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Abstract

Purpose—Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation 

therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact 

quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing 

effective strategies to prevent long-term disability and discomfort following radiation therapy. In 

this review, we describe the current understanding of the etiology, clinical presentation, 

pathogenesis, treatment, and directions of future therapy for this condition.

Methods—A literature review of publications describing mechanisms or treatments of RIF was 

performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords 

“Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other 

closely related terms.

Results—RIF is the result of a misguided wound healing response. In addition to causing direct 

DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to 

localized inflammation. This inflammatory process ultimately evolves into a fibrotic one 

characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth 

factor beta serves as the primary mediator in this response along with a host of other cytokines and 

growth factors. Current therapies have largely been directed toward these molecular targets and 

their associated signaling pathways.

Conclusion—Although RIF is widely prevalent among patients undergoing radiation therapy 

and significantly impacts quality of life, there is still much to learn about its pathogenesis and 
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mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that 

further elucidation will be essential for the development of more effective therapies.
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Introduction

Patients with cancer often receive external beam ionizing radiation therapy either alone or in 

combination with surgery and/or chemotherapy. Ionizing radiation induces damage not only 

in rapidly proliferating tumor cells but also in normal tissue in the radiation field. Much of 

the immediate effect in response to irradiation of normal tissue is influenced by the 

radiosensitivity of individual patients. For instance, patients with ataxia-telangiectasia carry 

a mutation in the ataxia-telangiectasia mutated (ATM) DNA repair gene that mitigates the 

ability of cells to repair radiation-induced DNA damage, conferring high radiosensitivity. 

Comparatively, the majority of the late effects of radiation vary in severity depending on the 

radiation dose, fraction size, and volume treated.

One important late effect that is a significant contributor to patient morbidity is radiation-

induced fibrosis (RIF), which may occur in the skin and subcutaneous tissue, lungs, 

gastrointestinal and genitourinary tracts, as well as any other organs in the treatment field. 

Radiation injury triggers inflammation and ultimately stimulates transdifferentiation of 

fibroblasts into myofibroblasts. In addition to their excessive proliferation, these 

myofibroblasts produce excess collagen and other extracellular matrix (ECM) components, 

which is compounded by a reduction in remodeling enzymes. Subsequent fibrosis reduces 

tissue compliance and—in a majority of cancer patients and particularly those with head and 

neck cancer—causes cosmetic and functional impairment that significantly impacts quality 

of life. With this in mind, the following review will present a comprehensive discussion of 

the etiology, presentation, pathogenesis, and therapy for RIF.

Methods

A thorough literature search was performed using the Pub-Med database and, in parts, 

clinicaltrials.gov. Keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” 

“Fibrosis Therapy,” and other closely related terms were utilized, yielding an abundance of 

results of which primarily those of the last decade were considered. Approximately 150 of 

these were subsequently reviewed, excluding around 30 due to quality or findings non-

contributory to the goals of the review. About ten additional articles were supplied by local 

experts in the field.

Etiology

A number of factors increase the risk of RIF. The primary treatment-related factors are the 

total dose of radiotherapy and dose per fraction, the volume of tissue treated, and the time 

course of treatment delivery. More specifically, the degree of RIF directly correlates with 

increased radiation dose and hypofractionation (fewer fractions require greater doses), 
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increased field size, and prolongation of therapy (Borger et al. 1994; Davis et al. 2005; 

Geara et al. 1998; Graham et al. 1999; Johansson et al. 2002). Other treatment-related 

factors known to play a role include concurrent use of chemotherapy (Kirwan et al. 2003; 

Toledano et al. 2006) as well as incorporation of surgical management pre- or post-

radiotherapy (Machtay et al. 2008). Patient-related factors like preexisting connective tissue 

disease (Holscher et al. 2006) may also contribute to RIF. In particular, patients with 

systemic scleroderma, systemic lupus erythematosus (SLE), or Marfan syndrome are more 

susceptible to developing severe RIF (Gold et al. 2007; Suarez et al. 2014).

More recently, genetics have been found to play a part in the predisposition to RIF. In breast 

cancer, for example, increased risk of RIF has been associated with a genetic variant in the 

ATM (ataxia-telangiectasia mutated) gene, which is responsible for the repair of DNA 

double-strand breaks (Andreassen et al. 2006; Edvardsen et al. 2007). Other single-

nucleotide polymorphisms (SNPs) have been identified in genes encoding proteins including 

superoxide dismutase 2 (SOD2), X-ray repair cross-complementing proteins 1 and 3 

(XRCC1 and XRCC3), transforming growth factor beta 1 (TGFβ1), and double-strand-break 

repair protein rad21 homolog (RAD21; Azria et al. 2004, 2008; Cheuk et al. 2014). Several 

different loci like CADM1 (cell adhesion molecule 1), SLAMF6 (signaling lymphocyte 

activation molecule family member 6), and CDK1NA (cyclin-dependent kinase inhibitor 1) 

have also been implicated (Ao et al. 2009). Further, a quantitative trait locus on chromosome 

17 has been found to determine the pulmonary fibrotic response not only to radiation but 

also to many other forms of injury (Haston et al. 2002), suggesting the presence of a 

universal lung injury gene (Haston and Travis 1997; Madani et al. 2007). Additional genes 

like CAP1 (adenylyl cyclase-associated protein 1), IL18 (interleukin 18), MMP12 (matrix 

metalloproteinase 12), PER3 (period circadian protein homolog 3 protein), LTF (lactoferrin), 

Ifi202a (p202), and RAD51AP1 (RAD51-associated protein 1) play a role in the degradation 

of post-radiation extracellular matrix (ECM) (Iwakawa et al. 2004). Mitochondrial DNA has 

been examined as well, and a genetic variant in TXNRD2 (thioredoxin reductase 2), which 

encodes a mitochondrial enzyme involved in the removal of reactive oxygen species (ROS), 

has been connected to rates of subcutaneous fibrosis (Edvardsen et al. 2013). Lastly, 

epigenetic modifications to DNA and histones have been associated with RIF (Weigel et al. 

2014) as evidenced by the suppression of cutaneous radiation syndrome by histone 

deacetylase inhibitors (HDACs; Chung et al. 2004). These types of DNA alterations are long 

term, and as such they likely play a significant role in the development of the chronic 

fibrotic response to radiation injury that persists even after the initial insult is no longer 

present.

Clinical presentation

RIF usually occurs 4–12 months after radiation therapy and progresses over several years. It 

affects almost every part of the body that is exposed to radiation. The clinical presentation 

depends on the type of tissue exposed to irradiation. In general, RIF may manifest as skin 

induration and thickening, muscle shortening and atrophy, limited joint mobility, 

lymphedema, mucosal fibrosis, ulceration, fistula, hollow organ stenosis, and pain (Dorr and 

Hendry 2001). More regionally specific manifestations include trismus, xerostomia, 

decreased vocal quality, osteoradionecrosis, dysphagia, and aspiration in patients with head 
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and neck malignancy (Delanian et al. 2005; Delanian and Lefaix 2002; Gupta et al. 2012; 

Jones et al. 2006; Rosenthal et al. 2006; Sonis and Fey 2002; Vainshtein et al. 2014); 

cervical plexopathy, brachial plexopathy, interstitial fibrosis, dyspnea, and oxygen 

requirement in patients with breast or lung malignancy (Abratt et al. 2004; Delanian et al. 

1999; Gross 1977); and urinary urgency, increased urinary frequency, diarrhea, loss of 

reproductive function, and dyspareunia in patients with abdominopelvic malignancy (Coia et 

al. 1995; Marks et al. 1995; Potter et al. 2000). Diagnosis of RIF is likewise dependent on 

the site affected. In the skin or subcutaneous tissue, for instance, it may be done by 

palpation; in the muscle, by Young’s modulus measurements (tensile or stiffness), using 

ultrasound to provide more quantitative measurements (Leung et al. 2002). As it stands, 

there remains no uniform consensus with respect to objectively quantifying the degree of 

fibrosis, and there is inconsistency among grading scales like the Radiation Therapy 

Oncology Group (RTOG) criteria and version 4.0 of the Common Terminology Criteria for 

Adverse Events, the former of which does not specifically address RIF in assessing overall 

radiation toxicity (Deng et al. 2014; Radiation Therapy Oncology Group 2014).

Pathogenesis

The mechanism of RIF is similar to that of any chronic wound healing process. An initial 

injury incites an acute response that leads to inflammation, followed by fibroblast 

recruitment and activation with extracellular matrix deposition (Fig. 1). Radiation is energy 

in the form of waves or high-speed particles. The term “ionizing” indicates that said energy 

is strong enough to displace bound electrons. Ionizing radiation refers to three types of 

emissions—alpha, beta, and gamma—with therapeutic radiation being predominantly 

gamma (Harrison and Stather 1996). Radiation injury results from two primary mechanisms: 

direct DNA damage and the generation of reactive oxygen species (ROS; Travis 2001). The 

latter is more prominent in RIF and involves the interaction of ionizing radiation with water 

molecules to form free radicals, including superoxide, hydrogen peroxide, and hydroxyl 

radical (Tak and Park 2009), the last of which accounts for 60–70 % of the total damage 

(Terasaki et al. 2011; Zhao and Robbins 2009). Reactive nitrogen species (RNS) also likely 

play a role in radiation injury, as treatment with the inducible nitric oxide synthase (iNOS) 

inhibitor, L-nitroarginine methyl ester (L-NAME), prevented acute lung injury in rats (Khan 

et al. 2003). Free radicals damage all components of cells, including proteins, nucleic acids, 

and lipids (Terasaki et al. 2011; Zhao and Robbins 2009). Superoxide dismutase, catalase, 

and glutathione peroxidase are responsible for controlling free radical damage (Greenberger 

and Epperly 2007). A deficiency in these enzymes or excess ROS/RNS leads to oxidative 

stress in tissues (Chaudiere and Ferrari-Iliou 1999; Darley-Usmar and Halliwell 1996; Evans 

and Halliwell 1999). Injured cells release chemoattractant molecules that trigger nonspecific 

inflammation (Denham and Hauer-Jensen 2002; Travis 2001; Williams et al. 2010) [Fig. 

1(1)]. Furthermore, thrombosis and ischemia exacerbate local injury leading to further 

release of inflammatory chemokines and cytokines (Boerma and Hauer-Jensen 2010; Lefaix 

and Daburon 1998).

Neutrophils are the first inflammatory cells to arrive at the site of injury (Abreu et al. 2005). 

Increased expression of intercellular adhesion molecule 1 (ICAM-1) (Hallahan et al. 2002) 

and platelet endothelial cell adhesion molecule 1 (PECAM-1) (Quarmby et al. 1999) on 
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disrupted endothelial surfaces contributes to neutrophil extravasation and transmigration into 

tissues (Lefaix and Daburon 1998). When these cells come into contact with collagen 

fragments and fibronectin, they release proinflammatory cytokines like tumor necrosis factor 

alpha (TNF-α), IL-1, and IL-6 (Calveley et al. 2005; Finkelstein et al. 1997; Olman et al. 

2002; Porter et al. 2002; Sedgwick et al. 2002) that perpetuate the development of ROS and 

lead to even greater local inflammation. The next cells to arrive are the monocytes and 

lymphocytes (Haston et al. 2007; Sharplin and Franko 1989), which interact with each other 

to lead to the differentiation of monocytes into two subsets of macrophages (Gordon and 

Martinez 2010; Sica and Mantovani 2012; Varin and Gordon 2009): classically activated 

pro-inflammatory M1 or alternatively activated anti-inflammatory M2 (Ford et al. 2012; 

Zhang et al. 2011). Platelet-derived growth factor (PDGF) secreted from the M2 subset 

promotes neoangiogenesis and stimulates the migration of fibroblasts into the injured tissue 

(Li et al. 2007) from either the surrounding stroma or from circulating mesenchymal stem 

cells (Mathew and Thomas 2012) [Fig. 1(2)]. They also secrete TGF-β, which is heavily 

implicated in RIF (Li et al. 2006). Indeed, TGF-β is responsible for a number of functions 

that contribute to the pathogenesis of this condition, including the production of fibroblasts 

from bone marrow progenitors (Campana et al. 2004; Rodemann and Bamberg 1995) and 

the differentiation of fibroblasts into myofibroblasts (Yarnold and Brotons 2010), whereby a 

phenotypic change in the fibroblasts results in increased expression of alpha-smooth muscle 

actin (α-SMA), followed by subsequent transformation into protomyofibroblasts and 

eventual maturation into myofibroblasts (Tomasek et al. 2002). These myofibroblasts may 

also derive from circulating bone marrow-derived progenitor cells known as fibrocytes or 

from epithelial cells undergoing epithelial–mesenchymal transition (EMT) (Darby and 

Hewitson 2007) [Fig. 1(3)]. In response to TGF-β, myofibroblasts secrete excess collagen, 

fibronectin, and proteoglycans (Chithra et al. 1998), and in doing so they are responsible for 

the increased stiffness and thickening of the tissue (Lefaix and Daburon 1998; Martin et al. 

2000). Furthermore, TGF-β promotes decreased matrix metalloproteinase (MMP) activity 

(especially MMP-2 and MMP-9) and increased activity of tissue inhibitors of 

metalloproteinases (TIMPs), compounding the already excessive ECM deposition (Pardo 

and Selman 2006). Lastly, although myofibroblasts promote endothelial cell proliferation 

and angiogenesis through the secretion of basic fibroblast growth factor (bFGF) (Finlay et 

al. 2000), excess collagen reduces vascularity over time (Lefaix and Daburon 1998) [Fig. 

1(4)]. This makes fibrotic areas susceptible to physical trauma and gradual ischemia, which 

may lead to loss of function, tissue atrophy, reduction in the number fibroblasts, or necrosis 

(Burger et al. 1998; Delanian et al. 1998, 2001; Denham and Hauer-Jensen 2002; Rudolph et 

al. 1988; Toussaint et al. 2002). Interestingly, no correlation has been found between the 

severity of early fibrotic lesions and the development of late effects of RIF (Bentzen and 

Overgaard 1991; Bentzen et al. 1993, 1989; Bourhis et al. 2006).

Implications for therapy

Prevention is the first step in managing RIF, and, since the dose of radiation and the volume 

of tissue irradiated are the most significant risk factors, limitation of these parameters is 

usually the first consideration. With modern conformal radiation techniques, most of the 

radiation therapy is directed to the tumor rather than the surrounding tissue, as in sparing of 

the salivary glands in irradiated head and neck tissue (Eisbruch et al. 2003). Likewise, 
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decreases in breast induration, telangiectasia, lung fibrosis, and xerostomia were seen with 

intensity-modulated radiotherapy (IMRT; Barnett et al. 2012; Donovan et al. 2007; Gupta et 

al. 2012; Jiang et al. 2012). With more technical advances, an expected reduction in RIF is 

likely; even so, current modalities continue to cause injury, necessitating subsequent medical 

interventions to control fibrosis.

Inhibition of matrix synthesis and reduction in inflammation have served as the primary 

aims of therapeutic development in RIF. Several preclinical models have been tested in sites 

including lung, skin, breast, and intestinal tissue using techniques ranging from small 

molecule inhibition to cell transplantation (Table 1). Due to its crucial role in the 

pathogenesis of RIF, TGF-β and its associated signaling molecules have been examined as 

therapeutic targets. More specifically, the small molecule inhibitor, LY2109761, natural 

compound derivatives (halofuginone and quercetin), and siRNA have been used to target 

various components of the TGF-β pathway to mitigate inflammation, matrix deposition, and 

fibrosis. Integrin receptors also play an important role in cell–matrix interactions, and 

inhibition of α5β6 integrin with a specific antibody prevented fibrosis in a mouse model 

(Flechsig et al. 2012; Horton et al. 2013c; Lemos and Andrade 2010; Li et al. 2006; Xavier 

et al. 2004). Apart from TGF-β and its downstream effectors, targeting other signaling 

pathways has also yielded promising results in preclinical models. This includes the use of 

the sphingosine-1-phosphate (S1P) receptor agonists, SEW2871 and (s)-TFY720-

phosphonate (fTyS0), a serine palmitoyltransferase (SPT) inhibitor (myriocin), an anti-

CXCR4 compound (MSK-122), and a Rho-kinase inhibitor (Y-27632), all of which were 

found to mitigate fibrosis (Bourgier et al. 2005; Gorshkova et al. 2012, 2013; Shu et al. 

2013). Additionally, a number of commonly used medications have been found to attenuate 

RIF pathology, including imatinib (tyrosine kinase inhibitor), simvastatin (HMG-CoA 

inhibitor), enalapril [angiotensin-converting enzyme (ACE) inhibitor], and dexamethasone 

(steroid) (Evans et al. 1987; Gao et al. 2013; Horton et al. 2013a; Mathew et al. 2011). 

Lastly, cell-based therapies have been assessed for their anti-fibrotic potential. Systemic 

infusion of syngeneic or allogeneic bone marrow-derived stem cells resulted in reduced skin 

contracture, decreased thickening, and less collagen deposition in a mouse model of RIF; 

there was also an increase in the immunosuppressive cytokine, IL-10, and a decrease in the 

proinflammatory cytokine, IL-1β (Horton et al. 2013b). This initial study highlights the 

potential of cell-based therapy in RIF.

Several clinical trials have been carried out to determine the anti-fibrotic efficacy of 

biologicals and small molecule inhibitors. In breast cancer, the combination of anti-

inflammatory pentoxifylline with antioxidant vitamin E has been shown to improve tissue 

compliance in patients with RIF (Jacobson et al. 2013), while the effect of adding hyperbaric 

oxygen to this regimen is still being studied (Otón 2013). Likewise in head and neck cancer, 

an eight-week course of pentoxifylline achieved a modest improvement in mean dental gap 

in 20 patients with nasopharyngeal carcinoma post-radiotherapy (Chua et al. 2001), and 

outcome measures of SOD administration are still being examined using a predetermined 

scale of fibrosis and quality-of-life impact assessment (Spanos 2013). Furthermore, two 

agents—the vascular endothelial growth factor (VEGF) inhibitor, bevacizumab, and the 

antiproliferative agent, pirfenidone—are now being tested for their efficacy in patients 
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already suffering from RIF, with the former utilizing outcome measures of pulmonary 

function testing and thoracic CT assessment (Camphausen 2013; Ji 2013).

In spite of the preclinical models and clinical trials mentioned thus far, the number of 

approved therapies for RIF remains small. Symptomatic treatment is commonplace, and 

specific interventions depend on the location and severity of fibrosis. For example, 

physiotherapy has been shown to be effective in reducing lymphedema and preserving 

shoulder motion post-radiation in patients with breast cancer, and the LPG Systems 

mechanical massage technique has been shown to reduce RIF in breast cutaneous tissue 

(Bourgeois et al. 2008; Box et al. 2002). For patients with head and neck cancer that have 

trismus post-radiation, progressive increases in mouth opening using tongue blades, the 

Dynasplint Trismus System, or the TheraBite Jaw Motion Rehabilitation System have been 

recommended (Baranano et al. 2011; Grandi et al. 2007; Kamstra et al. 2013; Melchers et al. 

2009; Sciubba and Goldenberg 2006; Shulman et al. 2008; Stubblefield et al. 2010). 

Coronoidectomy has been shown to be efficacious in refractory cases (Bhrany et al. 2007), 

although careful thought and consideration must be given to this intervention as surgery may 

lead to even greater fibrosis. Other modalities that have been tested in this condition include 

microcurrent therapy (Dijkstra et al. 2004) and botulinum toxin A injection, the latter of 

which improved pain and masticator spasm but did not significantly impact jaw opening 

(Hartl et al. 2008).

Conclusion

Although radiotherapy offers immense benefit to the patient, it still causes unwanted long-

term sequelae. Not surprisingly, the dose of radiation and the amount of tissue volume 

exposed are the main risk factors for RIF. The disease process differs from normal wound 

healing by the aberrant growth of myofibroblasts and the excessive deposition of 

extracellular matrix proteins. More site-specific research is necessary to determine the 

mechanisms of RIF, as symptoms can vary widely, for example, between the oral cavity, 

breast, and lungs. In patients with established RIF, the treatment is primarily symptomatic, 

with no effective method that offers complete remission at this time. Future interventions 

will likely continue to focus on the molecular mechanisms of this condition to mitigate the 

inflammatory responses, control myofibroblast development, and reduce collagen 

deposition. Additionally, developing a means of grading the degree of fibrosis will go a long 

way toward ensuring that patients with RIF are managed appropriately with minimal 

treatment side effects.

In conclusion, the strengths of this review lie in its comprehensive coverage of the etiology, 

molecular pathology, and therapeutic developments of RIF, while its limitations are manifest 

by an inability to elaborate further on the variable presentations of RIF or its complex 

biochemical pathology. Further studies on these aspects would provide even more 

compelling evidence for looking to pathogenesis in developing effective therapeutic 

interventions for RIF.
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Fig. 1. 
Schematic depicting four broad stages in the pathogenesis of RIF. 1 Ionizing radiation 

damages cells in the exposed field and leads to the production of proinflammatory 

cytokines. 2 Neutrophils, lymphocytes, and monocytes arrive at the site of injury while 

resultant M2 macrophages produce PDGF, leading to recruitment of stromal fibroblasts as 

well as differentiation of circulating mesenchymal stem cells. 3 Subsequent TGF-β 

production by M2 macrophages promotes the development of myofibroblasts from recruited 

stromal fibroblasts through a protomyofibroblast intermediate as well as through epithelial–

mesenchymal transition and differentiation of circulating fibrocytes. 4 Over time, 

myofibroblast proliferation along with excess deposition and decreased degradation of 

extracellular matrix leads to fibrosis with reduced vascularity and a paucity of cells
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