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Abstract

The lack of live human brain cells for research has slowed progress toward understanding the 

mechanisms underlying autism spectrum disorders (ASDs). A human model using reprogrammed 

patient somatic cells offers an attractive alternative as it captures a patient’s genome in relevant 

cell types. Despite the current limitations, the disease-in-a-dish approach allows for progressive 

time-course analyses of target cells, offering a unique opportunity to investigate the cellular and 

molecular alterations before symptomatic onset. Understanding the current drawbacks of this 

model is essential for the correct data interpretation and extrapolation of conclusions applicable to 

the human brain. Innovative strategies for collecting biological material and clinical information 

from large patient cohorts are important for increasing the statistical power that will allow for the 

extraction of information from the noise resulting from the variability introduced by 

reprogramming and differentiation methods. Working with large patient cohorts is also important 

for understanding how brain cells derived from diverse human genetic backgrounds respond to 

specific drugs, creating the possibility of personalized medicine for ASD.
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Introduction

Autism Spectrum Disorder (ASD) is a lifelong developmental disability that is mainly 

characterized by difficulties in social communication and the presence of focused repetitive 

or stereotyped behaviors and appears within the first three years of life(1). Because different 

etiologies can generate a similar behavioral outcome, many disorders with autistic features 

are grouped under the ASD umbrella.

Family history and twin studies suggest that these disorders share genetic roots in at least 

some cases (2, 3). The mounting evidence suggests that heritable and de novo genetic 

variations play a significant role, but these studies have also reported striking genetic 
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heterogeneity(4-6). Disorders such as Fragile X, Rett syndrome (RTT) and Timothy 

syndrome are caused by specific genetic alterations that also present neurodevelopmental 

and speech delays, resulting in an autistic phenotype. Although these syndromic forms are 

no longer clinically grouped under ASD, these disorders have provided useful insights into 

sporadic or idiopathic (non-syndromic) forms of autism. Current genomic efforts to discover 

novel causative variants have focused on small chromosomal deletions or duplications in the 

form of copy number variations (CNVs) measured by the genotyping of large numbers of 

individuals(7, 8). CNVs were found in cadherins and protocadherins, implicating the 

neuronal cell adhesion pathway in ASD or the ubiquitin-proteasome system, which regulates 

synaptic attributes such as neurotransmitter release and synaptic vesicle recycling(9). Other 

studies have found that genes with rare CNV defects interfere with neurodevelopmental 

pathways by affecting the maturation and function of glutamatergic synapses that may be 

disrupted in ASD(7, 10). Recent studies integrating ASD candidate genes with 

spatiotemporal coexpression networks have demonstrated that ASD genes converge on the 

transcriptional regulation in pyramidal (glutamatergic) cortical neurons during mid-fetal 

human development(11, 12).

Neuropathological imaging has also provided important insights into ASD. Macrocephaly 

and altered brain development trajectories with early overgrowth and later normalization 

have been reported in some ASD patients(13). This increase in brain size during the first 

three years of life was shown to precede the first clinical manifestation(14-19). Several 

pieces of evidence suggest that accelerated brain growth in this ASD population begins 

prenatally and continues during the first few years of life(14, 17, 20-22). Some MRI findings 

correlate directly with a post-mortem analysis, such as a weight (size) increase in ASD 

brains at early ages, describing the neurons as more packed and a reduced number of 

Purkinje cells in the cerebellum(23). Subsequent studies have focused on identifying cellular 

abnormalities, such as increases in the number of neurons(24) and the glial density(25) in 

the prefrontal cortex.

The prevalence rate of ASD has dramatically risen over the years. The exact reasons for this 

increase remain unclear; however, the improvement in and availability of diagnosis and a 

legitimate increase in the rate of affected newborns may be contributing factors(26, 27). 

According to the CDC’s 2014 Autism and Developmental Disabilities Monitoring (ADDM) 

Network, approximately 1 in 68 children has been identified with an ASD in the United 

States. ASD is almost five times more common among males than females.

There is no cure for ASD. ASD treatment requires a strong collaboration among multiple 

professionals, and the cornerstone of treatment involves individualized educational 

interventions, including early and intensive behavioral strategies and therapies for better 

clinical outcomes(28, 29). The cost for this type of personalized treatment can be quite 

high(30). As these children mature into autistic adults, the majority do not live 

independently(31). Thus, the need for early diagnosis and better treatment of ASD is not 

only an increasing concern among scientists and physicians but also an increasing concern 

from an economic perspective(32). However, the human nature of ASD, with its intrinsic 

heterogeneity and large spectrum of clinical symptoms among patients, is a major challenge 

for studying ASD.
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Current ASD models

Studies using several experimental models have improved our understanding of ASD. The 

best models consider the sophistication of the human brain within the constraints of cost and 

practicality. The inaccessibility to live neurons, either from post-mortem brains or living 

individuals, has hindered the investigation of the mechanisms underlying ASDs. Other 

issues associated with post-mortem analyses are similar to those associated with live 

imaging, such as the sample size, gender, age and heterogeneity of the disorder itself. All of 

the above-mentioned issues are added to the possible lack of information on the medical or 

drug-use history of the individuals whose brains are being studied and the differences in the 

methodology or statistical analyses used among the research groups. Nonetheless, useful 

information on the ASD pathology has been extracted from gene expression studies using 

postmortem brain tissues(33, 34). Furthermore, we have also gained a significant amount of 

knowledge of the genetics of ASD by performing genomic analyses on blood samples from 

affected and non-affected individuals(8, 35, 36). However, these are not ideal cell types for 

neuroscience experimentation because blood cells do not exhibit several of the specialized 

structures (for example, the synaptic machinery) found in neurons. Fetal primary human 

progenitor/stem cells represent an acceptable experimental ASD model, but the intrinsic 

difficulties in their manipulation, expansion and accessibility restrict their use(37, 38).

Finally, the inherent differences between the mouse and human genetic backgrounds(39), 

immune systems(40) and brain circuits(41) contribute to the challenges of using rodent 

models of ASD(42). With a relatively shorter evolutionary distance and a more 

heterogeneous genetic background than inbred laboratory mice, non-human primate models 

have also been used to study ASD(43). Recent efforts have also focused on the targeted 

genetic manipulation of non-human primates to carry alterations found in syndromic forms 

of ASD, but mechanistic insights from these models have not yet been reported(44, 45) and 

may be inaccurate because of the uniqueness of the brain transcriptional networks in modern 

humans(34)(46). Thus, a new human model with unlimited access to relevant cellular 

material could nicely complement the efforts from previous approaches.

A human pluripotent experimental model for ASD

Despite some ethical controversy, human embryonic stem cell (hESC) research has become 

a promising area in developmental research. For the first time, researchers can potentially 

explore the early stages of human development in vitro using this powerful tool to gain 

insights into human neurodevelopment(47). However, the progress toward understanding 

neurodevelopmental diseases has been hampered by the scarce availability of disease-

specific hESCs carrying ASD genetic alterations in the genome. The generation of induced 

pluripotent stem cells (iPSCs) using human cells has been accomplished(48, 49). This 

breakthrough involves a relatively simple approach that uses a set of transcription factors to 

jump-start and reprogram the entire genetic network landscape to a pluripotent stage. In 

addition to overcoming ethical issues, this new technique has gained attention for its 

potential to generate disease-specific pluripotent stem cells with unprecedented simplicity. 

Human iPSCs are tempting models for understanding complex disorders with heritable and 
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sporadic conditions, which allow researchers to recapitulate an individual’s development in 

the laboratory(50).

Given the uniqueness of human cognition and behavior, an in vitro human 

neurodevelopmental model capable of recapitulating the early stages of development could 

reveal specific biochemical and cellular features of our species that are difficult to reproduce 

in other models(37, 51). The iPSC technology also presents the potential opportunity to 

manipulate phenotypic alterations with candidate drugs, paving the way for future drug-

screening platforms.(52).

Major roadblocks to establishing an iPSC ASD human model

The introduction of iPSCs has been a breakthrough for studying human diseases. However, 

understanding the limitations of this approach is important to extract the most relevant data 

from this model. As with all in vitro models, cells in culture are not in the same environment 

as the living organism. Additionally, the current culture conditions are not yet fully 

optimized for deriving enriched populations of disease-relevant neuronal subtypes(53-60) or 

glial cells(61) from human pluripotent stem cells despite recent efforts.

A recent study comparing primary human fetal progenitor cells, which were isolated directly 

from the developing brain, with differentiating iPSCs found that although both of these in 

vitro models recapitulated certain aspects of human corticogenesis and the transcriptional 

network related to ASD, the iPSC-derived neurons exhibited relatively lower transcriptional 

overlap with in vivo human development(38). The high variability reported for these 

experiments clearly demonstrates that different experimental protocols may affect the degree 

of cortical maturity that iPSC-derived neurons can achieve in culture.

Another relevant issue concerns the use of proper cellular controls. Based on previous 

experiences with mouse models, isogenic cell lines may represent the ultimate control. 

Genome-editing allows for rigorous study designs that could substantially alleviate concerns 

regarding potential off-target effects or other confounding effects caused by clonal sequence 

variation(62-65). Additionally, genome-editing technologies can be used to add reporters, 

biosensors and tagged proteins to easily assay biological endpoints in a more homogenous 

cellular population. Random X chromosome silencing during the reprogramming of female 

cell lines is another strategy for generating isogenic control cell lines when the target gene is 

located on the X chromosome(5, 66). However, the eventual loss of X chromosome 

inactivation that could artificially “rescue” cellular phenotypes is a concern(67). In complex 

diseases, in which the genetic contribution comes from multiple genetic variants, it may be 

advantageous to coordinate collaborative initiatives to share control lines(68).

Finally, confirming that the in vitro cellular phenotypes are relevant to the disease is 

currently another major obstacle for investigators in this field. Because several cellular and 

molecular phenotypes in a dish may not be recapitulated in postmortem brain tissues or 

animal models for the reasons previously discussed, confirmation in another model would 

definitely increase the confidence in disease relevance.
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Undoubtedly, the iPSC technology still requires a series of optimization steps, which are 

necessary for not only the study of ASDs but also the study of any neurological disorder. 

Despite all these caveats and limitations, the study of ASD-derived brain cell types is 

already generating novel insights that should be considered with an open-mind for novel 

perspectives(69).

Modeling syndromic ASDs using iPSCs

We have previously used iPSCs to study Rett syndrome (RTT), a syndromic type of ASD(5) 

caused by alterations in the methyl-CpG-binding protein-2 (MeCP2) gene. RTT-derived 

cortical glutamatergic neurons exhibited several morphometric alterations and reduced 

excitatory synapses, leading to significant functional deficits in the RTT neuronal networks. 

Interestingly, the morphometric observations mirrored the data from RTT postmortem brain 

tissues to some extent(70). Moreover, treating the RTT-derived neurons with insulin growth 

factor 1 (IGF1) increased the number of synapses, rescuing the neuronal defects. IGF1 is 

now in clinical trials for treating RTT and potentially other ASDs(71). This outcome 

suggests that the iPSC-derived neurons may be helpful in the screening of future candidate 

drugs. Our methods have been subsequently validated and improved upon by other research 

groups, suggesting that this platform can be quite robust despite the potential caveats 

previously discussed(66, 72, 73). Since this first report, several other scientific articles 

showing that iPSCs can be used to model other syndromic types of autism have been 

published.

Fragile X syndrome (FXS) is caused by a CGG repeat expansion in the promoter region of 

the fragile X mental retardation 1 (FMR1) gene, which leads to hypermethylation and gene 

silencing(74). Initial developmental studies on FXS using human embryonic stem cells 

derived from blastocysts revealed that the FMR1 promoter was unmethylated and thus 

expressed at the pluripotent stage(75). In contrast, initial studies using FXS iPSCs showed 

that FMR1 was inactive because it retained the epigenetic silent status(76). A follow-up 

study showed that the FMR1 silent status actually varied among several clonal iPSC 

lines(77). Moreover, the lines with reduced FRM1 expression generated aberrant neuronal 

differentiation(77). Another recently reported study showed that the FXS-derived cortical 

neurons were aberrant neurons with reduced neuritogenesis(78). Thus, despite the initial 

hurdles, these reports demonstrate the potential of iPSCs to generate FXS models in a dish.

Timothy Syndrome (TS) is another rare ASD that is caused by mutations in the CACNA1C 

gene(79). A human iPSC model for TS has helped identify several abnormalities in the 

derived neurons, including defects in calcium signaling, reductions in cortical and callosal 

projection markers, an increased number of neurons expressing tyrosine hydroxylase and an 

activity-dependent dendritic retraction (80, 81). Interestingly, the increase in tyrosine 

hydroxylase was rescued after treatment with roscovitine, an L-type channel blocker, 

emphasizing the potential for a drug-screening platform using TS-derived neurons. 

Neuroligins, a class of genes previously implicated in ASD, were also targeted for disease 

modeling using reprogramming techniques(53, 82).
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Finally, syndromic non-monogenetic ASDs were also modeled using human reprogramming 

techniques. Phelan-McDermid syndrome (PMDS), also known as 22q13.3 deletion 

syndrome, is caused by a loss of genes located in the 22q13 chromosomal region, which 

typically includes deleting SHANK3, a gene previously implicated in autism(83). The 

neurons generated from two PMDS patients demonstrated an altered excitatory 

electrophysiology and fewer synapses compared with controls. These neuronal defects were 

rescued by the ectopic expression of SHANK3, further supporting the causative role of 

SHANK3 in this syndrome(84). Maternally inherited duplications of the 15q11-q13.1 

chromosomal region are also associated with ASD(85). This region includes the ubiquitin 

protein ligase E3A (UBE3A), which is disrupted in another neurodevelopmental disorder 

called Angelman syndrome(86). The transcriptional analysis of iPSC-derived neurons from 

five patients with CNVs in 15q11-q13.1 revealed that the chromatin structure can influence 

the gene expression across this region, suggesting that common molecular pathways may be 

disrupted in both Angelman and the duplication syndrome(87). A similar gene expression 

strategy was used to model CNVs in chromosome 7q11.23, a region that contains 

approximately 25 genes. Deletions in this region cause Williams Syndrome, whereas 

duplications are generally associated with ASDs(88). The authors showed that 

transcriptional dose-dependent dysregulation can even be detected at the iPSC stage, but it is 

enhanced in the differentiated cell types(89). The CNV models described here strongly 

suggest that the general approach is sound and reliable, thereby allowing for the discovery of 

important molecular pathways related to ASD pathogenesis.

Modeling non-syndromic ASDs using iPSCs

Based on the examples of syndromic ASD, it can be tentatively concluded that the iPSC-

derived neurons of idiopathic or non-syndromic ASD patients can serve as an important tool 

for studying rare ASD variants(88, 90-93)(94, 95). However, demonstrating the causal role 

for rare variants will be particularly challenging because it may require an unattainable large 

sample size for proper statistical power(96-98).

Based on this caveat, our group has focused on the reprogramming of human dental pulp 

stem cells from ASD children using the deciduous tooth as a source of somatic cells. The 

“Tooth-Fairy Project”(99) has dramatically increased over the past years because of the use 

of social networks to connect with ASD families. We have been collecting dental pulp from 

ASD patients from Brazil and the USA, and we have a cellular and genetic ASD bank that 

represents part of the heterogeneity of the ASD population. Currently, we have over 3,500 

ASD families listed and approximately 300 samples collected. The bank will cross-reference 

all the genotypes and cellular phenotypes with detailed clinical information. The bank will 

be useful for modeling the differences in the ASDs patients with distinct clinical outcomes 

using reprogramming strategies. Moreover, we believe that iPSCs together with genomic 

analyses, such as whole-genome sequencing, will help categorize ASDs and clarify some of 

the molecular pathways leading to the autistic behavior.

Recently, we have also made progress in modeling non-syndromic autism. Starting with the 

dental pulp cells isolated from one of the ASD subjects enrolled on the “Tooth-Fairy 

Project,” we characterized the breakpoints of a de novo balanced translocation t(3;11)
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(p21;q22) that disrupts the TRPC6 gene. TRPC6, a gene not previously implicated in ASD, 

encodes the canonical transient receptor potential 6 channel, a voltage-independent Ca2+-

permeable cation channel involved in dendritic spine and excitatory synapse formation(100, 

101). The biological impact of the genetic alteration in the index case and its functional 

relationship to the ASD etiology was evaluated in several analyses using cortical neurons 

derived from iPSCs. We demonstrated that a TRPC6 reduction or haploinsufficiency leads to 

altered neuronal development, morphology, and function(54). The observed neuronal 

phenotypes could then be rescued by TRPC6 complementation and by treatment with IGF1 

or hyperforin, a TRPC6-specific agonist, suggesting that ASD individuals with alterations in 

this pathway may benefit from these drugs. We also demonstrated that the MeCP2 level 

affects TRPC6 expression, revealing common pathways among ASDs (Figure 1). The 

genetic sequencing of TRPC6 in 1041 ASD individuals and 2872 controls revealed that there 

are significantly more nonsynonymous mutations in the ASD population and identified loss-

of-function mutations with incomplete penetrance in two patients(54). Taken together, these 

findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a 

multiple-hit model. This was the first study to use iPSC-derived human neurons to model 

non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic 

diseases using these types of cells.

A drug-screening platform using iPSC-derived brain cell types

The lack of pharmacological treatments for the core symptoms of ASD may be a 

consequence of the lack of a human model. ASD pre-clinical assays are mostly based on 

transformed cell lines and animal models that cannot fully recapitulate the relevant cellular 

function because of obvious interspecies differences and differences in their 

pharmacokinetic properties(102, 103). Drug-screening platforms require suitable cellular 

phenotypes for the high-throughput instrumentation screening and a large amount of the 

target cell types. The current differentiation strategies can be further developed for use in 

scale-up methods in the near future. Morphometric measurements can be easily taken using 

high-content imaging software. Gene expression differences and biochemical assays are also 

valuable alternatives. However, functional electrophysiology studies may not be practical 

due to the long maturation time required in vitro. Direct cell fate conversion may be an 

alternative(104, 105), but the ability to scale up production and the skipping of important 

neurodevelopmental milestones may be a challenge(106).

Although most of the research has focused on neurons, the transition to a high-throughput 

drug-screening platform has intrinsic challenges mainly because iPSC-neurons are dynamic 

cell types that require constant attention over long periods of time. It is notoriously difficult 

to produce a homogenous population of neuronal subtypes, and human neurons are not well 

adapted to the high-throughput format. Therefore, the use of other well-characterized 

populations of functional cell types that are easily adapted to high-throughput formats may 

provide a significant advantage for drug-screening initiatives. Strong evidence suggests that 

ASDs are diseases of the synapse, the interconnection through which electrical signals are 

transmitted from one neuron to the next in a circuit. Most of the research has focused on 

new therapeutics that target neurons and enhance the number of functional synapses in these 

diseases. However, a recent study has shown that glial cells may represent an exciting novel 
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therapeutic target, and they should be investigated in the future. New protocols for the 

generation of glia will allow researchers to identify the role of these cell types in ASD. 

Previous studies have established that astrocytes secrete signaling molecules that stimulate 

the formation, pruning and function of synapses throughout the brain(107, 108). Astrocyte 

dysfunctions are known to be associated with many mouse models of neurological diseases, 

but their specific contribution to the human disease pathology has yet to be determined. It is 

likely that some glial cells, such as astrocytes and microglia, also contribute to the disease. 

By mixing different cell types in co-culture experiments, it will be possible to isolate the 

non-cell autonomous contribution to specific neuronal parameters, such as morphology or 

synaptogenesis. Finally, ideal drug libraries for ASD should consist of molecules with good 

brain penetration. Repurposing drugs designed for other disorders for ASD is another 

fascinating idea that could accelerate promising pre-clinical leads to market (Figure 2).

The next step: mini-brains on a chip

Drug development typically begins with a screening that tests the effects of promising 

molecules on 2D cell cultures and then in animal models before reaching clinical trials. 

However, many successful pre-clinical candidates still fail in humans. Pluripotent stem cells 

grown in 3D cultures can self-organize into spheres that resemble a 9-week-old developing 

human fetus brain, forming cerebral organoids that more accurately represent the actual 

conditions than the 2D cultures(109, 110). Obviously, these structures are not small-scaled 

brains because several components are not present or appear in different places. 

Nonetheless, this strategy offers a panoramic picture of brain development and how the 

process can go wrong. An additional step would be to help organize these cells by taking 

advantage of tissue engineering.

Modern tissue engineering applies concepts and techniques from engineering and biology to 

the problems that occur when cultivating human tissues and organs in the laboratory. 

Typically, this process involves creating a scaffold of natural or synthetic material, seeding 

this scaffold with human stem cells, which are provided with specific nutrients and a 

specific physical environment, that will differentiate into particular cell types and populate 

the structure(111). Despite the success with simple tissues, such as cartilage or skin, the 

reconstruction of complex organs in a dish is a major challenge. Nonetheless, the generation 

of human neuronal microcircuits is already a reality(112). For example, scientists have 

designed microfluidic chambers that allow iPSC-derived hippocampal neurons to connect 

with cortical neurons. Multi-electrode arrays (MEA) can be incorporated to record electrical 

impulses or stimulate the circuitry and investigate the connectivity of functional human 

networks(113). As another example, human motor neurons could connect to muscle to study 

neuromuscular junctions. By having the different cells functioning together, these circuits 

will replicate the dynamic interactions that take place in the body. Perhaps this model will 

be the first type of in vitro-in vivo human correlation in the neuroscience field. The MEA 

recordings from these neuronal assemblies can be directly correlated with the EEG 

recordings from patients, for example.

Obviously, the “brain on a chip” does not precisely replicate the human brain. Generally, 

these are plastic devices with tiny chambers embedded with living cells that are connected 
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by microfluidic channels that control the flow of nutrients and oxygen in the system. 

However, breaking the brain into microcircuits has both financial and convenience 

advantages. A microscale version of the brain is easy to manipulate and the outcomes are 

more easily visualized, supporting multiple variables at the same time. The system has the 

potential to reduce or eliminate the dependency on animal models and to accelerate drug 

development, helping identify the ineffective or unsafe drugs earlier in the development 

process. Personalized medicine strategies will also gain from this technology. However, as 

the culture systems become more sophisticated, new strategies will emerge along with new 

challenges. Nonetheless, the effort and work required to generate these strategies is worth 

the time. In the future, doctors may no longer have to guess which of the several drugs and 

dosages would work best for a specific patient. They could simply test them all in a micro-

model of the patient’s brain and select the one with the greatest efficacy and the fewest side 

effects.

Perspective

Human-derived cells are a powerful tool that nicely complements other models for studying 

ASDs. Although the iPSC technology is still in its early stage, it has demonstrated the 

potential ability to recapitulate the relevant neuronal defects of these diseases. The disease-

in-a-dish approach could eventually incorporate data from other areas, such as systems 

biology, computational simulations, human brain imaging, and population genetics, to 

generate novel working hypotheses to be tested with more suitable cell types. Moreover, 

future advances in human-relevant models and technologies will generate a research 

approach that avoids the limitations of the species barrier. These types of initiatives can be 

combined with open-source interfaces that are user-friendly, allowing scientists to share key 

information to develop Adverse Outcome Pathways (AOPs) for autism spectrum disorders, 

an increasingly useful tool in toxicology. AOPs can be established for different autisms to 

accumulate evidence that supports the biological information underlying specific clinical 

symptoms. This strategy could be very useful for supporting the regulatory decision-making 

political proposals for autistic individuals. Finally, as the technology evolves, it will become 

applicable to personalized medicine, making predictions on the efficiency of certain drugs 

and doses in specific individuals.
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Figure 1. 
The use of iPSCs to model ASD has already revealed new biological insights. A recent ASD 

predisposition gene (TRPC6) was shown to contribute to the formation of glutamatergic 

synapses in human neurons. Interestingly, TRPC6 gene expression can be controlled by 

MeCP2, a gene implicated in Rett syndrome, revealing the shared molecular pathways 

between syndromic and non-syndromic autisms. In non-affected individuals, MeCP2 is part 

of a currently uncharacterized activator complex in cortical neurons, stimulating the 

expression of TRPC6 that promotes calcium influx. The downstream activation pathway 

involves CREB-targets that regulate neuronal homeostasis, including the establishment of 

excitatory neurons. In a subset of idiopathic ASD individuals, TRPC6 is downregulated due 

to a reduced level of MeCP2 or mutations in the TRPC6 allele.
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Figure 2. 
Incorporation of iPSCs can accelerate drug discovery for ASDs. Adding iPSC-derived 

neurons can potentially impact the time frame for screening and marketing new drugs for 

ASDs. As the models become more sophisticated and the cost of iPSCs becomes reduced, 

this type of approach may also be used to categorize the ASD-responsive populations for 

more efficient treatment.
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