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Abstract

Although generally associated with cardiovascular regulation, angiotensin II receptor type 1 

(AT1aR) blockade in mouse models and humans has also been associated with enhanced fear 

extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. 

The mechanisms mediating these effects remain unknown, but may involve alterations in the 

activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved 

in fear regulation. To test the hypothesis that AT1aR signaling in CRFergic neurons is involved in 

conditioned fear expression, we generated and characterized a conditional knockout mouse strain 

with a deletion of the AT1aR gene from its CRF-releasing cells (CRF-AT1aR(−/−)). These mice 

exhibit normal baseline heart rate, blood pressure, anxiety, and locomotion, and freeze at normal 

levels during acquisition of auditory fear conditioning. However, CRF-AT1aR(−/−) mice exhibit 

less freezing than wild type mice during tests of conditioned fear expression—an effect that may 

be caused by a decrease in the consolidation of fear memory. These results suggest that central 

AT1R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and 
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identify CRFergic cells as a population on which AT1R antagonists may act to modulate fear 

extinction.

Introduction

Angiotensin II, a component of the renin-angiotensin system, and its receptor, the 

angiotensin II receptor type 1a (AT1aR), have been studied extensively in the context of 

blood pressure regulation (Mehta and Griendling, 2007, Castrop, 2015, Chen and Coffman, 

2015) and the stress response (Chen et al., 2012, Krause et al., 2011, Armando et al., 2007). 

However, recent studies in humans and mice have suggested roles for AT1aR activation in 

post-traumatic stress disorder (PTSD) and auditory fear conditioning, respectively. For 

example, treatment of humans with angiotensin receptor blockers (ARBs) has been 

associated with a decrease in the hyperarousal and intrusive symptoms of PTSD (Khoury et 

al., 2012, Nylocks et al., 2015). Similarly, either acute or chronic administration of the ARB 

losartan in mice has been found to enhance the extinction of fear memory, but not fear 

acquisition or extinction training (Marvar et al., 2013). However, these previous 

investigations involved systemic administration of ARBs, and therefore did not address 

whether ARBs are acting centrally and which cell types they are acting on to create these 

behavioral effects.

To address this, we investigated whether AT1aR deletion from a genetically defined neural 

population—corticotropin-releasing factor (CRF)-expressing cells—affected the expression 

of conditioned fear. CRF is a hormone secreted by the paraventricular nucleus of the 

hypothalamus (PVN) during times of stress, and is a component of the hypothalamic-

pituitary-adrenal axis (Rivier and Plotsky, 1986). CRF mRNA is also enriched in the central 

amygdala (CeA) (Pitts et al., 2009) and bed nucleus of the stria terminalis (BNST) 

(Beckerman et al., 2013)—regions implicated in the expression of conditioned fear (Sullivan 

et al., 2004, Wilensky et al., 2006). In support of a functional link between AT1aR activity 

and central CRFergic tone, previous work has shown that chronic systemic ARB 

administration can prevent the decrease in PVN CRF release induced by isolation stress 

(Armando et al., 2007) and that whole-brain AT1aR knockout decreases CRF mRNA 

expression in the PVN (Yamamoto et al., 2011).

Based on these findings, we hypothesized that AT1aRs on CRFergic cells are involved in the 

expression of conditioned fear, and predicted that an AT1aR knockout confined to CRFergic 

cells would impair cued fear expression. Furthermore, because AT1aR and CRF are both 

expressed in moderate levels in the CeA (Ciccocioppo et al., 2014, Shekhar et al., 2005, Von 

Bohlen Und Halbach and Albrecht, 1998b) and PVN (Premer et al., 2013, Aguilera et al., 

1995a), we expected that this knockout would be pronounced in these areas.

Materials and Methods

Animals

Mice with a floxed AT1aR gene (AT1aRflox/flox; JAX Stock #016211) (Rateri et al., 2011) 

were bred with mice that selectively express Cre recombinase in CRFergic cells (CRF::Cre; 
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JAX Stock #011087) (Martin et al., 2010, Gafford et al., 2014, Gafford et al., 2012) to 

generate offspring with a conditional knockout of the AT1aR confined to CRF-expressing 

cells. Offspring were genotyped for the floxed and wild type AT1aR alleles and the Cre 

recombinase gene using PCR on DNA extracted from ear punches (Figure S1). Male 

littermates between 8 and 12 weeks that were positive for Cre recombinase and also 

homozygous for either the floxed (CRF-AT1aR(−/−)) or wild type (AT1aR(+/+)) AT1aR allele 

were used for the behavioral tests. The same mice were used for the behavioral and 

cardiovascular tests, but only 8 out of 15 AT1aR(+/+) and 10 out of 16 CRF-AT1aR(−/−) mice 

that underwent the behavioral tests also underwent the cardiovascular ones. Bacterial 

artificial chromosome mice that express GFP in AT1aR-expressing cells (AT1a-GFP) 

(MMRRC ID# 036905-UCD) (Gonzalez et al., 2012, Marques-Lopes et al., 2015) were used 

for immunohistochemical studies, but not for behavioral ones. All procedures were 

conducted by male experimenters (Sorge et al., 2014) and were approved by the Institutional 

Animal Care and Use Committee of Emory University.

Immunohistochemistry

AT1a-GFP mice were perfused transcardially with 4% paraformaldehyde in 0.1M phosphate 

buffer, and their brains were extracted and fixed overnight in the same fixative. The next 

day, 40 μm coronal sections were cut using a vibratome. Sections were permeablized using 

Triton X-100 and blocked with normal horse serum and bovine serum albumin. GFP and 

CRF staining was performed by simultaneously incubating sections in 1:2000 and 1:200 

dilutions of chicken anti-GFP (Abcam, ab13970) and rabbit anti-CRF (Abcam, ab11133) 

antibodies, respectively, for 48 hours, followed by simultaneous incubation in 1:500 and 

1:100 dilutions of goat anti-chicken IgY Alexa Fluor 488 (Abcam, ab150169) and goat anti-

rabbit IgG Alexa Fluor 568 (Life Technologies, A-11011) antibodies, respectively, for 48 

hours. Sections were mounted on Superfrost Plus slides (Fisher Scientific, 12-550-15) and 

air-dried before being coverslipped with Mowiol mounting medium (Sigma-Aldrich, 

81381). Sections were imaged using a 20X oil immersion objective (Leica HC PL APO 

20X/0.75 IMM) on a Leica SP8 confocal microscope.

In vitro receptor autoradiography

Mice were anesthetized using isoflurane and their brains were removed, quickly frozen, and 

stored at −80 °C. The brains were sectioned coronally at a thickness of 20 μm with a cryostat 

and thaw-mounted onto charged microscope slides in a sequential manner such that adjacent 

sections were mounted on different slides in repeating sets of 5. The sections were air-dried 

for 5–20 minutes and kept refrigerated for no more than 2 weeks. Receptor autoradiography 

was carried out as described previously (Speth et al., 1999) using 125I-sarcosine1, 

isoleucine8 angiotensin II (125I-SI Ang II), prepared as described previously (Speth and 

Harding, 2001) through the Peptide Radioiodination (Shared Resource at Georgetown 

University), with the following modifications. The concentration of 125I-SI Ang II was ~250 

pM, PD123319 was present at a concentration of 10 μM to saturate all AT2Rs, non-specific 

binding in sections adjacent to the “total binding” sections was determined in the presence 

of an AT1R saturating concentration of losartan (10 μM), and the film images were scanned 

into MCID 7.0 at 2400 dpi resolution and quantified relative to brain paste standards with 

known concentrations of 125I. For each assay, an AT1aR(+/+) and a CRF-AT1aR(−/−) brain 
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were run in parallel to control for any day-to-day variations in the radioligand or assay 

conditions. To control for the possibility that the area delineated as having high binding 

corresponding to the regions of interest differed in size, measurements of both the density of 

binding and the density times area of binding were determined for group comparisons. 

Another set of adjacent sections were stained with thionin to provide anatomical registration 

for the autoradiographic images so as to localize areas of high 125I-SI Ang II binding to 

specific brain regions.

Anxiety and locomotion tasks

Mice performed elevated plus maze and open field tasks to measure their baseline levels of 

anxiety (Pellow et al., 1985) and locomotion (Tatem et al., 2014), respectively. The elevated 

plus maze task involved allowing each mouse to explore a plus-shaped maze with two 

walled arms and two open arms elevated 50 cm from the ground for 5 minutes. As the 

automated scoring system often tracked the mouse’s position to locations outside the maze, 

data were scored manually using the center of the mouse’s body to determine its location in 

the maze. The open field task involved allowing each mouse to explore a 27.3 cm2 arena 

(Med Associates Inc.) for 10 minutes. Data were scored automatically using the Med 

Associates Activity Monitor software.

Blood pressure and heart rate measurements

Two weeks after the extinction test, a tail-cuff sphygmomanometer (Hatteras Instruments, 

MC4000) was used to collect baseline blood pressure and heart rate measurements as 

previously described (Marvar et al., 2010).

Auditory fear conditioning and extinction

During habituation, mice were pre-exposed to conditioning cages for 2 days before training. 

Mice were then trained with an auditory fear conditioning paradigm, as previously described 

(Choi et al., 2010), that consisted of one day of 5 tone/shock pairings (30 second, 6 kHz, 75 

dB tones co-terminating with 500 ms, 1 mA footshocks; 60 second inter-trial interval; room 

light on). For extinction, 24 hours later mice received 30 tone presentations (30 second, 6 

kHz, 75 dB tones; 60 second inter-trial interval) in a different context (room light off, red 

cage light on, plexiglass floor). Freezing data were scored using the Actimetrics 

FreezeFrame 3 software.

Statistical analyses

Data are expressed as mean ± SEM and values of p < 0.05 were considered statistically 

significant. Averaged freezing data were analyzed using an unpaired, two-tailed Student’s t-

test, as these were the first experiments conducted, and it was necessary to test for effects in 

both directions. Binned freezing data were analyzed using a repeated measures ANOVA 

(Prism 6.0) with a Bonferroni post-hoc analysis. 125I-SI Ang II binding levels were analyzed 

using a paired, one-tailed Student’s t-test, as the anticipated direction of the effect had been 

determined a priori based on genetic information.
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Results

AT1aR and CRF co-localize in the PVN and CeA

To determine whether AT1aR and CRF are co-expressed, we performed a dual-label IHC on 

the brains of AT1aR-GFP mice. Co-localization was observed in the PVN and CeA—areas 

heavily implicated in the stress response and fear expression, respectively (Figure 1). CRF 

cell-specific AT1aR knockout (CRF-AT1aR(−/−)) mice were then generated by crossing 

homozygous floxed AT1aR mice with CRF::Cre mice (see Methods).

AT1aR expression is reduced in the PVNs of CRF-AT1aR(−/−) mice

To assess whether CRF-AT1aR(−/−) mice express significantly less of the AT1R than wild 

type (AT1aR(+/+)) mice, we conducted an in vitro quantitative densitometric AT1R 

autoradiography analysis. Densitometric analysis of specific 125I-SI Ang II binding in the 

PVN indicated that the density of AT1Rs was significantly higher in AT1aR(+/+) brains 

(164±36 fmol/mg initial wet weight) than CRF-AT1aR(−/−) brains (121±28 fmol/mg) (Figure 

2). A lower level of 125I-SI Ang II binding was observed in the basolateral amygdala (BLA) 

but no significant difference in binding density was observed; 21±7 fmol/mg for 

AT1aR(+/+)and 21±9 fmol/mg for CRF-AT1aR(−/−) brains.

AT1aR knockout from CRFergic cells reduces the expression of conditioned fear

To test for an effect of CRFergic cell-specific AT1aR knockout on the acquisition, 

consolidation, or extinction of fear memory, we subjected mice to auditory fear conditioning 

and extinction protocols. AT1aR(+/+) and CRF-AT1aR(−/−) mice showed similar levels of 

freezing during auditory fear conditioning on a trial-by-trial basis (Figure 3A). In a test of 

fear expression 24 hours later, CRF-AT1aR(−/−) mice displayed significantly less overall 

freezing than AT1aR(+/+) (t(30) = 2.1; *p < 0.05) (Figure 3B). Furthermore, when analyzed 

over the course of the fear expression test (on a 10 CS bin-by-bin basis) using a repeated 

measures ANOVA, there was a significant main effect by group (F(1, 30)=4.31, p=0.046), but 

no interaction for the 3 bins of 10 CS presentations (F(2, 60)=0.02, p=0.974) (Figure 3C). 

Collectively, these data indicate a decrease in fear expression in CRF-AT1aR(−/−) mice.

Baseline blood pressure, heart rate, anxiety, and locomotion are not affected by knockout 
of the AT1aR from CRFergic cells

To evaluate whether this knockout affects baseline levels of anxiety, locomotion, and 

cardiovascular measures, we subjected AT1aR(+/+) and CRF-AT1aR(−/−) mice to elevated 

plus maze and open field tasks, and measured blood pressure and heart rate. AT1aR(+/+) and 

CRF-AT1aR(−/−) mice spent similar amounts of time in the open arms of the elevated plus 

maze (though there was a non-significant (p=0.13) trend toward reduced open arm 

exploration in the CRF-AT1aR(−/−) mice) (Figure 4A), traveled similar distances in the open 

field (Figure 4B), and showed no differences in baseline blood pressure or heart rate (Figure 

4C–D).
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Discussion

The AT1aR is expressed in many organs, including the heart, kidney, blood vessels, and 

brain, and inhibition of this receptor is widely used for the treatment of hypertension and 

cardiovascular disease (Mehta and Griendling, 2007, Wright and Harding, 1995). However, 

previous studies by our lab (Khoury et al., 2012, Marvar et al., 2013, Nylocks et al., 2015) 

and others (Marinzalda Mde et al., 2014, Krause et al., 2011) suggest an important role for 

this receptor in fear-related pathologies such as PTSD. Our current data extend these 

findings by demonstrating for the first time that AT1aRs on CRF-expressing cells contribute 

to conditioned fear expression without affecting fear acquisition or baseline anxiety, 

locomotion, blood pressure, or heart rate.

These results contribute to a growing body of evidence implicating central AT1R activity in 

the expression of conditioned fear and anxiety (Khoury et al., 2012, Marvar et al., 2013, 

Marinzalda Mde et al., 2014, Shekhar, 2014, Shekhar et al., 2006, Johnson et al., 2013, 

Nylocks et al., 2015, Saavedra et al., 2006), and identify CRFergic cells as a population on 

which AT1R antagonists may act to create these effects. Further, they indicate that the fear 

expression-attenuating effects of AT1R inactivation may be caused by a decrease in fear 

memory consolidation (i.e., the transfer of a memory from a short-term to a long-term store 

in a transcription-dependent manner)—rather than an inability to acquire conditioning—as 

AT1aR(+/+) and CRF-AT1aR(−/−) mice showed similar levels of freezing during auditory fear 

conditioning, but 24 hours later, CRF-AT1aR(−/−) mice displayed significantly less overall 

freezing than wild types. Considering that both groups acquired similar amounts of fear, this 

trend may be attributable to an impairment in memory consolidation in CRF-AT1aR(−/−) 

mice. This interpretation is consistent with the previous finding that administration of an 

AT1R antagonist immediately before fear expression testing had no effect on expression 

(Marvar et al., 2013), indicating that this manipulation is not directly affecting conditioned 

responding.

The AT1aR is known to interact with multiple signaling pathways involved in memory 

consolidation (Higuchi et al., 2007, Guo et al., 2001) and the brain renin-angiotensin system 

has been implicated in both synaptic plasticity (Tchekalarova and Albrecht, 2007, Von 

Bohlen Und Halbach and Albrecht, 1998a) and some forms of memory consolidation (Kerr 

et al., 2005, Wright et al., 2002, Frenkel et al., 2005). The molecular mechanisms by which 

AT1/AT2/AT4R activation influences the long-term changes underlying memory 

consolidation remain poorly understood, but likely involve coupling of these G protein-

coupled receptors to Gαq subunits, resulting in activation of PLC and subsequent 

intracellular Ca2+ release (Guo et al., 2001), which is known to facilitate synaptic plasticity 

(Sheng and Kim, 2002). Further, AT4R activation has been implicated in spatial memory 

formation (Wright et al., 1999) and may contribute to fear memory consolidation. Therefore, 

future studies aimed at elucidating the role of brain angiotensin II signaling in memory 

consolidation should use chemogenetic techniques (Sternson and Roth, 2014) to determine 

the role of Gαq activation in this process, and should focus on providing a more mechanistic 

understanding of how AT1 receptor activation influences the intracellular signaling cascades 

involved in memory consolidation and how this interaction differs for the consolidation of 

fear and extinction memories.

Hurt et al. Page 6

Genes Brain Behav. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additionally, the downstream effects of AT1aR knockout from CRFergic cells are not 

known. CRF receptor activation has been implicated in fear memory formation (Rainnie et 

al., 2004), but it is unclear how knockout of the AT1aR affects CRF release or if a change in 

CRF release is the primary mechanism by which this knockout reduces fear expression. 

Further, because there may be considerable functional heterogeneity in both the CRF-

releasing (Valentino et al., 2001) and CRF-responsive (Kirby et al., 2000) populations, it is 

possible that AT1aR knockout affects various functionally, genetically, and spatially defined 

subsets of neurons differently (Lew et al., 2003, Hirawa et al., 1999).

It is worth noting that CRF-AT1aR(−/−) animals showed a trend toward less open arm 

exploration in the elevated plus maze test. This result, while not statistically significant, 

would seem to indicate slightly enhanced baseline anxiety levels in these mice, considering 

that their baseline locomotion levels (as measured by the total distance they traveled during 

the open field test) do not differ from AT1aR(+/+) animals. However, because the strains do 

not differ in baseline blood pressure or heart rate, it is likely that this trend does not indicate 

increased anxiety in CRF-AT1aR(−/−) mice; still, the technique used to collect these 

cardiovascular measurements suffers from low sensitivity. Future studies should use more 

sensitive tests of HPA axis activity such as plasma corticosterone measurements or PVN c-

Fos quantification to determine whether this knockout confers a slight increase in baseline 

anxiety.

The receptor autoradiography analyses demonstrated an incomplete reduction in AT1R 

binding in the PVNs of CRF-AT1aR(−/−) mice, which may have occurred because AT1Rs are 

not exclusively expressed by CRFergic PVN neurons. It was not possible to demonstrate a 

reduction in AT1R binding in the CeAs of CRF-AT1aR(−/−) mice. AT1aR expression in the 

CeA is normally low, and a small subset of CeA cells express both AT1aR and CRF; as a 

result, the small differences in CeA AT1aR expression created by our conditional knockout 

model were likely not detectable with receptor autoradiography.

Given that the aim of our study was to investigate whether AT1aR deletion from a 

genetically defined neural population affects fear learning, our use of a constitutive 

knockout mouse model imposes certain limitations that merit mention. Because this 

knockout is present from birth, it may affect the animals’ normal development (Aguilera et 

al., 1994); however, because wild type and knockout animals showed similar baseline levels 

of blood pressure, heart rate, and anxiety, and acquired conditioned fear similarly, we feel 

that any effects of this knockout on development did not meaningfully affect the behaviors 

in which we were primarily interested (i.e., fear learning and expression). A further 

limitation of this model is its inability to provide conclusive evidence regarding which 

CRFergic populations are contributing to the observed reduction in fear expression. 

However, the finding that AT1aR and CRF co-localize in the CeA and PVN indicates that 

the CRFergic cells in these areas may be involved in creating this phenotype. CeA CRFergic 

cells have been implicated in fear memory retention (Gafford et al., 2014, Pitts and 

Takahashi, 2011, Pitts et al., 2009) and CeA AT1Rs have been implicated in anxiety 

(Marinzalda Mde et al., 2014). Additionally, PVN CRFergic cells are involved in 

conditioned fear expression (Otagiri et al., 2000) and anxiety (Bale et al., 2002), and are 

regulated by angiotensin II (Aguilera et al., 1995b).
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Future studies involving site-specific AT1aR knockouts will be required in order to 

determine which brain areas (e.g., CeA, PVN, BNST) contain the AT1aR- and CRF-

expressing cells most involved in creating this effect on conditioned fear memory. However, 

the identification of a genetically defined subset of neurons on which AT1R antagonists act 

to influence fear expression will allow for more targeted future studies and potential new 

treatments of normal and dysregulated fear memory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. AT1aR and CRF co-localize in subsets of PVN and CeA neurons
Dense AT1aR and CRF expression is observed in the PVN and CeA of AT1aR-GFP mice. 

Arrows in (d) and (h) indicate co-localization.
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Figure 2. Autoradiographic analysis of AT1R binding
AT1R autoradiography revealed a decrease in AT1R expression in the PVNs of CRF-

AT1aR(−/−) mice compared to controls. Data are presented as mean ± SEM. * p<0.05.
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Figure 3. AT1aR knockout from CRFergic cells has no effect on acquisition of conditioned fear, 
but leads to decreased fear expression and enhanced extinction retention
(a) AT1aR(+/+) and CRF-AT1aR(−/−) mice show similar levels of freezing during fear 

acquisition (n=15–17). (b and c) During extinction, CRF-AT1aR(−/−) mice show significantly 

less freezing than AT1aR(+/+) mice overall and during the last 10 CS presentations (n=15–

17).
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Figure 4. AT1aR knockout from CRFergic cells does not affect baseline levels of anxiety, 
locomotion, blood pressure, or heart rate
(a) AT1aR(+/+) and CRF-AT1aR(−/−) mice spend similar amounts of time on the open arms of 

an elevated plus maze (n=15–16) and (b) travel similar total distances during an open field 

test (n=15–17). Both groups also have similar (c) mean arterial pressure and (d) heart rate at 

baseline (n=8–10). Data are presented as mean ± SEM.
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