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Abstract

Non-alcoholic fatty liver disease (NAFLD) has become a common liver disease in recent
decades. No effective treatment is currently available. Probiotics and natural functional food
may be promising therapeutic approaches to this disease. The present study aims to investi-
gate the efficiency of the anthraquinone from Cassia obtusifolia L. (AC) together with choles-
terol-lowering probiotics (P) to improve high-fat diet (HFD)-induced NAFLD in rat models and
elucidate the underlying mechanism. Cholesterol-lowering probiotics were screened out by
MRS-cholesterol broth with ammonium ferric sulfate method. Male Sprague—Dawley rats
were fed with HFD and subsequently administered with AC and/or P. Lipid metabolism param-
eters and fat synthesis related genes in rat liver, as well as the diversity of gut microbiota were
evaluated. The results demonstrated that, compared with the NAFLD rat, the serum lipid levels
of treated rats were reduced effectively. Besides, cholesterol 7a-hydroxylase (CYP7A1), low
density lipoprotein receptor (LDL-R) and farnesoid X receptor (FXR) were up-regulated while
the expression of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR) was reduced.
The expression of peroxisome proliferator activated receptor (PPAR)-a protein was signifi-
cantly increased while the expression of PPAR-y and sterol regulatory element binding pro-
tein-1c (SREBP-1c) was down-regulated. In addition, compared with HFD group, in AC, P and
AC+P group, the expression of intestinal tight-junction protein occludin and zonula occluden-1
(ZO-1) were up-regulated. Furthermore, altered gut microbiota diversity after the treatment of
probiotics and AC were analysed. The combination of cholesterol-lowering probiotics and AC
possesses a therapeutic effect on NAFLD in rats by up-regulating CYP7A1, LDL-R, FXR
mRNA and PPAR-a protein produced in the process of fat metabolism while down-regulating
the expression of HMGCR, PPAR-y and SREBP-1c, and through normalizing the intestinal
dysbiosis and improving the intestinal mucosal barrier function.
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Introduction

With the prevalence of obesity, hyperlipidemia, type II diabetes, and metabolic syndrome,
the morbidity of nonalcoholic fatty liver disease (NAFLD) is constantly rising worldwide [1].
Recent studies indicate that about 50% of NAFLD patients may develop into non-alcoholic
steatohepatitis (NASH) and 40% may progress to liver fibrosis after 4-13 years [2]. The
pathophysiological process of NAFLD is extremely complicated and the pathogenesis is
unclear. No effective cures have been found currently with the prognosis of NASH being pes-
simistic. Therefore, there is an urgent need to develop effective remedies for patients suffer-
ing NAFLD.

NAFLD patients are usually accompanied with obesity and insulin resistance, but not all
obese people develop into NAFLD, the intestinal factors may play a key role in the pathogenesis
of NAFLD [3]. Studies have shown that the lipopolysaccharide (LPS) of gram-negative bacteria
in the intestine can be transported to the liver through the portal vein. Under condition of dys-
biosis, a large amount of Gram-negative bacteria may over proliferate and produce endotoxins,
results in metabolic disorders, obesity, diabetes, NALD and NASH [4]. Changes of intestinal
microbiota in the acute liver injured mice resulted in increased intestinal permeability and bac-
terial translocation [5]. In addition, the reaction of the mouse to high-fat diet (HFD) can be
determined by the different composition of the intestinal microbiota and levels of circulating
endotoxin level, which are significantly higher in NAFLD patients with excessive growth of
intestinal bacteria and enhanced intestinal permeability [6, 7]. Since the intestinal microbiota is
closely related to obesity, insulin resistance, NAFLD and NASH, it is possible to prevent the
occurrence of NAFLD by adjusting the intestinal microbial structure.

Probiotics and Chinese herb medicine may be promising approaches to affect intestinal
microbiota. There have been studies on the capacity of probiotics to attenuate the unbalanced
homeostasis and cholesterol levels in the body [8, 9]. Many probiotics were made into yogurt
using as food supplements for patients with hyperlipidemia and NAFLD [10]. On the other
hand, adding natural functional food additives with the characteristic of inhibiting fat accumu-
lation can result in satisfactory effect on the improvement of obesity, insulin resistance and
other metabolic diseases [11], which provides a new direction for the treatment of NAFLD.
Cassia obtusifolia L. belongs to a leguminous annual herb in tropical countries in Asia, its main
active ingredients are anthraquinone compounds, including obtusin, emodin and aloe-emodin
[12]. Its herbal ingredients are popular as a kind of functional beverage with the effects of
reducing serum levels of fat and cholesterol, anti-oxidation, anti-fungal, and neuroprotection
[13, 14]. Cassia obtusifolia L. can also protect the liver function in rats with liver injury, allevi-
ate obesity, insulin resistance and NAFLD by up-regulating the AMP-dependent protein kinase
(15, 16].

Although both probiotics and anthraquinone of Cassia obtusifolia L. (AC) have beneficial
effects for meliorating metabolic diseases such as obesity, insulin resistance and NAFLD, it is
still unclear whether application of them together as a symbiotic formulation could enhance
the NAFLD-preventing effect. We hypothesized that by combining the probiotics and AC, the
preventive or improving effects on NAFLD can be enlarged, and this may associated with the
improvement of the intestinal microbial structure and metabolism of energy by the liver. To
test the hypothesis, the screening and characterization of cholesterol-lowering probiotics were
conducted. Then, by treating the selected probiotics together with AC, the effects of the symbi-
otic formulation on HFD-induced NAFLD rats were tested.
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Materials and Methods
Material

AC was provided by Chongqing Academy of Chinese Materia Medica[17]. The Ammonium
iron (III) sulfate dodecahydrate and Cholesterol were purchased from Sigma (St. Louis, MO,
USA). The growth medium De Man Rogosa and Sharpe (MRS) broth were purchased from
Difco (USA).

Screening and characterization of cholesterol-lowering probiotics

The lactic bacteria (LAB) strains isolated from fermented food or healthy human intestine
were screened by MRS-cholesterol broth with the Ammonium ferric sulfate method [18]. The
properties of selected candidate strains, including tolerance to acid, bile, pepsin and trypsin,
cell adhesion ability were evaluated [19]. They were identified by 16S rDNA sequencing and
the sequences were submitted to NCBI under the GenBank Accession No.
KP967559-KP967561.

Animals experiments

30 male Sprague-Dawley rats (weighted of 120-140g) were obtained from the SPF animal cen-
ter of Dalian Medical University. After acclimatization for 1 week on a standard diet, the rats
were divided randomly into 5 experimental groups (6/group). Group 1 received a normal diet
(ND) (10% of calories derived from fat; D12450B). Group 2 received a HFD (45% of calories
derived from fat diet; D12451) to establish NAFLD models (All feeds purchased from Research
Diets, New Brunswick, NJ). Group 3 received HFD containing AC (0.2g/kg per day) [16].
Group 4 received HED containing cholesterol-lowering probiotics (P) (2x10'° CFU/ml in 0.9%
NaCl, 1 ml per day). Group 5 received HFD containing AC and P. Rats were euthanized on day
150 after the diet regimens were completed, and subjected to morphological, biochemical, and
molecular biological analyses. The study protocol was approved by the Animal Care Commit-
tee of the Dalian Medical University, China (SCXK-2008-0002).

Histological examination

Specimens were taken from the liver and intestine, and were fixed in 4% formaldehyde for

24 h. The tissue was embedded in paraffin and cut into 5 mm sections used for H&E staining.
A piece of the liver was snap frozen in liquid nitrogen; the cryosections were prepared for Oil
Red-O staining.

Biochemical analyses

The overnight-fasted rats were sacrificed by decapitation; the trunked blood was collected in
heparinized tubes, and centrifuged at 2,000xg at 4°C for 20 min. The serum was collected and
analyzed for total cholesterol (TC), total triacylglycerol (TG), high-density lipoprotein (HDL),
low-density lipoprotein (LDL), free fatty acid (FFA) and insulin (INS) by commercial reagent
kits (Jiancheng, China) according to the manufacturers’ instructions. Hepatic tumor necrosis
factor-o. (TNF-o) level was measured by ELISA using the Quantikine Rat ELISA kit (R&D Sys-
tems, Minneapolis, USA). Peripheral blood glucose concentration were determined using an
automated glycemia reader (Accu-Chek Active Blood Glucose Meter, ROCHE, Germany).
Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated using the fol-
lowing formula: [immuno-reactive insulin (mIU/L) xfasting blood sugar (mmol/L) +-22.5]
[20]. For assay of endotoxin, the blood samples were collected from the portal vein, and
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endotoxin were determined using the Limulus Amebocyte Lysate kit (LAL factory in Xiamen,
China) according to the manufacturer’s instructions.

Gene expression analysis by quantitative real-time PCR (QPCR)

Liver and intestine samples of rats were collected for mRNA quantification. Total RNA was
extracted using a RNAiso Plus kit (Takara, JAPAN) and was reverse transcribed into cDNA
using a PrimeScript™ RT Master Mix (Takara, JAPAN). The expression levels of CYP7A1,
LDL-R, HMGCR in liver and FXR in the intestine were analyzed by qPCR by SYBR"™ Premix
Ex Taq™ (Takara, JAPAN), the primers and PCR conditions are summarized in S1 Table.

Western blotting

The total protein was extracted from liver and intestine. Equal amounts of proteins were frac-
tioned with sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed
by electrophoretic transfer of proteins onto nitrocellulose membranes. The blots were probed
with antibodies against PPAR-a, PPAR-y, SREBP-1¢, ZO-1, Occludin (Abcam, Cambridge,
UK), and followed by incubation with secondary antibodies conjugated with horseradish per-
oxidase (HRP; ThermoFisher, USA). The immune complexes were detected with a Wester-
nBright™ ECL Western Blotting HRP Substrate kit and analyzed with image lab software (Bio-
Rad, USA).

Sequencing of the V4 region of 16S rDNA gene

Microbial genomic DNA was extracted from fecal samples using E.Z.N.A®. Mag-Bind™ Stool
DNA Kit (OMEGA, USA). The V4 hypervariable region of 16S rRNA gene were amplified
using the primers: 5-ACTCCTACGGGAGGC-AGCAG-3’ and: 5-AYTGGGYDTAAAGNG-
3’). PCR product was excised from a 1.5% agarose gel and purified by the QIAquick Gel Extrac-
tion Kit (QIAGEN, Germany) and was sequenced using pair-end method by Illumina Miseq
with a 6 cycle index read. Each sample’s trimmed sequence was compared to sequences were
assigned to different taxonomic levels (from phylum to species) using the Greengene database
[21]. Using QIIME, sequences were further clustered in at 97% of identity in operational taxo-
nomic unit (OTU) using uclust [22]. OTU were assigned to the closest taxonomic neighbours
and relative bacterial species using blast and up-to-date 16S rRNA gene RDP database [23, 24].
Estimates of phylotype richness were calculated according to the bias-corrected Chaol estima-
tor. Principal component analyses (PCA) with every group at different time points as instru-
mental variables (intraclass PCA) were computed and statistically assessed.

Statistical analysis

All data were evaluated as the mean + standard deviation (SD). Statistical analysis of the quan-
titative multiple group comparisons was performed using the one-way analysis of variance
(ANOVA) followed by Duncan’s test; whereas pairwise comparisons were performed using the
t test by SPSS 17.0 system (SAS Institute Inc, USA) and GraphPad Prism 5 (Graph Pad Soft-
ware, La Jolla, CA, USA). Results were considered to be statistically significant with p<0.05.

Results
Cholesterol-lowering strains DM9054 and 86066 were identified

From the collection of lactic acid bacteria which were originally isolated from the traditional Chi-
nese fermented foods or feces of healthy humans, 7 strains with cholesterol-lowering efficiency
over 55% were screened out. They were co-cultured with AC to test the cholesterol-lowering
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Table 2. Serum TC, TG, HDL, LDL, and FFA concentrations in SD rats fed the experimental diets.

Table 1. The abilities of candidate strains to reduce cholesterol.

Strains Strains in different media of cholesterol degradation rate (48h)

MRS-CHOL(%) MRS-CHOL+TAC(%)
DM9007 55.87+0.26 2 58.62+0.45 2
DM9054 55.48+0.40° 65.21+0.27 2
DM9073 56.04+0.35° 62.21+0.33 2
8503 56.52+0.27 2 61.97+0.31 2
84031 55.11+0.232 56.97+0.41 2
84034 59.91+0.29 2 56.53+0.25 2
86066 57.71+0.34° 68.69+0.47 2

MRS-CHOL, MRS broth at a final concentration of cholesterol was 0.1mg/ml. Results are expressed as

mean % SD (n = 7). Means within a row with different superscript letter significantly different (P <0.05)

doi:10.1371/journal.pone.0138078.t001

activity. As shown in Table 1, the cholesterol-lowering efficiency of DM9054, DM9073 and
86066 was improved significantly. The acid tolerance, bile tolerance (S2 Table) and adhesion
ability to Caco-2 cells (S1 Fig) of DM9054, DM9073 and 86066 were further evaluated. Results
showed that DM9054, 84034 and 86066 survived at pH 2, and strains 8503 and 84031 were

unable to survive in 0.3% bile salts, while DM9007, DM9054 and 86066 had the best cell adhesion
abilities. Therefore, DM9054 (Lactobacillus Rhamnosus GG, LGG) and 86066 (Lactobacillus plan-
tarum WCFS1, LP) were selected as the candidate strains for further research.

Co-administration of DM9054, 86066 and AC reduced blood lipid levels
and improved IR of rats

The effects of co-administration of DM9054 and 86066 with AC on blood lipids of rats fed
with HFD were given in Table 2. Compared with the ND group, the serum levels of TC, TG,
LDL and FFA of HFD Group increased significantly, while serum HDL decreased greatly
(P<0.05). Compared with the Group HFD, the serum TC, TG, LDL and FFA of Group HFD
+AC and Group HFD+P decreased, while serum HDL increased (P<0.05), and the changes of
these parameters in Group HFD+AC+P were more obvious. After administration of probiotics
DM9054, 86066 and/or AC, the abnormal intraperitoneal glucose tolerance of HFD rats was
significantly improved (Fig 1A). The five groups had no significant difference regarding the
levels of fasting blood glucose (P>0.05) (Fig 1B). The IR of Group HFD+AC, Group HFD+P

Lipid profile ND HFD HFD+AC HFD+P HFD+AC+P
TC(mg/dl) 127.95+4.529 223.1245.612 179.88+4.29° 160.96+6.87°° 150.62+5.63%
TG(mg/dl) 75.15+4.28¢ 136.8615.64% 111.93+4.22° 120.29+5.14° 102.45+4.39°
LDL(mg/dI) 57.33+3.67¢ 156.65+5.96% 121.73£3.89° 112.06+£3.91° 89.93+3.57°
HDL(mg/dI) 76.07+3.05% 49.01+3.12¢ 53.96+3.06° 59.97+4.79° 62.41+2.26°
FFA(mg/dl) 29.42+3.58° 60.94+4.282 46.85+3.91° 42.41£3.14° 37.37+3.87°°
LDL/HDL ratio 0.75+0.34° 3.20+0.32% 2.27+0.15° 1.88+0.29° 1.44+0.11¢
TC/HDL ratio 1.72+0.21¢ 4.49+0.41% 3.31+0.49° 2.72+0.19° 2.39+0.23°
TC, total cholesterol; TG, total triacylglycerol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; FFA, free fatty acid.

Results are expressed as mean+SD, n = 6. Means within a row with different superscript letters are significantly different (P<0.05).
doi:10.1371/journal.pone.0138078.t002
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Fig 1. Probiotics combined with AC ameliorated blood glucose levels and IR. (A) Intraperitoneal glucose tolerance test. (B) Fasting blood glucose
levels. (C) Fasting plasma insulin levels, and (D) HOMA-IR were assessed. The data are shown as meanSD, n = 6. Means within a row with different
superscript letters are significantly different (P<0.05).

doi:10.1371/journal.pone.0138078.g001

and Group HFD+AC+P was effectively improved, and among the groups, the IR-improving
effect of AC+P was the most remarkable (P<0.05, Fig 1C and 1D).

Co-administration of DM9054, 86066 and AC reduced hepatic steatosis
in rats

By HE staining and oil red O, it was found that the liver of Group HFD showed moderate
hepatic steatosis, a slight disorder of globular structure and the cytoplasm was full of small
lipid droplets or foamy lipid droplet vacuoles, the scattered chronic inflammatory cells were
seen in the infiltration. While the fatty degeneration and fat deposition of the other three inter-
vention groups were improved and the effect of AC+P was the most significant (Fig 2A). The
mRNA expression of genes involved in the regulation of liver cholesterol metabolism, includ-
ing genes encoding HMGCR, LDL-R, CYP7A1, and B-actin was detected by qPCR. The expres-
sion levels of CYP7A1 and LDL-R in Group HFD decreased significantly, while in the three
intervention groups, the levels of CYP7A1 and LDL-R were higher, opposite to the lower
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detected by western blotting. The B- actin was used as a loading control. Data are expressed as meanSD (n = 3). All mean values within treatment groups
with different lowercase letters are significantly different (P < 0.05).

doi:10.1371/journal.pone.0138078.9002

expression level of the HMG-CR mRNA. Among these three groups, the intervention of AC+P
was the most effective (P<0.05, Fig 2B). TNF-o. play an important role in hepatic steatosis,
HFD-induced increase in hepatic TNF-o production was significantly suppressed by choles-
terol-lowering probiotics combined with AC treatment (P<0.05, Fig 2C). The expression of
PPAR and SREBP-1C in liver of rats was detected by western blot. Result showed that PPAR-o.
expression in liver of rats fed with HFD increased drastically (P<0.05), while the levels of
PPAR-y and SREBP-1C reduced significantly (P<0.05). Among the three intervention groups,
increased expression of PPAR-0,, decreased expression of PPAR-y and SREBP-1C were
detected. Remarkable differences were detected between the HFD+AC+P group and other
groups (all P<0.05, Fig 2D).

Co-administration of DM9054, 86066 and AC improved the intestinal
mucosal barrier function, reduced the level of endotoxin and regulated
the expression of FXR

The intestinal mucosal barrier function, intestinal endotoxemia and FXR expression of ileum
play crucial roles in NAFLD progression. HE staining results showed that the intestinal muco-
sal villi of rats in Group ND were slim, neatly arranged and the surface structure was integral
with no congestion, edema and other changes. On the contrast, the intestinal mucosal villi of
rats in HFD Group appeared rupture, missing, and the epithelial cell necrosis were founded.
Through the intervention of probiotics or AC, the arrangement of the villi of the three inter-
vention groups had recovered, in which the effect of AC+P was the most obvious (Fig 3A). The
plasma level of endotoxin in HFD rats was obviously higher than Group ND, while through
the intervention of probiotics and AC, it decreased significantly (Fig 3B). When detecting the
expression of ileum FXR mRNA, significant higher level of FXR mRNA expression in Group
HEFD was observed, which was about 1.3 times of Group ND, while the FXR expression level in
the intervention group increased even higher, which was about 1.5-1.6 times of normal level
(Fig 3C).

Intestinal permeability is the main factor of the intestinal mucosal barrier function which is
mainly regulated by tight-junction (T]) proteins, including ZO-1 and occludin. Western-blot-
ting results showed that compared with Group ND, the expression of ZO-1 and occludin of
Group HFD decreased significantly, and increased in the three intervention groups, in which
the effect of AC+P was the most obvious (Fig 3D).

Co-administration of DM9054, 86066 and AC affected intestinal
microbial structure and diversity

Caecal samples from receiver rats on day 50, day 100 and day 150 were analyzed by pyrose-
quencing. A total of 7 583 846 sequences was obtained and after trimming, 5,740,971 sequences
were further analyzed. To evaluate similarity among 50 day, 100 day, 150 day samples, inter-
class PCA was performed based on their microbial composition, and the cluster analysis was
performed (Fig 4A). Results showed that Group HFD+AC+P was closer to the normal group.
The levels of the commensal microbes of rats in the five groups were detected, it turned out
that the Firmicutes of Group HFD increased obviously while the Bacteroidetes decreased
compared with the normal group. The intervention of P+AC attenuated the dysbiosis of rat
intestine, as seen the population of Bacteroides increased and the population of Firmicutes
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Fig 4. Probiotics and AC regulates the intestinal microbial composition and diversity. (A) PCA in the 50™ day, the 100" day and the 150™ day were
performed based on the genera abundance of the microbial genomes. (B) Main genus composition was a percentage of total assigned sequences. (C)
Bacterial phyla distribution as a percentage of total sequences. (D) Heatmap represents a sample of a color, abundance of a genus is a longitudinal sample
clustering situation, reflecting on the case of multiple samples at the level of community composition similarity. All presented results are statistically significant
(p<0.05) as assessed by the Wilcoxon test.

doi:10.1371/journal.pone.0138078.9004

decreased (Fig 4C). When analyzing the intestinal microbial taxa of rats, we found that the
Bacteroides, Lactobacillus and Parabacteroides of Group HFD decreased greatly compared with
Group ND, while Oscillospira increased obviously (all P<0.05), and the intervention of probi-
otics or AC effectively increased Bacteroides, Lactobacillus and Parabacteroides and decreased
Oscillospira. Among the intervention groups, the effect of AC+P was the most obvious (Fig
4B). The heat map analysis further confirmed our results (Fig 4D).

Discussion

The current NAFLD therapies include lifestyle modifications, physical activity and medical
intervention in general [25, 26]. However, the long-term lifestyle modification and physical
activity is hardly to be carried out, while most of the medicines have adverse effects which limit
using. Thus, it is necessary to explore novel remedies with less side effects and higher therapeu-
tic effect. A probiotic and functional food dietary intervention could be a promising and cost
effective approach in the management of NAFLD. Many probiotics were applied to regulate
lipid metabolism, but have rarely been tested for their cholesterol-lowering potential. Our data
show that by combining the cholesterol-lowering probiotics DM9054, 86066 and AC, the
development of HFD-induced NAFLD in rat was effectively prevented, and the effect of co-
administration was more significant compared with either probiotics or AC. However, metabo-
nomics and proteomics study of cholesterol-lowering probiotics alone and in combination
with AC can prevent NAFLD remains unclear, need further studies.

Hypercholesterolaemia, hypertriglyceridaemia, low HDL levels, and high LDL levels are
the most common impairments in lipid homeostasis in patients with hepatic steatosis [27].
Although it was not replicate the full spectrum of the disease in humans, high-fat diet induced
animal model of NAFLD has been widely used to identify the pathogenesis and evaluate new
treatments for NAFLD. In our model, HFD-fed rats developed hepatic steatosis, visceral obe-
sity, hyperlipidaemia, and increased FFA, which mimics almost all of the clinical aspects of
human NAFLD [28]. We observed that cholesterol-lowering probiotics alone and in combina-
tion with AC reduced the levels of TG, TC, LDL-C, and significantly suppressed FFA in the
plasma, whereas the plasma HDL level was obviously elevated in HFD-fed rats. Given that the
LDL/HDL ratio is positively correlated with the risk of coronary heart disease, even when TC
concentrations are elevated [29], and that the TC/HDL ratio is a sensitive predictor of athero-
sclerosis [30], the low ratios in HFD-fed rats treated with probiotics alone and in combination
with AC suggest that probiotics alone and in combination with AC has anti-atherogenic poten-
tial. Meanwhile, histological evidence suggests that probiotics alone and in combination with
AC significantly prevented hepatic lipid accumulation in HFD-fed rats. This beneficial effect
may be positively correlated with reductions in TG, TC, FFA, and LDL, and an elevation in
HDL synthesis. Administration of probiotics alone and in combination with AC significantly
suppressed the increase of IR in dietary obese rats after 150 days, suggests that the HFD-
induced hepatic steatosis maybe ameliorated via down-regulation of lipid accumulation in the
plasma and liver, and improvement of IR and glucose tolerance.

The cholesterol levels in the blood are regulated at different levels, including absorption,
synthesis, and excretion. However, the LDL receptor-mediated endocytosis controls plasma
cholesterol levels by hepatic absorption, and the LDL receptor is regulated by a transcriptional
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control mechanism [31]. A regulatory enzyme, HMG-CoA reductase, in the cholesterol synthe-
sis pathway catalyzes the synthesis of mevalonate from HMG-CoA and is regulated at the post-
transcriptional level [32]. Fecal bile excretion is the only direct path for decreasing the level of
cholesterol, and it is regulated by CYP7A1 and FXR [33, 34]. The expression levels of HMGCR
and LDL-R represent the cholesterol inputs to the liver, although the bile acid synthesis
(CYP7A1 and FXR) is an indication of a decrease in hepatic cholesterol. HFD decreases the
input of cholesterol to the liver, especially that from cholesterol synthesis. The reason may be
that the HFD causes too high a cholesterol level in the rat body, which is a negative feedback
on the HMGCR occurrence to prevent more cholesterol synthesis [35]. The present study dem-
onstrated that supplementation with probiotics and/or AC inhibited the HMGCR expression
compared with the HFD group. Cholesterol absorption through LDL-R was found to be
affected by dietary cholesterol supplementation, however, the LDL-R mRNA expression was
up-regulated in the group supplemented with probiotics and/or AC. The reaction by CYP7A1
is a rate-limiting step in bile acid synthesis from cholesterol, and its expression and activity can
be increased by endogenous and dietary cholesterols. HFD supplementation increased bile acid
synthesis and supplementation with probiotics and/or AC also increased the CYP7A mRNA
expression. However, FXR could sense the bile acid, which is secreted from the bile duct and
flowed into the intestinal tract, and then this information is feedback to the liver to slow down
both CYP7A1 expression and excessive generation of bile acid [33, 36]. We observed that, com-
pared with the ND group and the HFD group, there was up-regulation of FXR expression in
probiotics and/or AC groups, which suggests more stimulation in the bile acid environment in
the intestinal tract to keep dynamic equilibrium at a higher level with CYP7A1 expression; in
this way, it can prevent excessive bile acid generation. Therefore, the mechanism by which the
administration with probiotics alone or in combination with AC improves NAFLD may be
promoting via the excretion and absorption of cholesterol in the liver to reduce cholesterol
synthesis.

PPAR controls the expression of many target genes that are involved in the lipid metabolism
and among these genes, PPAR-y is mainly related to the fat formation while PPAR-o mainly
controls fat absorption and B oxidation in peroxisome [37]. The present study demonstrated
that there were significantly lower PPAR-o expression levels in the rats’ livers of the HFD
group than those in the normal diet group while PPAR-y expression levels were significantly
higher than that in the ND group. It is also observed that for all rats adopting HFD, there was
up-regulation of PPAR-a levels, but down-regulation of PPAR-y levels with a significant differ-
ence in probiotics and/or AC treated groups. Wang, et al. [38] also found that there was an
increase of FFA content and hepatic lipid in the serum and liver of the PPAR-o.-deficient rats.
Besides, SREBP-1C is closely related to fatty acid metabolism and glycometabolism, and is the
major transcriptional regulation factor for the fat synthesis genes [39]. Under the normal con-
dition, there is a low SREBP-1C expression level in the rat liver but after the adoption of HFD,
there may be a significant rise in the expression of SREBP-1C, which has a close relationship
with NAFLD [40]. After the application of probiotics alone or in combination with AC, it is
found that there was a significant decline in the SREBP-1C levels, which greatly improved in
the fatty liver. It may be that the overexpression of FXR inhibits SREBP-1C in the triglyceride
generation [41].

Different dietary composition can modulate the divergent composition of gut microbiota
[42]. The changes in the overall composition of gut microbiota induced by HFD versus normal
chow may act as an important mediator in the etiology of NAFLD and related metabolic dis-
eases via disrupting the host lipid metabolism regulation and inducing low-grade inflamma-
tion[43]. In the present study, we also observed the impact of AC on the composition of the
intestinal microbiota, it seems to play a role in the prevention of NAFLD. This conclusion can
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be drawn from the fact that AC induced an increase of the total amount of the intestinal micro-
biota and, especially, a shift towards the beneficial bacteria phyla Firmicutes and Bacteroidetes.
Previously, there had not been such a report on the AC impact on the intestinal microbiota.
The herein described effects of AC may thus be indirectly due to an attenuation of the altered
barrier function caused by HFD. Indeed, we found that the expressions of major tight junction
proteins, occludin, are enhanced if AC is administered to HFD-receiving rats. In addition, AC
also inhibits the inflammatory activity of TNF-o so as to improve NAFLD. TNF-o and IL-6,
important cytokines related with live inflammation, were considered as the factors that con-
tribute to steatohepatitis. Especially, TNF-o mediates the early stage of fatty liver disease as
well as the transition to a more advanced stage of liver disease, and stimulates the release of
cytokines such as IL-4 and IL-6[44]. Research indicated that the serum or plasma TNF-o and
IL-6 levels was higher in NASH compared healthy subjects and it was shown to correlate with
liver fibrosis in advanced NAFLD [45, 46]. Although IL-6 was not detected in our study, the
TNF-o results still suggested that the beneficial effects of AC on the intestinal barrier function,
possibly result in the here shown decreased translocation of LPS from the gut to the liver and
thus a decreased liver inflammation and steatosis. This may be a new mechanism for AC
improve NAFLD, suggesting AC metabolic process can serve as a regulator of the intestinal
microbiota, which in turn reduces the release of inflammatory cytokines and decreases the
translocation of LPS to prevent NAFLD. As for probiotics, the above results have been reported
[47, 48], and as shown earlier, this improvement of NAFLD has been strengthened at the cho-
lesterol-lowering probiotics combination with AC.

In conclusion, the present data show that the cholesterol-lowering probiotics alone and in
combination with AC protect against HFD-induced NAFLD. The underlying mechanisms
involve not only keeping a homeostasis of the intestinal microbiota, modulation of intestinal
barrier function and reducing intestinal endotoxemia, but also decreasing the release of inflam-
matory cytokines, regulation of lipid metabolism and improving IR through increasing the
expression levels of both CYP7A1 and LDL-R in the liver, decreasing the expression levels of
HMG-CR, up regulating PPAR-a: levels while down regulating PPAR-y and SREBP-1C levels.
Therefore, an optimized blend of the cholesterol-lowering probiotics and AC could be
exploited as a potential biotherapeutic remedy to decrease cholesterol levels and lower the risk
of NAFLD, although the field is open for further studies.
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