHBP) (see Supplementary Table 1) in our 

database, which were selected based on a literature search. From these initial 11 SNPs, we 

only examined SNPs that show a significant association with sgACC volume after false 

discovery rate (FDR) correction (Benjamini 2010). This approach has been applied in 

genome-wide studies as a dimension reducing technique (Haghighi et al. 2014). The 

glucocorticoid receptor (GCR) NR3C1 genes (rs2963155 and rs33389) were the only SNPs 

that had a significant association with sgACC volumes after adjusting for FDR using a 

graphic sharpening method (uncorrected p = 0.007, 0.009, respectively q's < 0.05) (Pike 

2011). Interleukin-1β (IL-1β) gene (rs16944) was not found to be significant in an additional 

penalized ordinary least squares linear regression analysis similar to the initial Mendel 

analysis. However, to test our hypothesis that that stress and inflammation systems interact 

with EALs to influence sgACC structure, given that the NR3C1 gene is associated with 

stress-induced activation of NF-κB, a protein complex required for the transcription and 

production of proinflammatory cytokines, including interleukin-1 (IL-1) (Blackwell and 

Christman 1997), we focused on the interaction between these NR3C1 SNPs and a SNP in 

the promotor region of the IL-1β gene (rs16944), which contains a binding site for NF-κB. 

Hardy–Weinberg equilibrium, pairwise linkage disequilibrium (LD), genotype success rate 

and minor allele frequency were calculated using Mendel (Lange et al. 2005). The cut off 

value for divergence from Hardy–Weinberg equilibrium was (p ≥ 0.05). A haplotype 

analysis performed using Haploview determined that the two NR3C1 SNPs were in linkage 

disequilibrium, indicating that based on allele frequencies the alleles at two loci were non-

randomly significantly associated with each other using genomic proximity, and thus 

subsequent analyses were performed using the NR3C1 haplotype, given that these tightly 

linked alleles are likely to be inherited together (Barrett et al. 2005).

Differences in clinical and demographics variables between HC and IBS were examined 

using the general linear model (GLM), specifying disease group as a factor. To further 

describe these differences, we calculated Cohen's effect size d in the scale of standard 

deviation units, and values are interpreted as low (d = 0.20), moderate (d = 0.50), and high 

(d = 0.80). A p value ≤0.05 was considered statistically significant. Next, differences 

between HCs and IBS on thickness of the right and left sgACC were tested using the GLM 

specifying disease group as a factor and age and TGMV as covariates.

Finally, we examined the main and interaction effects of genetic variation, EALs (total ETI 

score and emotional ETI subscore) and health status on the sgACC cortical thickness while 

controlling for race, age and TGMV. Specifically, the cortical thickness of the left and right 

sgACC, were modeled as a function of 3 covariates (age, TGMV, race), 4 main effects 

(health status, EALs, GCR haplotype, IL-1β SNP), and 11 terms representing the 2, 3, and 4 

way interactions of the main effects. ETI scores were normalized using a square root 

transform. Analyses were performed comparing homozygotes for the most common/major 

alleles [CA/CA for the NR3C1 haplotype (MC) and GG for the IL-1β SNP (mc)] against 

heterozygotes and homozygous for the minor alleles/less common alleles [non-CA/CA for 

the NR3C1 haplotype (LC) and AA or AG for the IL-1β SNP (lc)]. Statistical analyses were 

performed using SPSS version 19.
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Results

Sample description

Mean age, EAL prevalence and levels as measured by the early traumata inventory (ETI), 

symptoms of anxiety and depression as measured by the Hospital Anxiety and Depression 

Scale (HAD), and racial distribution are presented in Table 1. No significant differences in 

age were found [F(1, 208) = 1.37, p = 0.24; Cohen's d = 0.17] between IBS and HCs. Using 

the Rome II and III criteria, 23 patients were classified as IBS with constipation, 21 with 

diarrhea, 20 with alternating/mixed bowel habit, and 9 were unspecified.

Prevalence of comorbid affective and mood symptoms

Although mood and affect-related symptoms were within normal ranges, there were 

significant main effects for symptoms of anxiety [F(1, 208) = 4.21, p = 0.04; d = 0.83] and 

depression [F(1, 208) = 21.89, p < 0.001; d = 0.69] with higher levels in IBS compared to 

HCs. When factoring gene polymorphisms (GC NR3C1 haplotype and IL-1β SNP) neither 

anxiety nor depression impacted sgACC thickness.

Prevalence and severity of early adverse life events

Even though EALs were reported by both groups, the prevalence of EALs (cutoff score ≥9 

for the EAL total score) was almost twice as high in IBS (22 %) compared to HCs (12 %) 

[χ2(1) = 3.25, p = 0.08]. Significant and greater total EAL levels were observed in IBS 

patients [F(1, 207) = 5.28, p = 0.02; d = 0.34]. However, out of all four EAL subscores 

(general, physical, sexual, emotional), IBS subjects differed significantly from HCs only on 

the emotional subscale [F(1, 207) = 12.41, p < 0.001; d = 0.37]. Although there was a trend 

for higher EAL total mean scores for both African and Caucasian subjects compared to 

Asian subjects and subjects who did not report their race (missing), no significant EAL score 

differences were found between the races [F(1, 3) = 1.179, p = 0.35].

Cortical thickness

After controlling for age and TGMV, sgACC thickness was reduced in IBS compared to 

HCs, with statistically significant differences observed for the left sgACC [F(1, 208) = 4.75, 

p = 0.03; d = −0.40] (Table 1). In the combined sample (IBS + HCs), a significant negative 

correlation between left sgACC thickness and the EALs emotional subscale score was 

observed [r (208) = −0.15, p = 0.03].

Genotyping results

The genotype success rate was ≥95 % for all single nucleotide polymorphisms (SNPs). The 

minor allele frequencies observed (Table 2) for each SNP in our population were 

comparable to what has been reported for dbSNP samples (http://www.ncbi.nlm.nih.gov/

projects/SNP/). No significant group differences in frequency distribution were detected.
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Relationship between genetic variation, EALs, and health status in influencing thickness 
of the left sgACC

A significant interaction between the NR3C1 haplotype and the IL-1β genotype and EAL 

total score was demonstrated for the left sgACC [F(1, 208) = 4.05, p = 0.05] (Fig. 2). 

Individuals homozygous or heterozygous for the minor IL-1β allele combination (lc), 

demonstrated decreased cortical thickness in the left sgACC with increasing levels of total 

EALs regardless of NR3C1 haplotype status (MC or LC) (MC/lc: p = 0.02, LC/lc: p = 0.02 

respectively). Individuals homozygous for the major IL-1β allele (mc) demonstrated reduced 

thickness of the left sgACC with increasing total EAL levels only with the lesser common 

NR3C1 haplotype (LC) (LC/mc: p = 0.02). In contrast, individuals homozygous for the 

major IL-1β allele (mc) and homozygous for the most common NR3C1 haplotype (MC) 

demonstrated increased left sgACC thickness with increasing total EAL levels (MC/mc: p = 

0.007). No significant main or interaction effects were observed for disease group. Only 

NR3C1 haplotype (MC), not the IL-1β allele, showed a significant main effect. Individuals 

who were homozygous for the most common NR3C1 haplotype (MC) had increased left 

sgACC thickness compared to individuals with the lesser common NR3C1 haplotype (LC) 

regardless of the level of total EALs [F(1, 208) = 5.58, p = 0.02] (see Fig. 3). No significant 

results were observed for the right sgACC. Although there was a trend there were no 

significant results observed for the emotional EAL subscale-gene interactions on either left 

or right sgACC (p > 0.06).

Discussion

This study aimed to test the hypothesized interactions between candidate gene 

polymorphisms and early adversity in shaping the structure of a brain region (sgACC) 

involved in the emotional arousal aspects of pain regulation. The key findings are: (1) 

emotional early adverse life events were present in both HCs and IBS (more common in 

IBS), and were associated with regional thinning of the sgACC. (2) Thinning of the left 

sgACC was associated with significant interactions between the IL-1β genotype, the NR3C1 

haplotype, and a history of EALs. (3) Regardless of disease or self-reported EAL history, the 

most common GCR gene NR3C1 haplotype was associated with increased left sgACC 

thickness, compared to individuals with the lesser common NR3C1 haplotypes.

Differences in EALs between patients with IBS and HC subjects

Even though reported by both groups, the prevalence and intensity of EAL experiences were 

significantly higher in IBS compared to HC subjects. These findings are consistent with 

studies that show a greater incidence of EALs in IBS compared to HCs (Bradford et al. 

2012; Wu 2012; Talley et al. 1998). Upon examining subscales, IBS patients showed greater 

scores on the emotional trauma scale and sample items on the ETI emotional subscale 

include the following, “Often put down or ridiculed,” or “Often told that one is no good” 

(Bremner et al. 2005). There is an extensive literature demonstrating that a history of early 

emotional adversity is associated with various anxiety and depression symptoms and 

comorbidities in the adult (Chitkara et al. 2008; Berman et al. 2012). These comorbidities 

contribute to the disproportional impairment of health-related quality of life, increased 

somatic symptoms and psychological distress among IBS (Heitkemper et al. 2011). 
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Alterations in HPA axis responses to a visceral stressor in IBS patients with a history of 

EALs have been observed (Chang 2011), which have been attributed to epigenetic 

modulation of the GC signaling system, resulting in reduced GCR mRNA expression and 

associated reduction in negative feedback inhibition within the HPA axis (Weaver et al. 

2001).

Differences in EALs and regional thickness of sgACC between IBS and HC subjects

Early adversity in vulnerable individuals is believed to have long-term effects on brain 

systems involved in stress responsiveness and emotional arousal (including corticolimbic 

inhibition) (Gee et al. 2013; Tottenham and Sheridan 2009; McEwen 2008), thereby 

increasing the risk of developing adult stress-related disorders (Chaloner and Greenwood-

Van Meerveld 2013; Pietrek et al. 2013). In the current study, the thickness of the left 

sgACC was significantly reduced and this reduction was correlated with higher ratings of the 

emotional subscale of the ETI across both groups. This is consistent with findings from 

several fMRI studies, which provide evidence for reduced activity and connectivity of the 

sgACC, a cingulate subregion implicated in modulation of emotional arousal. For example, 

using rectal distention stimuli, Ringel et al. (2008) reported a trend for reduced activity in 

the sgACC in IBS and HC subjects with abuse history compared to those subjects without. 

We recently reported that higher levels of EALs in male and female IBS, but not HC 

subjects was associated with decreased resting state connectivity of the ACC with the 

salience network (Gupta et al. 2014).

Epigenetic modulation of GCR gene expression may play an important role in this EAL 

associated neuroplasticity (Binder et al. 2008). For example, in postmortem brains of suicide 

victims, a history of EALs was associated with decreased levels of GCR mRNA and 

increased methylation of the GCR NR3C1 promoter (Szyf et al. 2008), suggesting an 

interaction between EALs and GCR gene transcription (McGowan et al. 2009). 

Morphometric changes (e.g. reduction in sgACC thickness) have been observed in depressed 

subjects (Drevets et al. 2008), and these changes were related to a stress-induced decrease in 

glial cell size (McEwen and Magarinos 2001; Czeh et al. 2006). Since glial cells provide 

support to neuronal function (Vazquez-Chona et al. 2011), a loss in glial cells may result in 

loss of neuronal density as well. Astrocytes are modulated by GCs and by IL-1 in sustaining 

expression of adhesion molecules and chemokines which in turn attract leukocytes to the 

central nervous system (CNS) (Rozovsky et al. 1995; Moynagh 2005). More recently, 

significant structural differences between female IBS patients compared to female HCs have 

shown significant decrease in sgACC thickness, with positive correlations with IBS 

symptom severity (Jiang et al. 2013). The fact that the changes were not correlated with the 

duration of symptoms suggests that the regional GM changes may be a consequence of 

genetic or epigenetic factors, predating the development of IBS symptoms (Zhang et al. 

2011; Blalock et al. 2011).

Relationship between EALs, genetic variation, and health status in influencing thickness 
of the sgACC

Immune response genes, in particular those related to the innate immune response (including 

IL-1β) are highly sensitive to social environmental conditions, and stress-related alterations 
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in GC signaling are likely to play a key role in modulating changes in proinflammatory gene 

expression (Cole 2009; Cole et al. 2009). Such changes have been reported not only in 

association with ongoing chronic stress (Raison and Miller 2003), but their lifelong 

persistence has been demonstrated in non-human primates following early adverse life 

conditions (Cole et al. 2012). While GC receptor activation typically downregulates 

inflammatory gene expression, chronic psychosocial stress can result in desensitization of 

GCR proteins and a failure of GCs to regulate GCR response genes, even in the presence of 

normal or elevated GC levels (Sorrells et al. 2009; Slavich and Cole 2013). As a result of 

decreased GCR regulation by GCs, NF-kB is derepressed, e.g. NF-kB is no longer inhibited 

from binding to gene promoters, leading to increased inflammatory activity (Blackwell and 

Christman 1997).

In the current study, the IL-1β SNP rs16944 by itself did not interact with EALs and 

diagnosis to affect significant changes in sgACC thickness. However, a significant 

interaction between this IL-1β SNP, the GCR gene NR3C1 haplotype, and EALs was 

demonstrated. In individuals with the minor IL-1β allele (lc), sgACC thickness decreased 

with increasing EALs regardless of NR3C1 haplotype and disease group. Even though gene 

methylation or transcription was not assessed in this study, one could speculate that the most 

common and least common NR3C1 haplotypes are associated with reduced GCR mediated 

NF-kB derepression with increasing EALs. In individuals with the minor IL-1β allele, this 

derepression could result in regional neuroinflammatory changes leading to cortical thinning 

in the sgACC. These results are similar to animal studies that show impaired GC regulation 

of cytokine release leading to increased inflammatory responses and a ‘defensive phenotype’ 

that increases susceptibility to disease, infection and injury in animals that have experienced 

EALs (Miller et al. 2009; Avitsur et al. 2006; Zhang et al. 2006). However, in individuals 

homozygous for the major IL-1β allele combination (mc), only the lesser common NR3C1 

haplotypes (LC) was associated with decreased sgACC thickness, while the most common 

NR3C1 haplotype (MC) was associated with increased sgACC thickness with increasing 

EAL levels. In summary, women with less common alleles in either the IL-1β or NR3C1 

genes appear to be more susceptible to EAL-related reductions in sgACC thickness, while 

women homozygous for the major IL-1β allele and homozygous for the most common 

NR3C1 haplotype appear to be protected against such effects. While one study has found 

that under chronic behavioral stress, dendritic shrinkage in pyramidal cells of the anterior 

cingulate and paralimbic regions occurs (Radley et al. 2004), another study found increased 

apical dendritic branching and complexity after administration of GCs (Wellman 2001). This 

increase in proximal dendritic branching could be a compensatory mechanism in response to 

distal dendritic atrophy (Wellman 2001), because GCs are not only differentially expressed 

in various types of cells and tissues (Provencal et al. 2012; Uddin et al. 2010; Gadek-

Michalska et al. 2013), but they also may be unable to discriminate between different sites of 

action (Wellman 2001). However, the exact mechanisms are unknown and future studies will 

need to determine the molecular mechanism behind these changes. There are also times in 

the presence of enriched environments (e.g. healthy diet intake or exercise), when GCs can 

promote cell survival and restoration of normal behavior, and thus protect against grey 

matter reductions even after experiencing adverse-related stress (Lehmann et al. 2013; 

Herman et al. 2012). Consistent with this concept are recent reports showing that the most 
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common alleles in GCR NR3C1 SNPs (rs33389 and rs2963155) are protective against 

developing temporomandibular pain disorders (Smith et al. 2013).

Limitations

The study has several limitations. To increase statistical power, we focused our genotype 

analyses on SNPs that ranked highest in the Mendel analysis, and did not include other well-

characterized SNPs (such as the FKBP5) which have been implicated in modulating the 

epigenetic effects of early adversity on GCR expression (Binder et al. 2008). Similarly, we 

focused the analysis on one brain region and only one parameter of grey matter (cortical 

thickness). As we did not directly assess the molecular consequences of early adversity in 

terms of DNA methylation and gene transcription, we can only speculate about the 

mechanisms that mediate the observed correlations between EALs and regional brain 

structure. We did not measure female sex hormones, and therefore could not address a 

possible influence of cyclical sex hormone variations on the current findings. However, to 

minimize menopause-related influences on brain structure (Spencer et al. 2008), we studied 

predominantly premenopausal women during the follicular phase of their menstrual cycle.

Conclusions and possible pathophysiological implications

Our study found support for the hypothesized interactions between genes related to the 

immune and stress systems and EALs in shaping the structure of a brain region involved in 

emotional arousal aspects of pain regulation. As these interactions occurred in both HCs and 

IBS, the prevalence of EALs may lead to a greater prevalence of such brain changes in both 

groups. Together with previous reports of similar brain changes in patients with depression, 

the current finding suggests that EALs are associated with sgACC thinning, but that other 

factors and brain changes determine the specific symptom expression in different 

populations. Future studies in larger samples and in samples with clinical levels of 

psychiatric comorbidities should address the question if observed reductions in this region 

and other brain regions (including subregions of the insula and cingulate cortices, and 

hippocampus) are related to similar gene and early environment interaction effects on the 

expression of central inflammatory mediators.
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IBS Irritable bowel syndrome

HC Healthy control

EALs Early adverse life events

SNPs Single nucleotide polymorphisms

GCR Glucocorticoid receptor NR3C1

IL-1β Proinflammatory cytokines interleuken-1β

HPA Hypothalamus–pituitary–adrenal axis

fMRI Functional brain imaging
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GM Gray matter

GI Gastroenterological

ETI Early traumatic inventory

HAD Hospital and Anxiety Depression Scale

MP-RAGE Magnetization-prepared rapid acquisition gradient echo

TR Repetition time

TE Echo time

NF-κB Nuclear factor-κB

TGMV Total grey matter volume

LD Linkage disequilibrium

GLM General linear model

CNS Central nervous system
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Fig 1. 
Manual delineation of the subgenual anterior cingulate cortex (sgACC) within the cingulate 

cortex. sgACC subgenual anterior cingulate cortex, pgACC pregenual anterior cingulate 

cortex, aMCC anterior mid cingulate cortex, pMCC posterior mid cingulate cortex
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Fig 2. 
Mean sgACC cortical thickness is shown for four genetic groups with different levels of 

EALs. NR3C1 glucocorticoids, IL-1β Interleuken-1 Beta, lc homozygous or heterozygous 

with the minor IL-1β allele (AA or AG), mc homozygous for the major IL-1β allele (GG), 

LC homozygous/heterozygous with lesser common NR3C1 haplotypes (non-CA/CA), MC 
homozygous with most common NR3C1 haplotype (CA/CA), CT cortical thickness; sgACC 
subgenual anterior cingulate cortex, EALs early adverse life events as measured by ETI total 

score (early traumatic inventory)
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Fig 3. 
Mean sgACC cortical thickness is shown for NR3C1 genetic groups regardless of EALs. 

NR3C1 glucocorticoids, LC homozygous/heterozygous with lesser common NR3C1 

haplotypes (non-CA/CA), MC homozygous with most common NR3C1 haplotype (CA/

CA), CT cortical thickness, sgACC subgenual anterior cingulate cortex
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