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Abstract

We study errors-in-variables problems when the response is binary and instru-

mental variables are available. We construct consistent estimators through taking

advantage of the prediction relation between the unobservable variables and the in-

struments. The asymptotic properties of the new estimator are established, and il-

lustrated through simulation studies. We also demonstrate that the method can be

readily generalized to generalized linear models and beyond. The usefulness of the

method is illustrated through a real data example.
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1 Introduction

Logistic and probit models are widely used in regression analysis with binary response. They

belong to the family of generalized linear models. In real data analysis, particularly in the

analysis of medical and clinical data, a ubiquitous problem is that some or all covariates can-

not be directly or precisely measured and indirect or proxy measurements are used instead.

For example, in studies of human immunodeficiency virus (HIV) and acquired immunode-

ficiency syndrome (AIDS), important variables such as CD4 lymphocyte count cannot be



accurately measured due to instrument’s limitation or individual biological variation. Other

well-known examples include blood pressure and cholesterol level in cardiovascular disease

research. It is well-known that ignoring the measurement error and simply replacing the

true covariates with their mismeasured proxies will lead to biased estimates and thus invalid

conclusions (Stefanski & Buzas, 1995).

Although the problem of measurement error in general has been extensively studied in

the literature, research focusing specifically on binary regression with instrumental variables

is limited. Stefanski & Carroll (1985) and Stefanski & Buzas (1995) proposed approximate

estimators for functional logistic models, while Stefanski & Carroll (1987) and Ma & Tsiatis

(2006) studied consistent estimators for generalized linear models based on conditional score

functions under the assumption of normal measurement errors or unknown measurement er-

ror distribution. Huang & Wang (2001) proposed alternative estimating function correction

schemes to obtain consistent estimators for the cases where the measurement error distri-

bution is known or the replicate data are available. These works did not use instrumental

variable approach, although Huang & Wang (2001) discussed the possibility in their setup.

Buzas & Stefanski (1996) considered instrumental variable approach to functional general-

ized linear models. However, their approach requires the normality assumption for both the

measurement error and instrumental variables.

Since the true covariates and measurement errors are unobservable, it is difficult to verify

their distributions in real applications. Therefore, an interesting question is whether it is

possible to obtain consistent estimators without normality or any parametric assumption for

either the unobserved covariates or measurement errors. In this paper, we demonstrate that

this is possible in a wide range of models by using instrumental variables. In particular, we

show that this can be achieved by employing a prediction relationship for the unobserved

covariates using the instruments. Similar use of the instruments in some special models

also appeared in Buzas (1997). This way of incorporating instrumental variables is different

than most other methods mentioned above, and its applicability in the generality of the

model has also not been achieved before. Thus, our work is the first in using instruments in
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the general regression models with measurement error and binary response, where the link

between the response and the covariates does not need to belong to any special regression

family.

Instrumental variable approach has been used by other authors to deal with errors-

in-variables problem in general nonlinear models, e.g., Amemiya (1985), Amemiya (1990),

Schennach (2007), Wang & Hsiao (2011), and Abarin & Wang (2012). In particular, Schen-

nach (2007) and Wang & Hsiao (2011) show that the nonlinear measurement error models

are generally identified when instrumental variables are available. In recent years, instru-

mental variable approach has drawn more and more attention in the literature, partly due

to its methodological flexibility and practical applicability. In practice, any observable vari-

ables that are correlated with unobserved covariates but independent of measurement error

can be used as instruments. In particular, the replicate measurements can be regarded as

special instruments.

Instrumental variable method is commonly used in econometrics to treat the so-called

endogeneity problem in regression models where some of the regressors are correlated with

error terms for a variety of reasons. Theoretically this problem can be mitigated by incorpo-

rating instrumental variables because they are uncorrelated with the error terms. However,

real application of this method was limited because instrumental data were rarely avail-

able in practice. In recent years, however, such data become widely available because large

number of associated variables and their repeated measurements are collected in practical

studies, such as panel data in economics and longitudinal data in medical and clinical re-

search. In general, when many instruments are available, then there is a question of how to

select optimal ones for a given problem. Intuitively, the variables strongly correlated with

the unobserved or omitted covariates should be used. However, although theoretically an

increasing number of instruments increases efficiency of the estimators asymptotically, too

many instruments may lead to large finite sample bias or variance. Also, weak instruments

may result in undesired finite sample properties of the estimators. This is usually referred as

“the weak instruments problem”, See, e.g., Chao & Swanson (2005), Murray (2006), Donald
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et al. (2009) for elaboration on this issue.

The rest of paper is organized as the following. We present the model we study and our

main methodology in Section 2. In this section, we also establish the asymptotic properties

of our estimator. Numerical work including both simulations and real data analysis is

given in Section 3. We conclude the paper with some discussions on the generalization and

possible extension of the method in Section 4. All the technical details are given in the

online supporting informaiton.

2 Main Results

2.1 The Model

The model we study can be explicitly written as

pr(Y = 1 | X = x,Z = z) = H(xTβ + zTγ) (1)

where H is a known inverse link function, for example, the inverse logit link function H(·) =

1−1/{exp(·)+1} or the inverse probit link function H(·) = Φ(·). While the response variable

Y and the covariate Z are observed, the covariate X is a latent variable. Instead of observing

X, we observe an erroneous version of X, written as W and an instrumental variable S.

The variables W and S are linked to X through

W = X + U and X = m(S,Z,α) + ε, (2)

where m is a known function up to an unknown parameter α. Here we assume the condi-

tional mean of ε and the marginal mean of U to be zero, i.e. E(ε | S,Z) = 0, E(U) = 0.

We further assume that (S,Z,X) is independent of U, U is independent of ε, W is inde-

pendent of (S,Z) given X, and Y is independent of (S,W) given (X,Z). The observed

data are (Zi,Si,Wi, Yi), i = 1, . . . , n. They are independent and identically distributed

(iid) according to the model described in (1) and (2). Our main interest is in estimating
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θ = (βT,γT)T. The problem considered here can be viewed as a generalization of the one

considered in Buzas & Stefanski (1996), in that we have much less stringent conditions. For

example, we do not impose the normality assumption on X,S, ε,U, while this is required

there. Note also that parametric assumption of the regression function m in (2) is not

restrictive, because it can be easily checked using data on (W,S,Z) (see (3) below).

2.2 A Simplification

To proceed with estimation, we first recognize that from the relations described in (2), we

have

W = m(S,Z,α) + U + ε, (3)

where E(U + ε | S,Z) = 0. It is easy to see that this is a familiar mean regression model,

so we can use least squares method to get a consistent estimator of α. Specifically, we can

solve the estimating equation

n∑
i=1

Sα(Si,Zi) =
n∑
i=1

∂mT(Si,Zi,α)

∂α
Ω(Si,Zi){Wi −m(Si,Zi,α)} = 0, (4)

where Ω(S,Z) is any weight matrix, to obtain a consistent estimator α̂. Obviously, if we

set Ω(S,Z) to be the identity matrix, we obtain the ordinary least squares (OLS) estimator

of α, while if we set Ω(S,Z) to be the inverse of the error variance-covariance matrix

conditional on (S,Z), we obtain the optimal weighted least squares estimator (WLS) of α.

Once we have an estimate α̂, we can plug the relation between X and (S,Z) into model (1)

to obtain the joint distribution of (Y,S,Z) as

pr(Y = y,S = s,Z = z) (5)

= fS,Z(s, z)

∫ [
1− y + (2y − 1)H{m(S,Z, α̂)Tβ + zTγ + εTβ}

]
fε(ε | s, z)dµ(ε),
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where fε(ε | s, z) is a conditional probability density function (pdf) that satisfies
∫
εfε(ε |

s, z)dµ(ε) = 0, and fS,Z(s, z) is the joint pdf of (S,Z).

2.3 Semiparametric Derivation

We now derive the estimation procedure for β,γ from the above form. For simplicity, we

write θ = (βT,γT)T and assume θ ∈ Rp. Then the pdf in (5) involves the unknown pa-

rameter θ and unknown functions fε(·), fS,Z(·), while we are only interested in θ. Thus,

fε(·), fS,Z(·) can be viewed as two infinite dimensional nuisance parameters. This allows

us to view the model as a semiparametric model and use the existing semiparametric ap-

proaches (Bickel et al., 1993, Tsiatis, 2006). In the measurement error framework, semi-

parametric methods were first introduced in Tsiatis & Ma (2004) in the context of a known

error distribution. Following the semiparametric approach, our estimator will be based on

the efficient score function. In general, the efficient score function can be obtained through

projecting the score function Sθ(Y,S,Z) ≡ ∂logfε,S,Z{ε, s, z;θ, fε(·), fS,Z(·)}/∂θ onto the

orthogonal complement of the nuisance tangent space. The nuisance tangent space is de-

fined as the mean square closure of the nuisance tangent spaces associated with all possible

parametric submodels of a semiparametric model (See Tsiatis, 2006, Chapter 4), and is

often hard to obtain. In the online supporting information, we derive the nuisance tangent

space associated with model (5) as

Λ = Λ1 ⊕ Λ2

= {f(S,Z) : f ∈ Rp, E(f) = 0, E(fTf) <∞, ∀f}

⊕[E{f(ε,S,Z) | Y,S,Z} : f ∈ Rp, E(f | S,Z) = 0, E(εfT | S,Z) = 0, E(fTf) <∞, ∀f ].

Here, we use the notation ⊕ to emphasize that an arbitrary function f1(S,Z) in Λ1 and

an arbitrary function f2(ε,S,Z) in Λ2 satisfy E{f1(S,Z)fT
2 (ε,S,Z)} = 0. The orthogonal
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complement of Λ can then be derived as

Λ⊥ = {f(Y,S,Z) : f ∈ Rp, E(f | ε,S,Z) = a(S,Z)ε, E(aTa) <∞},

where a(S,Z) contains p rows and conforms with the dimension of ε. We also need to

calculate the score function with respect to θ, which has the form

Sθ(Y,S,Z)

= (2Y − 1)

∫  m(S,Z, α̂) + ε

Z

H ′{m(S,Z, α̂)Tβ + ZTγ + εTβ}fε(ε | S,Z)dµ(ε)

∫
[1− Y + (2Y − 1)H{m(S,Z, α̂)Tβ + ZTγ + εTβ}] fε(ε | S,Z)dµ(ε)

.

The efficient score can now be obtained by projecting Sθ to Λ⊥, and can be verified as

Seff(Y,S,Z) = Sθ(Y,S,Z)− E{b(ε,S,Z) | Y,S,Z},

where b(ε,S,Z) satisfies

E [ Sθ(Y,S,Z)− E{b(ε,S,Z) | Y,S,Z} | ε,S,Z] = a(S,Z)ε (6)

for some function a(S,Z). Unfortunately, a(S,Z) is unspecified in (6), hence we cannot

directly solve for b(ε,S,Z) from (6). In order to determine the function a(S,Z), we multiply

ε on both sides of (6), take expectation conditional on (S,Z), and obtain

E
[
Sθ(Y,S,Z)εT − E{b(ε,S,Z) | Y,S,Z}εT | S,Z

]
= a(S,Z)E(εεT | S,Z).

This implies

a(S,Z) = E
[
Sθ(Y,S,Z)εT − E{b(ε,S,Z) | Y,S,Z}εT | S,Z

] {
E(εεT | S,Z)

}−1
.
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We can now plug the form of a(S,Z) into (6) to obtain an explicit integral equation

E [ Sθ(Y,S,Z)− E{b(ε,S,Z) | Y,S,Z} | ε,S,Z]

= E
[
Sθ(Y,S,Z)εT − E{b(ε,S,Z) | Y,S,Z}εT | S,Z

] {
E(εεT | S,Z)

}−1
ε.

This integral equation no longer contains unspecified component, and b(ε,S,Z) can be

obtained as a solution to the equation.

2.4 Estimation Under Working Model

The above derivation is performed under a true density fε(ε | S,Z) which is usually un-

known. In order to be able to compute Sθ or Seff , we propose to use a working model

f ∗ε(ε | S,Z), which may or may not be equal to fε(ε | S,Z), and perform all the calculations

under this working model. The name “working model” means that f ∗ε(ε | S,Z) is not a part

of the model assumption. It is merely used for constructing our estimator. This is in con-

trast to fε(ε | S,Z), which is the true model that defines the data generation process. Using

∗ to denote all the affected quantities by the substitution of fε(ε | S,Z) with f ∗ε(ε | S,Z),

our estimation procedure is the following.

1. Propose a working model f ∗ε(ε | S,Z) that has mean zero. For example, we can

propose f ∗ε(ε | S,Z) to be a normal pdf with mean 0 and variance I.

2. Calculate the score function S∗θ(Y,S,Z) under the working model.

3. Obtain b(ε,S,Z) through solving the integral equation

E [ S∗θ(Y,S,Z)− E∗{b(ε,S,Z) | Y,S,Z} | ε,S,Z] (7)

= E∗
[
S∗θ(Y,S,Z)εT − E∗{b(ε,S,Z) | Y,S,Z}εT | S,Z

] {
E∗(εεT | S,Z)

}−1
ε.

4. Form

S∗eff(Y,S,Z) = S∗θ(Y,S,Z)− E∗{b(ε,S,Z) | Y,S,Z}
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and solve the estimating equation

n∑
i=1

S∗eff(Yi,Si,Zi,θ) = 0

to obtain the estimator θ̂.

In the above step 3, we solved the integration equation (7) via converting it to a linear

algebra problem. Specifically, based on the working model, we first discretize the distribution

of ε on m points ε1, . . . , εm. A typical practice is to choose m equally spaced points on the

support of the distribution. We then calculate the probability mass πi(S,Z) at each of

the m points and normalize the πi(S,Z)’s so that
∑m

i=1 πi(S,Z) = 1. This allows us to

approximate the calculation of E∗ with Ê∗. For example, denoting

f̂ ∗ε,Y (εi, Y | S,Z) =
[
1− y + (2y − 1)H{m(S,Z, α̂)Tβ + zTγ + εT

i β}
]
πi(S,Z),

we replace E∗{b(ε,S,Z) | Y,S,Z} with

Ê∗{b(ε,S,Z) | Y,S,Z} =

∑m
i=1 b(εi,S,Z)f̂ ∗ε,Y (εi, Y | S,Z)∑m

i=1 f̂
∗
ε,Y (εi, Y | S,Z)

.

Let B(S,Z) = {b(ε1,S,Z), . . . ,b(εm,S,Z)}T, C(S,Z) = {c(ε1,S,Z), . . . , c(εm,S,Z)}T,

where

c(εi,S,Z) = E { S∗θ(Y,S,Z) | εi,S,Z} − E
{
S∗θ(Y,S,Z)εT | S,Z

}{
E∗(εεT | S,Z)

}−1
εi.

Further, let A(S,Z) be an m×m matrix whose (i, j) block is

E

{
f̂ ∗ε,Y (εj, Y,S,Z)∑m
i=1 f̂

∗
ε,Y (εi, Y,S,Z)

| εi,S,Z

}
− Ê∗

{
f̂ ∗ε,Y (εj, Y,S,Z)∑m
i=1 f̂

∗
ε,Y (εi, Y,S,Z)

εT | S,Z

}{
Ê∗(εεT | S,Z)

}−1

εi.
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The integral equation (7) can then be converted into a linear algebra problem

A(S,Z)B(S,Z) = C(S,Z),

and we can readily solve it for b(εi, S, Z)’s.

2.5 Asymptotic Properties

We now study the asymptotic properties of the estimators proposed in Section 2.4. We first

list the regularity conditions required.

C1. The regression error ε under the working model f ∗ε(ε | S,Z) has component-wise

bounded positive-definite variance-covariance matrix.

C2. The efficient score function calculated under the working model f ∗ε(ε | S,Z) is differ-

entiable with respect to θ and the derivative matrix has component-wise bounded and

invertable expectation.

C3. The efficient score function calculated under the working model f ∗ε(ε | S,Z) has

component-wise bounded positive-definite variance-covariance matrix.

C4. The matrix E{∂ Sα/∂αT} is invertable.

Although the working model f ∗ε(ε | S,Z) does not necessarily equal to the true model

fε(ε | S,Z), the above procedure still yields a consistent estimator θ̂. Let a⊗2 = aaT for all

matrix or vector a throughout the text. Then we have the following result.

Theorem 1. Under regularity conditions C1-C3, if α is known, then θ̂ obtained from the

procedure described above satisfies

√
n(θ̂ − θ)→ N{0,A−1B(A−1)T}
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when n→∞. Here

A = E

{
∂ S∗eff(Y,S,Z)

∂θT

}
, B = E{ S∗eff(Y,S,Z)⊗2}.

In addition, when f ∗ε(ε | S,Z) = fε(ε | S,Z), the variance is [E{ Seff(Y,S,Z)⊗2}]−1
, which

is the minimum semiparametric variance bound for estimating θ.

In practice, α is unknown and θ̂ is obtained from using α̂, an estimator obtained from

solving (4). Hence additional variability associated with estimating α occurs and needs to

be taken into account. In this case, we have the following result.

Theorem 2. When α is estimated from (4) and α̂ is used in the estimation procedure, then

under the regularity conditions C1-C4, the resulting plug-in estimator θ̂(α̂) satisfies

√
n{θ̂(α̂)− θ} → N(0,V)

when n→∞. Here V = A−1B(A−1)T + Vα and

Vα = A−1
{
A1A

−1
2 B2(A1A

−1
2 )T −A1A

−1
2 B1 − (A1A

−1
2 B1)T

}
(A−1)T,

where A,B are given in Theorem 1, A1 = E{∂ S∗eff/∂α
T}, A2 = E{∂ Sα/∂αT}, B1 =

E( Sα S∗Teff ), B2 = E( S⊗2
α ). In addition, when f ∗ε(ε | S,Z) = fε(ε | S,Z), the resulting

estimation variance is minimized among all the plug-in estimators.

The proofs of the above two theorems are given in the online supporting information.

3 Numerical Examples

We now demonstrate our method numerically through both simulated and real data exam-

ples. In all simulated examples, 1000 data sets were generated with sample size n = 1000.
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3.1 Simulated Example One

In our first simulation, we generated the observations (Zi, Si,Wi, Yi) from the model

Pr(Yi = 1 | Xi = xi, Zi = zi) = H(βxi + γzi),

Wi = Xi + Ui,

Xi = α1 + α2Si + εi.

Here, H(·) is respectively set to be the inverse logit and the inverse probit link function,

and α1 = 1, α2 = 1, β = 0.3, γ = 0.5. The observable covariate Zi and the instrument

variable Si are generated from the standard normal distribution. We generated Ui from a

normal distribution with mean zero and variance 0.6. We further generated εi respectively

from a normal distribution with mean 0 and variance S2
i /2, and a t5 distribution multiplied

by (|Si|/3)1/2. Those two cases correspond to a normal and a non-normal regression model

Wi = α1Si + α2Zi + Ui + εi with heteroscedastic error. finally, we proposed a normal

working model on εi. Thus, the estimation in the two cases corresponds to a correct and a

misspecified working model.

The combination of the logit and probit link functions with the normal and non-normal

regression errors yields four different cases, and the performances of our method in all

four scenarios are summarized in Table 1. Because the OLS and WLS are the most popular

methods of estimating (α1, α2)T, we calculated both of them in our simulation and compared

the performance with the estimation under the known α.

Table 1 insert here.

Based on Table 1, it is obvious that the estimators for (β, γ) have very small bias in

all cases. In addition, the empirical and average estimated standard errors match closely,

and the empirical coverage of the 95% confidence intervals are very close to the nominal

level. All these indicate satisfactory accuracy of our inference results in the finite sample

situations.
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In the logistic model context, Buzas (1997) developed an adjusted score method. For

comparison, we included the adjusted score results in our simulation, see Table 1. Its

performance in terms of means, estimation variability and coverage probabilities are similar

to our method. The drawback of the adjusted score method is its limited applicability. For

example, it can only be used for the logistic link function.

One can observe an interesting phenomenon regarding the relative efficiency of the esti-

mators for β and γ under different α estimators in comparison with the known α case. On

the one hand, it is clear that for estimating α, the WLS is much more efficient than the

OLS estimator. On the other hand, the difference in the estimation variability for α̂ does

not seem to influence much the estimation variability for β̂ and γ̂. In fact, even when the

estimation is conducted under the known α, the variability of β̂ and γ̂ does not seem to

improve much in this simulation example. However, we point out that this is not always the

case. For example, when we generate Ui from a centered normal distribution with variance

8, the estimation variability of β̂ and γ̂ decreased visibly when α is known, see Table 2 for

details. In fact, how does the variability of α̂ affect that of β̂ and γ̂ is difficult to quantify,

despite the analytic result in Theorem 2.

Table 2 insert here.

3.2 Simulated Example Two

Our second simulation is designed to reflect the structure of the AIDS data which will be

analyzed next. We generated the observations (Zi, Si,Wi, Yi) from the model

pr(Yi = 1 | Xi = xi, Zi = zi) (8)

= H{xi(β4 + β1z1i + β2z2i + β3z3i) + βc4 + βc1z1i + βc2z2i + βc3z3i},

Wi = Xi + Ui, (9)

Xi = α1 + α2Si + εi. (10)
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Here, H(·) is chosen to be the inverse logit link function. We set (α1, α2) = (1.0, 1.0) and

(β1, β2, β3, β4, βc1, βc2, βc3, βc4) = (−0.5, 0.6,−0.4, 0.3, 1.0,−1.0, 0.5,−0.5). The observable

covariates z1i, z2i and z3i are all dichotomous variables, where z1i = z2i = z3i = 0 indicates

that the ith individual receives the reference treatment (treatment 1) and zki = 1 (k = 1, 2, 3)

means that the ith individual receives treatment k+1. For the ith observation, at most one

of the three Zki(k = 1, 2, 3) is 1, and the chances of receiving each of the four treatments

are equal. The instrumental variable Si is generated from the standard normal distribution,

and we generated εi from the normal distribution with mean 0 and variance S2
i /8, and Ui

from a normal distribution with mean 0 and variance 0.4.

The simulation results are summarized in Table 3. It is evident that all the estimators

show little bias. Although there are 10 unknown parameters in the problem, which is a

relatively large number, the inference performance of our method is still satisfactory. In

particular, the empirical and average estimated standard errors are close to each other, and

the coverage rate of the 95% confidence intervals are all around the nominal level. We

further conducted the simulation by replacing the logit link with a probit link, and observed

very similar results, which are omitted here. Since this simulation is designed to have similar

structure as the AIDS data, it provides certain confidence in our real data analysis result

in the next subsection.

Table 3 insert here.

3.3 Real Data Analysis

We applied our method on the data set from an AIDS Clinical Trials Group (ACTG) study.

This study evaluated four different treatments on HIV infected adults whose CD4 cell counts

were from 200 to 500 per cubic millimeter. These four treatments are “ZDV”, “ZDV+ddI”,

“ZDV+ddC” and “ddC”, labeled as treatment 1 to 4 in this order. Treatment 1 is a standard

treatment hence is considered as the reference treatment; see Hammer et al. (1996), Huang

& Wang (2000) and Huang & Wang (2001) for more detailed descriptions of the data set.

We included 1036 patients who had no antiretroviral therapy at enrollment in our analysis.
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We are interested in studying the treatment difference in terms of whether a patient has his

CD4 count drop below 50%, a clinically important indicator for the HIV infected patients,

develops AIDS or dies from HIV related disease (Y = 1). Thus, our main model is given

in (8), where Zik has the same meaning as in the second simulation study. Here, X is the

baseline log(CD4 count) prior to the start of treatment and within 3 weeks of randomization.

Of course X is not measured precisely, and we use the average of two available measurements

as W . From the two repeated measurements, the measurement error variance is estimated

as 0.3. In addition, a screening log(CD4 count) is available and is used as the instrumental

variable S. The relationship between W and S is depicted in Figure 1. Apparently, a linear

model will fit the data well. Therefore we assume the relation between W , X and S,Z can

be described using (9) and (10).

Figure 1 insert here.

We conducted the analysis under both the logit and probit models, but report only the

results in the logit model because the probit model yields very similar results. The estimate

for (α1, α2) is (0.0001, 0.67) with the standard error (0.02, 0.02) using the OLS method. The

result from the WLS is very similar. The subsequent estimate of β is given in Table 4.

We further plotted the corresponding relations between the baseline log CD4 counts (X)

and the estimated linear function of X under the four treatments in Figure 2. Different

methods of estimating the α parameter make little difference in the β estimation since

the estimations from OLS and WLS are themselves very similar. This is reflected in the

information in both Table 4 and Figure 2. As manifested in the plots in Figure 2, treatment

1 shows a negative slope, indicating that the standard treatment seems to be more effective

for patients with larger baseline CD4, or patients whose situation is less severe. On the

contrary, the treatments 2 and 4 show positive slopes, indicating that these treatments are

more effective for patients with smaller baseline CD4 counts, or patients with more grave

situation.

Table 4 insert here.
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Figure 2 insert here.

In both the OLS (left plot in Figure 2) and the WLS (right plot in Figure 2) estimation,

the lines from treatment 1 and the other three treatments intercept around x = −0.5, cor-

responding to the baseline CD4 level of 288. Thus, for patients with a baseline CD4 count

larger than 288, treatment 1 is probably a good treatment since the corresponding proba-

bility of having a ≥ 50% drop of CD4 count is quite small compared to other treatments.

On the other hand, if a patient’s baseline CD4 count is smaller than 288, there is probably

good reason to use the new treatments.

To further confirm our intuitive conclusion from observing the plots, we perform sta-

tistical inference regarding the four treatments. Our first attempt is to test the treatment

differences between treatment k, (k = 2, 3, 4) and treatment 1. From the second row of

Table 4, it is clear that at 95% confidence level, all of the three new treatments (k = 2, 3, 4),

are significantly different from the standard treatment.

Considering that our original goal of the study is to discover better new treatments

(k = 2, 3, 4) than the standard one, we further constructed one-sided confidence intervals.

The third row in Table 4 summarizes the one-sided confidence intervals. The fact that under

both OLS and WLS, βc1, βc2 and βc3 are significantly smaller than zero suggests that at

95% confidence level, treatments 2, 3 and 4 are better than treatment 1 for severe patients,

in that these three treatments decrease the probability of severe CD4 count declination for

patients with low baseline CD4 counts. On the other hand, with high baseline CD4 counts,

no certain variation in the treatment effect can be declared since the intervals regarding β1,

β2 and β3 include zero. In other words, the improvement of the new treatments only applies

to patients with low CD4 counts and is more significant if the patients’ situation are more

grave in terms of their baseline CD4 counts. For patients whose baseline CD4 counts are

sufficiently high, the standard treatment could be a preferred choice.
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4 Discussion

The problem of measurement error arises in real data analysis in many scientific disciplines.

Generally speaking, there are two approaches to dealing with this problem. The first ap-

proach assumes the distribution of the unobserved covariates or of the measurement error

to be known, or can be estimated using replicate data. Therefore this approach has limited

applicability in practice. Another approach uses the instrumental variables which are easier

to obtain than replicate data. Hence this approach has wider applicability in practice.

Although the instrumental variable approach has been widely used in nonlinear mod-

els, its applicability in binary response models is unclear. In this paper we demonstrate

that this is possible without making any parametric assumption for the distribution of the

unobserved variables in the model. In particular, the proposed estimator is fairly efficient

under semiparametric setup. The simulation studies show satisfactory performance of the

proposed estimator in finite sample situation.

Through combining the relations of the unobservable variable X with the observed W

and with the instruments S, we establish a direct relation between W and S, and estimate

the parameter α before performing the estimation for the parameter of interest β. Although

Theorem 2 clearly indicates that this estimated α alters the final estimation variability of

β̂, it is still unclear if such alteration is detrimental or beneficial. The only clear message is

that if a true error distribution fε(ε | S,Z) is implemented, then the estimation of α causes

estimation variance inflation for β. Overall, how to best handle the estimation of α so that

under a same working model f ∗ε(ε | S,Z), the estimation variability of β is minimized is

still unknown. Further study is certainly needed.

Although we present our main estimator in the context of logistic or probit models, the

method is certainly not restricted only to these contexts. In fact, any regression model of Y

conditional on X,Z can be handled by our method via a suitable H function. This indicates

that Y is also not restricted to binary variables. Thus, for example, the method can readily

be extended to generalized linear models.
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Figure 1: Plot of the covariate averaged baseline CD4 count versus the instrument variable
screening CD4 count. Unit is ’Cells per cubic millimeter’.
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Figure 2: Plots of the linear function of x inside the link H in four treatments, where x is the
baseline CD4 count in the logarithm scale. The OLS (left) and the WLS (right) methods
are used to estimate α.
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Table 1: Simulation One: Estimation and inference results on α̂1, α̂2, β̂, γ̂. The estimation
mean, median, empirical standard error, estimated standard error and coverage rate of the
95% confidence intervals are reported. α0 means the true α’s are used. “as” stands the
adjusted score method, implemented in the logit model only.

α1 α2 β(logit) γ(logit) β(probit) γ(probit) β(as) γ(as)
truth 1.0 1.0 0.3 0.5 0.3 0.5 0.3 0.5

ε: Normal distribution
α0 mean 0.2994 0.4984 0.3006 0.4999 0.2992 0.4981

median 0.3005 0.4948 0.3001 0.5002 0.2997 0.4945
emp se NA NA 0.0526 0.0712 0.0366 0.0498 0.0521 0.0706
est se 0.0509 0.0708 0.0355 0.0478 0.0501 0.0709

95% cov 94.7% 95.3% 95.3% 93.0% 93.9% 95.6%
OLS mean 0.9999 1.0013 0.2992 0.4981 0.3006 0.4997 0.2992 0.4980

median 1.0015 1.0025 0.2990 0.4941 0.2994 0.4998 0.2998 0.4947
emp se 0.0334 0.0443 0.0530 0.0707 0.0372 0.0496 0.0521 0.0707
est se 0.0331 0.0456 0.0509 0.0708 0.0355 0.0478 0.0500 0.0709

95% cov 94.3% 95.3% 94.0% 95.4% 93.9% 93.3% 93.9% 95.6%
WLS mean 0.9999 0.9999 0.2994 0.4981 0.3008 0.4997 0.2992 0.4980

median 1.0001 1.0007 0.2997 0.4943 0.2997 0.5000 0.2998 0.4946
emp se 0.0299 0.0393 0.0531 0.0707 0.0371 0.0496 0.0521 0.0707
est se 0.0297 0.0398 0.0510 0.0708 0.0356 0.0478 0.0500 0.0709

95% cov 95.0% 96.1% 94.2% 95.4% 94.2% 93.3% 93.9% 95.6%
ε: Student t distribution t5

α0 mean 0.2994 0.4984 0.3004 0.4992 0.2986 0.4983
median 0.2993 0.4960 0.2986 0.4974 0.2996 0.4972
emp se NA NA 0.0528 0.0718 0.0370 0.0487 0.0515 0.0713
est se 0.0507 0.0707 0.0349 0.0476 0.0498 0.0709

95% cov 93.7% 95.9% 93.8% 94.4% 94.3% 95.7%
OLS mean 0.9984 0.9993 0.2998 0.4984 0.3007 0.4989 0.2985 0.4983

median 0.9969 0.9998 0.2996 0.4959 0.2988 0.4975 0.2994 0.4972
emp se 0.0316 0.0378 0.0528 0.0718 0.0371 0.0487 0.0516 0.0713
est se 0.0303 0.0384 0.0508 0.0707 0.0350 0.0476 0.0498 0.0709

95% cov 95.3% 95.8% 94.0% 95.8% 94.0% 94.3% 94.2% 95.6%
WLS mean 0.9989 0.9989 0.2997 0.4984 0.3007 0.4989 0.2985 0.4983

median 0.9977 0.9996 0.2995 0.4961 0.2985 0.4976 0.2991 0.4972
emp se 0.0303 0.0370 0.0529 0.0718 0.0372 0.0487 0.0516 0.0713
est se 0.0308 0.0373 0.0508 0.0707 0.0350 0.0476 0.0498 0.0709

95% cov 95.4% 95.8% 94.1% 95.8% 94.0% 94.3% 94.2% 95.6%
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Table 2: Simulation One: Estimation and inference results on α̂1, α̂2, β̂, γ̂ based on logit
function and normal regression error. Measurement error variance is 8. The mean, median,
empirical standard error, estimated standard error and coverage rate of the 95% confidence
intervals are reported.

α1 α2 β (logit) γ (logit)
Initial values 1.0 1.0 0.3 0.5

α known mean 0.3002 0.4993
median 0.2990 0.4995
emp se NA NA 0.0766 0.0938
est se 0.0754 0.0950

95% cov 94.8% 96.3%
OLS mean 0.9983 1.0018 0.3023 0.4978

median 1.0000 1.0006 0.2980 0.5004
emp se 0.0930 0.0950 0.0813 0.0999
est se 0.0923 0.0973 0.0811 0.1028

95% cov 94.9% 95.6% 94.8% 96.8%
WLS mean 0.9984 1.0009 0.3026 0.4975

median 1.0000 1.0005 0.2979 0.5005
emp se 0.0929 0.0950 0.0815 0.1001
est se 0.0920 0.0968 0.0812 0.1030

95% cov 95.0% 95.8% 94.7% 96.8%

Table 3: Simulation Two: Model structure similar to the AIDS data; Estimation and infer-
ence results on α̂1, α̂2, β̂1, β̂2, β̂3, β̂4, β̂c1, β̂c2, β̂c3, β̂c4. The median, empirical standard error,
estimated standard error and coverage rate of the 95% confidence intervals are reported.

α1 α2 β1 β2 β3

Initial value 1 1 −0.5 0.6 −0.4
median 1.0011 1.0006 −0.5028 0.6029 −0.4064
emp se 0.0227 0.0270 0.1976 0.2319 0.1918
est se 0.0222 0.0264 0.1923 0.2339 0.1889

95% cov 94.1% 94.2% 94.1% 95.1% 95.6%
β4 βc1 βc2 βc3 βc4

Initial value 0.3 1.0 −1.0 0.5 −0.5
median 0.3006 1.0247 −0.9934 0.5068 −0.4973
emp se 0.1366 0.2752 0.3325 0.2559 0.1829
est se 0.1368 0.2705 0.3263 0.2645 0.1919

95% cov 95.9% 94.7% 95.7% 96.2% 96.7%
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Table 4: Analysis of the ACTG 175 data: Estimates, two-sided and one-sided 95% confidence
intervals for the model are reported. Results are based on logit model in combination with
the OLS and the WLS method respectively for α estimation.

β1 β2 β3 β4

OLS Estimate 0.13 -0.17 0.14 -0.77
two-sided (−0.60, 0.86) (−0.95, 0.61) (−0.52, 0.81) (−1.22,−0.31)
one-sided (−0.48,∞) (−∞, 0.49) (−0.41,∞) (−∞,−0.39)

IWLS Estimate 0.13 -0.17 0.15 -0.77
two-sided (−0.60, 0.86) (−0.96, 0.62) (−0.52, 0.81) (−1.23,−0.31)
one-sided (−0.49,∞) (−∞, 0.49) (−0.41,∞) (−∞,−0.39)

βc1 βc2 βc3 βc4
OLS Estimate -0.85 -1.14 -0.51 -1.30

two-sided (−1.37,−0.32) (−1.72,−0.56) (−1.00,−0.03) (−1.61,−0.98)
one-sided (−∞,−0.41) (−∞,−0.65) (−∞,−0.10) (−∞,−1.03)

IWLS Estimate -0.85 -1.14 -0.51 -1.30
two-sided (−1.37,−0.32) (−1.72,−0.56) (−1.00,−0.03) (−1.61,−0.98)
one-sided (−∞,−0.41) (−∞,−0.65) (−∞,−0.10) (−∞,−1.03)
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