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SUMMARY

Elucidating the mechanism of cell lineage differentiation is critical for our understanding of 

development and fate manipulation. Here we combined systematic perturbation and direct 

lineaging to map the regulatory landscape of lineage differentiation in early C. elegans 

embryogenesis. High-dimensional phenotypic analysis of 204 essential genes in 1,368 embryos 

revealed that cell lineage differentiation follows a canalized landscape with barriers shaped by 

lineage distance and genetic robustness. We assigned function to 201 genes in regulating lineage 

differentiation including 175 switches of binary fate choices. We generated a multiscale model 

that connects gene networks and cells to the experimentally mapped landscape. Simulations 

showed that the landscape topology determines the propensity of differentiation and regulatory 

complexity. Furthermore, the model allowed us to identify the chromatin assembly complex 

CAF-1 as a context-specific repressor of Notch signaling. Our study presents a systematic survey 

of the regulatory landscape of lineage differentiation of a metazoan embryo.
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INTRODUCTION

Regulation of cell lineage differentiation is a central question in developmental biology that 

is essential to our understanding of how the single-celled zygote generates an organism. 

During lineage differentiation, progenitor cells progress through a series of cell fates to 

differentiate into the diverse set of specialized cell types in an organism. Metaphorically, the 

process is often depicted as Waddington’s landscape with marbles rolling downhill in 

canalized trajectories (Enver et al., 2009; Zhou and Huang, 2011). Such a view is supported 

by theoretical analysis of small-scale gene networks (Foster et al., 2009; Zhang et al., 2013) 

and gene expression profiling of cells (Chang et al., 2008; Huang et al., 2005). However, it 

remains an open question whether canalization is a general feature of in vivo development, 

as systematic mapping of the landscape and regulation of lineage differentiation is still 

technically challenging.

Recent technical breakthroughs on two fronts have opened the door for systematic 

functional analysis of in vivo cell fates. 3D, time-lapse imaging now allows in toto imaging 

of metazoan embryogenesis in different model organisms and tracking of individual cells 

(Bao et al., 2006; Keller et al., 2008; McMahon et al., 2008; Udan et al., 2014; Wu et al., 

2013; Xiong et al., 2013). In C. elegans, it allows direct tracing of the whole cell lineage 

(Bao et al., 2006; Santella et al., 2014; Santella et al., 2010). By combining automated 

lineaging with tissue-maker expression-based assessment of cell types, we have recently 

shown that progenitor cell fates can be systematically assayed (Du et al., 2014). Meanwhile, 

sequencing techniques allow the mRNA content of individual cells to be measured 

(Hashimshony et al., 2014; Treutlein et al., 2014). Systematic measurements of the mRNA 

content provide a more robust assay of cell types than using limited markers, with the 

apparent scalability to many cells. Both the direct lineaging-based and the sequencing based 

approaches are poised to elucidate how genes and gene networks shape the regulatory 

landscape and drive cells through the different trajectories of differentiation.
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Here we combine direct lineaging and systematic perturbation of the essential genome to 

map the landscape of cell lineage differentiation in early C. elegans embryogenesis. We 

performed RNAi for 204 conserved and essential genes and assayed individual cell fates in 

1,368 embryos with a lethal phenotype. Our results revealed 820 progenitor fate changes in 

essentially all lineage founder cells, and 175 regulatory switches of binary fate choice. 

Analysis of the phenotypes suggests a systemic canalization of cell fates. Lineage distance 

as well as the genetic robustness of gene regulatory networks contributes to barriers in the 

landscape between fates. We constructed a multiscale model of lineage differentiation that 

connects gene networks and cells to the experimentally mapped landscape. At the systems 

level, simulations based on the model suggest that the topology of the landscape affects the 

propensity of differentiation and the minimal requirements for active regulation of fate 

choice. At the molecular level, the cellular resolution of the model revealed the chromatin 

assembly complex CAF-1 as a context-specific repressor of Notch signaling. We deposited 

the phenotypic and analysis data in a database named Digital Development (http://cell-

lineage.org) for the community to explore gene functions and systems-level mechanisms of 

metazoan development. Taken together, our study presents a systematic survey of the 

regulatory landscape of lineage differentiation of a metazoan embryo.

RESULTS

Live Imaging-Based High-dimensional Phenotypic Analysis of Lineage Differentiation

We performed a genome-wide RNAi screen of 1,061 essential genes for embryogenesis and 

identified 204 conserved developmental regulatory genes with potential lineage 

differentiation defects through a series of phenotypic and functional characterizations 

(Figure S1). The ultimate criteria are high penetrance of embryonic lethality (>25%) and 

sufficient embryonic development (to >200 cells), without explicit bias in the molecular 

function of the genes. The 204 conserved genes encode proteins with 23 broad molecular 

and cellular functions (Figure 1A and Table S1).

We analyzed lineage differentiation phenotypes through 3D time-lapse imaging (Figure 1B), 

direct cell lineage tracing and tissue-maker expression mapping (Figure 1C) (Du et al., 

2014). For each perturbed gene, we traced the cell lineage and analyzed the expression of 

three tissue-specific markers to assay individual cell fates: PHA-4 for pharynx and gut, 

CND-1 for a subset of neurons and NHR-25 for major hypodermis cells. These markers 

show highly consistent and specific lineal expression patterns (Du et al., 2014; Moore et al., 

2013) that cover 61% of the cell lineage and all three germ layers, allowing systematic fate 

assessment (Figure 1C).

Progenitor cell fates, which are the focus of this study, were assayed retrospectively by 

examining the tissue type patterns produced by each progenitor cell in the lineage, which are 

in turn assayed by the clonal expression of the tissue markers (marked by circles in Figure 

1C) (Du et al., 2014). Each clone corresponds to a significant sublineage that uniformly 

expresses a tissue marker (Du et al., 2014). Combining the three markers generates 11 

unique lineal expression patterns that distinguish the 12 founder cell fates (marked by 

squares in Figure 1C) except for a pair of left-right homolog (ABplp and ABprp). When fate 

changes occur in multiple founder cells, a parsimony-based approach (Extended 
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Experimental Procedure) was used to infer the primary phenotype from the extent of fate 

changes among the 12 founder cells. Together, our phenotyping strategy offers a high-

dimensional in vivo analysis of the essential genome in terms of cell lineage differentiation.

A Rich Dataset to Study Developmental Mechanisms

We imaged ~4,000 embryos for the 204 genes and processed 1,368 embryos with the Emb 

(embryonic lethal) phenotype to achieve 2 or more embryos per marker per gene (Figure 1D 

and Table S1). This dataset provides a record of systematic perturbations of lineage 

differentiation. Specifically, the 1,368 perturbed cell lineages contains ~593,000 digitized 

single cells, of which 171,216 (29%) are marker-expressing (Figure 1E). In terms of raw 

phenotype detection, we detected 4,657 clonal changes of marker expression (Figures S2A, 

S2B and Table S2). Based on these, we identified 820 instances of fate change in the 

progenitor cells including the 12 founder cells and their ancestors (Figures 1F and S2C). On 

average, each progenitor cell was perturbed by 40 genes and each gene knockdown affected 

4 progenitor cells (Figure 1G).

Our data underwent a series of quality control measures. To ensure the effectiveness of 

RNAi, we only processed imaged embryos with the Emb phenotype. We found that 41% of 

the time the phenotypes were penetrant at the cellular level (Figure 1H). To ensure correct of 

lineage tracing, we performed multiple rounds of manual curation on the automatically 

generated lineages (Santella et al., 2014) (Figures S2D and Extended Experimental 

Procedures). Based on human examination of 100 randomly picked cell tracks post curation, 

we found that 96% of terminal cells were correctly traced (Figure 1I). Because we assay 

marker expression in the units of expressing clones (circles in Figure 1C), the impact of the 

tracing errors at later embryonic stages (after the 6th division) are further minimized (Du et 

al., 2014). Overall, 98% of the marker expression status was correctly assigned.

Finally, we validated the biological relevance of the phenotypes. We first examined the raw 

phenotype detection results (Figure S2B), namely changes of marker expressing clones. 

Specifically, we examined the number of shared clonal changes between genes that are 

expected to have similar functions. We compiled a list of 68 gene-pairs between 40 genes 

that function either in a stable protein complex or in a well studied molecular pathway 

(Table S2). As shown in Figure 1J, these gene pairs showed a significantly larger number of 

shared phenotypes (median=14.5) than that of randomly selected gene pairs (median=2) 

(Mann-Whitney U test, p<2e-06). We then examined the inferred primary phenotypes 

(Figure 1F) to evaluate how well a gene’s function is mapped onto the correct progenitor 

cells. This was illustrated in the ABar cell, where spindle rotation in ABar affects the fate 

choice of it daughters (Walston et al., 2004). While our analysis did not directly measure 

spindle orientation, we found that 86% of the genes (36 out of 42) that affected the spindle 

orientation of ABar (approximated by the positions of ABar daughters, which are available 

in our dataset, see also Extended Experimental Procedure) were mapped to ABar or its 

ancestor cells (Figure 1K). These examinations demonstrate the effectiveness of our 

phenotype detection methods.

In summary, we have generated a high-dimensional phenotypic dataset for studying 

metazoan in vivo development. This dataset provides systematic information on key 
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dimensions of developmental regulation, including time (extended time of development), 

space (complete set of single cells) and the genome (conserved essential genes). The data as 

well as the results from the additional analyses below are provided in a database named 

Digital Development (http://cell-lineage.org). Here we exploited the dataset to investigate 

systems-level properties and regulation of cell lineage differentiation.

Systemic Canalization of Progenitor Cell Fates

To understand the developmental landscape of lineage differentiation, we first analyzed the 

fate changes in the 12 founder cells and the types of new fate that were adopted when their 

fates were changed. As in our phenotype detection, cell fate was assayed by the lineal 

expression patterns of tissue markers.

We found that all 12 founder cells were perturbed by gene knockdowns in the dataset, 

ranging from 20 to 167 times (Figure 2A, red bars). To characterize the new fates, we 

classified the lineal expression pattern of tissue markers into 256 types, based on the 

expression status of each clone of 4 terminal cells after tracing a sublineage for 5 rounds of 

cell division (32 terminal cells) (Figures S3A). Based on this definition, the number of new 

fates for each founder cell ranged from 13 to 76 (Figure 3A, green bars).

We found that a small fraction of fate changes were significantly enriched among the 256 

possible types. For each marker, the observed distribution was significantly different from a 

random distribution across the 256 types (Kolmogorov–Smirnov test, p<0.001) (Figure 2B). 

The frequency of each type is plotted on a theoretic phenotypic plane so that each of the 256 

types has a unique coordinate (Figure S3B). Among the observed types, a small number of 

types showed significant enrichment (binomial test p<10−5, Figures S3C and S3D): 5–7% of 

types account for the vast majority (71%–87%) of all incidences of detected phenotypes 

(Figures 2C). In contrast, 51%–71% of all possible types were not observed in our dataset 

(Figure 2C). We considered the influence of residual errors of lineage tracing (2%) by 

simulation (n=10,000) and found that they do not affect the overall trend of distribution and 

enrichment (error bars in Figures 2C).

The observed enrichment of a fraction of possible fate types suggests that the developmental 

landscape of lineage differentiation is canalized towards a small number of fates. Given the 

unbiased perturbation of the essential genome and the extent of observed lineage 

perturbations, these data provide systematic experimental evidence of canalization. Further 

considerations regarding canalization versus hybrid cell fates (mixture of two normal cell 

fates) are addressed in Discussion.

Stable Fates Are Not Limited to Normal Fates

We further analyzed the enriched phenotypes, which indicate stable fates in the landscape. 

We found that homeotic transformations, where a cell adopts the fate used by another cell in 

normal development, were significantly enriched. 10 out of the 11 normal cell fates were 

enriched among the newly acquired cell fates (Figures S3E–G). This is a 24-fold enrichment 

(Chi-square test, p<0.001) compared to what would be expected from a random distribution 

(0.42 out of 11). This result is consistent with the canonical view that normal cell fates 

represent canals in the landscape.

Du et al. Page 5

Dev Cell. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cell-lineage.org


Interestingly, the enriched fates also include 19 fate types that are not used in normal 

development (Figures S3E–G, excluding two simple expression patterns where a marker is 

expressed across a given lineage or not at all). We considered two possible interpretations of 

these stable but unknown fates. First, these fates may be minor to moderate deviations from 

the corresponding normal fates. Consistent with this interpretation, we found that their 

distances to normal fates were shorter compared to those not enriched or not detected 

(Figure 2D). That is, they tended to be clustered around the fates used in normal 

development, which in turn suggests that normal fates do not dwell in narrow wells in the 

landscape but in broad basins surrounded by stable normal-like fates. In other words, each 

canal leading to a normal fate is surrounded by additional canals leading to related stable 

fates (Figure 2E). Thus, the high resolution of our fate assay reveals a more complex 

structure to the landscape in contrast to the canonical view that is composed of the normal 

fates and the canals leading to them.

Second, some of the fates may be distinct types from the normal fates. It is difficult to define 

what constitutes a distinct type. Nonetheless, we observed marker expression patterns that 

are substantially different from those of the normal fates (Figure S3E–G, stars). These 

patterns raise the possibility of distinct unknown fates, which in turn raise the possibility that 

territories in the landscape that are not accessible in normal development are also canalized 

towards limited fate types.

Lineage Distance and Genetic Robustness Determine the Barriers Between Fates

The frequency at which a particular homeotic transformation occurs reflects the barrier in 

the canalized landscape between the two fates. In all, we detected 175 instances of homeotic 

transformation that fall into 32 types (see below for details). These transformations show a 

wide range of frequencies (Figure 2F). For example, the most frequent phenotype, the ABar-

to-ABal transformation, was observed 25 times (caused by 25 gene knockdowns). In 

comparison, the least frequent phenotypes, the AB-to-EMS and AB-to-C transformations, 

were observed one time each.

We first examined if lineage distance contributes to the apparent difference in frequencies, 

which is an open question awaiting systematic examination. Lineage distance is defined as 

the total number of cell divisions from the lowest common ancestor cell to the two 

corresponding cells (Figure 2G). For example, the lineage distances between sister and 

cousin cells are two and four respectively. We found that the frequency of transformation 

was inversely correlated to the lineage distance between the two corresponding fates (Figure 

2H). For example, at a lineage distance of two (between sister pairs), we observed 

transformations for 40% of all possible pairs. In comparison, at a lineage distance of four 

(between cousins), we only observed transformations for 10% of all possible pairs. Overall, 

lineage distance explained 67% of the variance of the observed transformation frequency. 

These results suggest that lineage distance is a major contributor to the barrier between cell 

fates, and that progeny cells cannot easily escape the canal adopted by their progenitors.

In addition, the frequency was also context-dependent, in that different types of 

transformation at the same lineage distance showed varying frequency (Figure 2I). For 

example, while both at lineage distance of two, the ABa-to-ABp transformation and the 
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ABala-to-ABalp transformation were detected seven times and only once, respectively. At 

the extreme of context dependence, we compared the occurrence of opposite transformations 

between a fate pair (X-to-Y transformation vs Y-to-X transformation), which removes the 

potential impact of comparing different sublineages to each other. We found that the number 

of occurrence tended to be unequal (Figure 2J, Pearson correlation R2=0.105, p=0.113). For 

example, while the ABala-to-ABara transformation was detected 25 times, the opposite 

type, ABara-to-ABala, was detected only 5 times. Given the nature of our experiments 

where a transformation is observed after knocking down a gene, the results suggest that the 

genetic robustness of the gene regulatory network contributes to the differences in the fate 

barriers.

Furthermore, the unequal frequencies between the opposite transformations suggest an 

unexpected feature of regarding the genetic robustness of regulatory networks: two 

underlying gene modules that compete to establish competing fates are generally not equally 

robust despite the apparently equal and balanced fate outcome in wild type development.

Large-scale Identification of Regulatory Switches of Cell Fate

We used the high-dimensional phenotypic data to identify in vivo gene function in lineage 

differentiation. In total, we have identified 201 genes regulating 820 lineage differentiation 

events in specific cells (Figure 3A). A gene whose loss induces a specific homeotic 

transformation is a regulatory switch of an underlying binary fate choice. We identified 76 

genes as regulators for 32 fate pairs, 56 of which are new (Figure 3A–C and Table S3). The 

32 types of fate choice fall in 9 general categories of conserved developmental processes. 

Strikingly, the 76 regulatory switch genes encompass rather broad functional categories (21 

out of the 23 in Figure 1A) without significant enrichment (Figure 3D, Hypergeometric test, 

p>0.01). Interestingly, many genes that function as general cellular machinery such as DNA 

replication, vesicle trafficking and cell adhesion can regulate specific cell fate decisions 

(Figure 3E). In addition, we identified 191 genes that regulate other aspects of lineage 

differentiation (Figure 3A and Table S3). Knockdown of these genes caused cells to adopt 

abnormal cell fates not used in the wild type. Only 10 of the 76 genes function exclusively 

as regulatory switches of cell fate.

Our data significantly expands the functional understanding of conserved genes in metazoan 

development. In comparison, database searches suggested limited functional annotation of 

these genes in development. 34%, 55% and 82% of them did not have function description 

in general, in embryogenesis or in lineage differentiation, respectively (Figure 3F and Table 

S1) (Harris et al., 2014).

Extensive Temporal Flexibility of Cell Fate Progression Despite the Wild-type Invariant Cell 
Lineage

Overall, the homeotic transformations revealed a striking level of fate flexibility in the 

progenitor cells despite the invariant cell lineage in the wild type. All but three of the 25 

early progenitor cells exhibited alternative potentials in addition to those manifested in 

normal development. The broad flexibility is consistent with recent studies that 
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demonstrated plasticity of cell fates by forced expression of certain transcription factors 

(Fukushige and Krause, 2005; Yuzyuk et al., 2009; Zhu et al., 1998).

In particular, three of the nine categories of developmental processes suggested flexibility in 

the progression of cell fate restriction, namely temporal cell identity (Kohwi and Doe, 2013) 

in the stem cell-like asymmetric divisions of the germline precursor (Figure 4A), induced 

self-renewal where a daughter cell reiterates the fate of its mother (Figure 4B), and 

precocious fate restriction where intermediate fates appear to be skipped so that a daughter 

cell exhibits the fate of a granddaughter (Figure 4B).

We further examined the precocious restriction phenotype in cdc-25.1(RNAi) in the AB 

lineage. Based on the lineage expression pattern of the three tissue markers, the AB cell 

exhibited the fate of one of its daughters’, namely ABp (Figures 4C and 4D). CDC-25.1/

CDC25A is best known for its function in driving cell cycle progression by activating 

cyclin-dependent kinases. This phenotype indicates a potential developmental function of 

cdc-25.1. We conducted additional experiments to examine this possibility. In normal 

development, the ABp fate is induced by Notch signaling from the default ABa fate, the 

other AB daughter (Priess, 2005) (Figure 4E, left panel). Loss of Notch caused ABp-to-ABa 

fate transformation (Figures 4F). To test if the precocious differentiation is caused by a 

potentially precocious Notch signal to the AB cell (Figure 4E, right panel), we examined 

double loss of function of cdc-25.1 and glp-1/Notch. In this case, the AB cell adopted the 

ABa fate (Figure 4G) hence ruling out the possibility that Notch induction converts AB to 

ABp fate (Figure 4E, right panel). Our finding suggests a cell-autonomous decision in 

skipping the AB fate, and reveals a new function of CDC-25.1 in coordinating cell cycle and 

cell fate differentiation.

The broad flexibility, especially the flexibility in temporal progression of fate restriction, 

which is typical of regulative development and stem cells, argues that the observed 

canalization of cell fate in the above sections is a general property of metazoan development 

rather than a special property of an invariant cell lineage.

The Gene Regulatory Network Controlling Lineage Differentiation

To better understand how different molecular and cellular functions interact to generate the 

developmental landscape and drive cell fates through the landscape, we constructed a gene 

network that regulates lineage differentiation, in which genes (represented as nodes) are 

linked by edges for similar functions based on similar phenotypes (Figure 5A).

We designed a new method to measure phenotype similarity based on clonal changes in 

marker expression (Figures S4A–C), which outperformed the commonly used correlation-

based approach in distinguishing known interactions from background (Figures S4D and 

Extended Experimental Procedures). Specifically, we compiled a list of 68 gene-pairs 

between 40 genes that function either in a stable protein complex or in a well studied 

molecular pathway (Table S2). That is, it includes both physical and genetic interactions.

The resulting network is a densely connected network containing 194 gene nodes and 2689 

edges (Figure 5A and Table S4), of which 1447 are strong (p<0.05, thick edges). Using the 
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same compiled gene list as benchmark we found that the network captured 88% of the 

known interactions within a complex/pathway (intra-group edges), suggesting a high 

sensitivity (Figure 5B). Furthermore, the frequency of edges between genes in different 

complexes/pathways (inter-group edges) was significantly lower than that of intra-group 

edges (Figure 5B). The 3.5-fold enrichment suggests a high specificity. The specificity is 

likely underestimated given that there are bona fide interactions between complexes/

pathways.

We found that the topology of gene networks was highly dependent on the biological 

processes investigated. To this end, we compared our network to two previous ones that 

were based on large-scale phenotype analysis in C. elegans, one based on the early cell 

divisions up to the 4-cell stage (Gunsalus et al., 2005; Sonnichsen et al., 2005), the other on 

germ cell division and gonad morphology (Green et al., 2011). Shared edges between shared 

genes (Figure 5C) were remarkably low (6–8%) for all pair-wise network comparison 

(Figure 5D). This highlights the importance of inferring gene networks for different 

biological processes to archive a comprehensive understanding of the general molecular 

network.

A Multiscale Model Connecting Gene Networks, Cells and the Landscape

We further sought to construct a model of cell lineage differentiation that represents the 

process across the scales of genes, cells and the canalized landscape as a systems-level 

property (Figures 6). We did so by constructing a directed graph to represent the topology of 

the landscape and then integrated the gene regulatory network at cellular resolution.

The directed graph representing the topology of the landscape uses nodes to represent cell 

fates and arrows to represent the trajectories of fate progression (Figure 6A). Homeotic 

transformations were used to infer the available trajectories in addition to the wild type 

development. By focusing on homeotic transformations, the graph simplifies the landscape 

while capturing the major canalized trajectories that generated the majority of the 

phenotypes (see above and Figure 2).

We then integrated the gene network (Figure 5A) in three steps. First, for each of the 

progenitor cells involved, we extracted a sub-network that contains genes whose primary 

phenotypes were mapped to the given cell (Figure S5A and Extended Experimental 

Procedure). Second, within each cell, we further partitioned the sub-network into different 

functional modules based on their phenotypes. Those causing homeotic transformations 

were assigned to the corresponding trajectories in the landscape as the regulatory module for 

path choices (Figure S5A). A total of 28 such modules were generated. The other genes 

were treated as functioning in the cell or its sublineage to execute a fate choice. It should be 

noted that this class also includes other situations such as partial transformation (Du et al., 

2014) or lineaging errors within the sublineage. A more careful treatment is needed to 

further analyze this class.

Finally, exploiting the cellular resolution we removed gene-gene relationships caused by 

certain secondary effects. Specifically, we considered the six known cell-cell signaling 

events that regulate cell fate differentiation (P2-to-ABp, MS-to-ABalp, MS-to-ABara, 
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ABala-to-ABpla for Notch; P2-to-EMS, C-to-ABar for Wnt). If a gene regulates the fate of 

the signaling cell, we removed the gene from the receiving cell(s) (Figure S5B).

The resulting model (Figure 6C) contains 25 cell fates, 56 trajectories, and 52 gene 

regulatory networks with improved quality of the gene network (Figure S5C). This 

multiscale model effectively summarizes the large dataset into an intuitive model of 

developmental mechanisms. More importantly, as demonstrated below, it provides a 

framework to investigate both the systems-level properties of cell lineage differentiation and 

specific molecular mechanism through simulations and genetic experiments.

Examination of the Multiscale Model at the Systems Level: Landscape Topology 
Determines Differentiation Propensity and Regulation Complexity

Based on the multiscale model, we examined how the topology of the landscape (Figure 7A) 

may impact developmental regulation. To this end, we examined the connectivity of the 

landscape graph (the available trajectories of cell fate differentiation) as well as the number 

of nodes (cell types involved).

A notable feature of the trajectories is the extensive alternative paths that cells can take to 

differentiate into a particular fate. For example, there are 5 different paths for the zygote (P0) 

to differentiate into the mesoderm progenitor fate (MS) in addition to the wild-type path 

(Figure 7B). Based on the connectivity of the graph (Figure 7A), there are additional paths 

(dashed arrows in Figure 7B) that may be realized by perturbing multiple genes 

simultaneously. Meanwhile, it is also clear that the degree of available paths is highly 

uneven across the landscape (Figure 7C).

To better understand the impact of the alternative paths and their uneven distribution on cell 

fate differentiation, we conducted a simulation experiment. Specifically, we allow a cell to 

differentiate from the zygote (P0), but choose the trajectory randomly upon alternative paths. 

The frequency that each of the 12 founder cell fates is adopted reveals the propensity of the 

zygote to differentiate into each in the absence of fate choice regulation. As shown in Figure 

7D, the frequency is not uniform among the 12 founder cell fates (Kolmogorov–Smirnov 

test, p=0.0046). In contrast, randomizing the positions of the trajectories within the graph 

yielded a more even outcome across all fates. These results demonstrate that the number of 

alternative paths contribute to the propensity of a progenitor to different descendant cell 

types. The detected landscape ranked among the top 15th percentile among possible graph 

topologies in terms of the bias among the 12 fates (Figure 7D). Thus, the zygote, while 

being totipotent, has different propensities to produce different cell types as shaped by the 

topology of the landscape. Clearly, an uneven landscape requires active regulation to 

balance the different propensities in order to generate all necessary cell types with desired 

ratio.

We further found that the number of cells available and the number of cell types to be 

generated in a system also pose constraints on the stringency of fate choice regulation. For 

simplicity, we considered a multicellular system with N cells differentiating into T cell types 

(see Extended Experimental Procedures). A successful differentiation is to generate equal 

number of cells per type but tolerating a two-fold variation per type. We simulated the null 
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hypothesis of random differentiation, where a cell chooses among all types randomly with 

equal probability. The results showed that success through random unregulated 

differentiation can be achieved, but only when the N/T ratio was over certain threshold 

(Figure 7E). Furthermore, this threshold was not constant, but increases with T. These 

results suggest that N and T have opposing effects on regulation. A larger number of cell 

types require more stringent regulation. Counterintuitively, a larger number of cells lessen 

the need on the stringency of regulation.

Interestingly, random differentiation of cell identity afforded by a large number of cells may 

have been adopted in the mammalian olfactory system. Millions of olfactory neurons 

randomly choose from hundreds of olfactory receptor types to achieve one type per neuron 

(Abdus-Saboor et al., 2014). The large N/T ratio would ensure a complete covering of all 

receptor types and intact sensing ability of the animal. The early C. elegans embryo on the 

other hand presents the opposite situation where 12 cell types need to be achieved by 12 

cells with no room for adjustment.

Examination of the Multiscale Model at the Molecular Level: Developmental Regulation of 
Notch Signaling

Notch signaling functions extensively in development with context-specific functions and 

regulations (Priess, 2005). The cellular resolution of the multiscale model is particularly 

useful in enabling context-specific studies. To this end, we examined how Notch signaling is 

regulated in a pair of left-right homolog cells, namely ABala and ABara (Figure 8A). During 

normal development, Notch signaling induces the ABara fate; loss of Notch signaling causes 

the ABara-to-ABala transformation (Hutter and Schnabel, 1994).

The corresponding component of the multiscale model contains two gene networks that 

regulate the choice between the ABala and ABara fates (Figure 8B). One promotes (red box) 

the ABara fate, whose loss caused the ABara-to-ABala fate transformation. This network 

successfully captured the known Notch pathway genes (stars) including glp-1/notch, 

lag-1/CLS and sel-8/mastermind (Priess, 2005). The other (blue box) represses the ABara 

fate, whose loss caused the ABala-to-ABara transformation, an apparent gain-of-Notch 

phenotype. This network contains 22 genes, which can be further separated into three 

modules based on network connectivity (Figure 8B). We focused on module I below. The 

other two modules appeared to repress Notch signaling in different ways based on our 

results (Figures S6A and S6B) as well as the literature.

We performed genetic analysis of two genes from module I, namely rba-1 and chaf-2 

(Figure 8C and 8D). RBA-1 and CHAF-2 are components the chromatin assembly complex 

CAF-1, a histone chaperon that regulates chromatin loading during DNA replication and 

repair (Figure 8E) (Nakano et al., 2011). Double loss of function showed that rba-1 and 

chaf-2 were epistatic to glp-1/Notch. In double loss of function experiments, ABala still 

adopted the ABara fate (Figure 8C). Furthermore, rba-1(RNAi) and chaf-2(RNAi) rescued 

the loss-of-Notch phenotype in ABara (Figure 8D). These results suggest that the CAF-1 

complex represses Notch-induced cell fate. The effect of CAF-1 on Notch response is 

specific to ABala lineage. Simultaneous to the Notch induction that breaks the fate 

symmetry between ABala and ABara, a parallel Notch induction functions similarly to break 
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the fate symmetry between their sisters, ABalp and ABarp (Hutter and Schnabel, 1994). We 

found that rba-1(RNAi) did not induce a gain-of-Notch (ABarp-to-ABalp) phenotype, either 

alone or in double loss of function with glp-1(e2141) (data not shown).

We further analyzed how rba-1 represses Notch signaling. First, we found that rba-1 was 

epistatic to the effector transcription factor of Notch named lag-1/CLS (Figure S6C). 

Second, we found that the rba-1 repressed the expression of a direct Notch target gene 

named ref-1/E(spl) (Neves and Priess, 2005). While ref-1 is not normally expressed in the 

ABala lineages due to the lack of Notch signal, we found that in rba-1(RNAi), ref-1 was 

expressed at a significantly higher level (Figure 8F). Third, the context-specific function of 

rba-1 was also reflected at the molecular level. In contrast to ABala, the expression of ref-1 

in ABarp was unaffected in rba-1(RNAi) (Figure 8F).

How Notch signaling achieves context-specific function is an important but open question. 

Our results suggest that the CAF-1 complex provides a specific context for Notch response, 

and that CAF-1 and Notch signaling converge to regulate Notch target gene expression and 

the choice of cell fate (Figure 8G). Interestingly, a recent study shows that Notch signaling 

can also shape the chromatin state of its downstream genes (Cochella and Hobert, 2012), 

indicating complex interplay between Notch signaling and chromatin regulation in 

regulating fate choice during lineage differentiation.

DISCUSSION

Canalization of Cell Fates

The concepts of Waddington’s canalization and attractors provide an important theoretical 

framework for understanding cell fate differentiation, especially in the current debates on 

stem cells and cancer formation. However, it is not without controversy, especially as deep 

sequencing of mRNAs started to reveal molecular signatures of hybrid cell fates (Morris et 

al., 2014).

Our analysis provides systematic experimental evidence, both in terms of the diversity of 

gene function and the extent of cell lineages, that early lineage differentiation in a metazoan 

embryo indeed follows a canalized landscape (Figure 2). More specifically, the landscape is 

canalized around the fates used in wild-type development. When the fate of a cell is 

perturbed, the new fate tends to be directed towards a relatively small number of fates. 

These fates are enriched for fates used in normal development by other cells (homeotic 

transformations) or similar fates.

How would one reconcile the strong canalization of cell fates observed here with the 

observations of hybrid cell fates? Through the analysis of observed homeotic 

transformations in our study, we showed that it is unlikely that the observed canalization is 

due to limited choices imposed by the invariant cell lineage of C. elegans. Rather, we 

suggest that the difference may lie in the approaches used to assay cell fate. We used the 

retrospective definition of cell fate. That is, instead of assaying the molecular content of a 

progenitor cell, we allow it to generate its sublineage and assay its fate by the cell types and 

patterns of the sublineage. Thus, we hypothesize that if a cell with a mixture of two normal 
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fates is given sufficient time to differentiate, the outcome would be the canalization towards 

one of the fates. In at least one known example of engineered stem cells it is the case 

(Morris et al., 2014). The converse testable prediction is that in our case the molecular 

content of a progenitor cell undergoing homeotic transformation would show mixed 

signatures of both the normal and the new fate. This prediction remains to be tested.

Furthermore, we showed that lineage distance and genetic robustness of gene regulatory 

networks contribute to the barriers between cell fates in the landscape (Figure 2F–J). Our 

results showed that lineage distance is a major contributor to the barrier of fate 

transformation, explaining 67% of the variance in the case of C. elegans embryogenesis. 

These results provide quantitative experimental evidence to the intuitive but unsubstantiated 

notion that the barrier for transformation becomes higher as lineages diverge. Our results 

also revealed an unexpected feature of the gene regulatory network in terms of genetic 

robustness: two dueling gene modules that promote opposite outcomes in development are 

not equally robust (Figures 2I and 2J). A lock-step mutual repression between two 

competing gene modules, which appears to be the intuitively optimal structure, would have 

produced equal robustness. This raises an open question as to how the global gene 

regulatory networks are integrated from component modules and what properties of the 

global network are optimized by evolution.

Penetrance of phenotypes is also an important aspect of genetic robustness. It has been 

noticed from the beginning that lineage phenotypes tend to be impenetrant (Horvitz and 

Sulston, 1980) More recent studies suggest that stochasticity in gene expression levels can 

explain impenetrant phenotypes (Burga et al., 2011; Raj et al., 2010). Based on the 

expression of tissue markers in individual cells, the average penetrance of observed cell fate 

changes in our dataset is 41% (Figure 1H). However, because we only assayed a relatively 

small number of embryos per gene per marker, the observed penetrance for each gene is not 

statistically meaningful.

Propensity and Regulatory Complexity of Cell Lineage Differentiation

In addition to the canalized landscape, we uncovered other systems-level properties of cell 

lineage differentiation. These results not only raise new questions for investigation, but also 

lend insights on the practice of cell engineering.

Based on the inferred topology of the landscape, we showed quantitative evidence that the 

zygote has different propensities to generate different cell types (Figure 7D). More broadly, 

our results suggest that the number of alternative fate trajectories in a landscape is a 

determining factor for the propensity of a progenitor cell toward a descendent fate.

We further showed that the number of cells and cell types in a landscape imposes the 

minimal requirement of active regulation on fate choices (Figure 7E). The complexity of the 

regulation required to successfully differentiate a multicellular system increases nonlinearly 

with the number of cell types involved. On the other hand, increasing the number of cells in 

the system lessens the requirement of tight regulation. These results shed light on the 

engineering of complex organoids. The starting cell mass may reduce the complexity of the 

artificial interference required to guide differentiation. When many cell types are involved, a 
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divide-and-conquer approach may prove to be necessary as the complexity of applied 

guidance decreases nonlinearly.

A surprising discovery in examining gene function is that many genes that are considered as 

parts of the general cellular machineries regulate specific cell fate choices (Figure 3E). In 

fact, genes that are regulatory switches of binary fate choices come from 21 of the 23 

categories of molecular and cellular functions. A challenge in developmental systems 

biology is to understand how many different processes are coordinated. Our results provide 

a systematic exploration of the links between the different processes.

Significance and Implications of the Multiscale Regulatory Model

Finally, we constructed a multiscale model of lineage differentiation that connects gene 

networks and cells to the experimentally mapped landscape (Figure 6). It not only distills the 

large amount of data in a succinct and intuitive form, but also provides the basis for further 

understanding at both the systems level (Figure 7) and the molecular level (Figure 8). A key 

feature in this specific form of a multiscale model is the explicit representation of the 

trajectories in the canalized landscape. Conceptually, the topology of the landscape is an 

emergent property of the gene networks. However, it is still difficult to derive emergent 

properties from gene networks through ab initio computations. Therefore, we suggest that it 

is necessary and beneficial to explicitly represent the different scales in a model (Figure 6).

A practical value of such a model is that it allows the specific association of the gene 

regulatory networks with decision points in the landscape. Notably, in our study these 

associations are derived from genetic perturbations, as opposed to computationally predicted 

models from microarray or sequencing data (Trapnell et al., 2014; Treutlein et al., 2014).

Our study demonstrated a formalized approach to construct such a multiscale model of cell 

lineage differentiation. However, the mapped landscape is highly simplified because of its 

focus on homeotic transformations. How to handle the unknown cell types is an important 

and open technical question.

EXPERIMENTAL PROCEDURES

The major steps and methods are summarized below while detailed information is provided 

in the Extended Experimental Procedures.

C. elegans Genetics and RNAi screen

All C. elegans strains were grown at room temperature under standard laboratory conditions. 

Some strains were obtained from Caenorhabditis Genetics Center (CGC). RNAi experiments 

were performed by standard feeding procedure. For the initial screen of emb genes, the ratio 

of embryonic lethality was estimated by counting eggs on feeding plates.

Detection of primary cell fate changes

Primary cell fate changes and homeotic transformations were detected as described in (Du et 

al., 2014), except that three tissue-specific markers were used instead of five. The major 
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steps are summarized in Figure 1. To select unhatched embryos for analysis, we examined 

the imaged embryos 15 to 24 hours after the 4-cell stage.

Quantification of the phenotypic landscape

We classified the fates of the 12 founder cells (Figure 1) into 256 possible types based on 

the lineal expression pattern of a tissue marker. After tracing a sublineage for 5 rounds of 

cell division (32 terminal cells), we examined the expression status of each clone of 4 

terminal cells, leading to 28=256 possibilities (Figures S3A). Similarity between any two 

types was quantified as described in (Du et al., 2014).

Construction of gene networks

We used marker-expressing clones in the lineage as the unit of measurement to quantify 

phenotypic similarity between embryos (Figure S4A). The quantification methods are based 

on the comparison of CEPs as described in (Du et al., 2014), with two changes. First, the 

clonal changes were enumerated across the whole lineage instead of within a founder cell 

sublineage. Second, the gain and loss of an expressing clone were weighed differently at 0.8 

and 0.2, respectively.

Simulations based on the landscape

Two different simulations were conducted based on the constructed landscape (Figure 7). 

For fate tendency, a fate trajectory was randomly chosen from all available trajectories to a 

cell at each cell division from the zygote to the terminal fates in the landscape. To 

randomize the landscape, the same total number of trajectories was placed randomly 

between the fates in the constructed landscape, but not allowing de-differentiation.

Statistical Methods

Statistical measurements and cutoffs for determining tissue marker expression in individual 

cells and the similarity between lineage patterns were described in (Du et al., 2014). 

Potential impact of lineaging errors on the enrichment of fate types (error bars in Figure 2C) 

was estimated by random simulation (see Extended Experimental Procedures for details). 

Error bars show the standard deviation among 10,000 simulation results. Standard methods 

including the t-test, the binomial test, the Mann-Whitney U test and others were used to 

calculate various p-values, each of which is noted in the text or figure legend.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Systematic phenotypic analysis of lineage differentiation over time, space and 

genome

Systemic canalization of cell fates shaped by lineage distance and genetic robustness

Large-scale identification of binary fate switches

Multiscale model of differentiation with genes, cells and inferred landscape
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Figure 1. Systematic Perturbation and High-dimensional Phenotypic Analysis of Cell Lineage 
Differentiation in C. elegans
(A) Genome-wide RNAi screen and characterization of 1,061 essential genes for 

embryogenesis identified 204 conserved regulatory genes. Pie chart shows the functional 

distribution of the 204 selected developmental regulators. See also Figure S1 and Table S1.

(B) 3D time-lapse imaging was used to record the development of RNAi treated embryos.

(C) Phenotypic analysis of lineage differentiation. Lineage differentiation is assessed by 

analyzing tissue marker expression in the cell lineage. Color-coded tree branches represent 

the expression pattern of the three markers, with circles representing the clonal expression 

sites. Squares denote the 12 founder cells and colored bars below the tree indicate the germ 

layers that different sublineages belong to.

(D) Embryos with the Emb phenotype were used for analysis. Left pie chart shows the 

frequency of imaged embryos with the Emb phenotype; right pie chart shows the number of 

analyzed embryos for each tissue marker. Color scheme is as Figure 1C.

(E) Pie chart shows the total number of digitized cells and marker-expressing cells.

(F) Heatmap shows progenitor cell fate changes induced by gene knockdown. Each row 

shows the progenitor cell fate changes (red) induced by a gene knockdown with names of 

progenitor cells indicated above. See also Figure S2 and Table S2.

(G) Histograms of genes (left) and progenitor cells (right) in 1F.

(H) Penetrance of phenotypes.
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(I) Estimated accuracy of lineaging. The fraction of cells that were correctly traced to 

different cell generations were estimated for uncurated (black, 10 embryos, ~3500 cell 

tracks) and curated lineages (red, 100 randomly picked cell tracks). See also Figure S2.

(J) Cumulative histogram of the number of shared phenotypes between known interactors 

(n=68) and randomly selected gene pairs (n=68). P-value was calculated by two-tailed 

Mann-Whitney U Test.

(K) Pie chart showing the accuracy of predicted gene action sites using the ABar spindle 

rotation phenotype (See Extended Experimental Procedure for details).
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Figure 2. Canalized Landscape of Cell Fate
(A) Summary of cell fate changes. Bar plots show the numbers (red) and types (green) of 

cell fate changes observed for the 12 founder cells.

(B) 3D plots show the phenotypic landscape of all detected progenitor cell fate changes. The 

X-Y plane is a phenotypic space with each type of cell fate being at a unique 2D coordinate. 

Z-axis shows the detected frequency of the fate. The first plot shows a random sampling 

from all 256 fate types. See also Figure S3.

(C) Statistics of cell fate phenotypes. Left panel shows the fraction of detected (enriched and 

not enriched) and not detected fates out of the 256 types for each tissue marker. Error bars 

show S.D. based on 10,000 simulations with known error rates of lineaging. Right panel 

shows the fraction of the enriched and not enriched types among the detected fate changes.
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(D) Box plot shows the shortest distance of newly acquired fates to cell fates used in the 

wild type for different categories. Distance is quantified as the total number of clones whose 

marker expression status is different. In the box, horizontal lines and ‘+’ represent the 

median and mean respectively. P-value was calculated by two-tailed Mann-Whitney U Test. 

See also Figure S3.

(E) Artistic rendering of the canalization of differentiation around the fates used in normal 

development. Green arrows indicate homeotic transformations.

(F) Histogram of the observed occurrence of detected homeotic transformations.

(G) Definition of lineage distance.

(H) Fraction of detected types out of all possible types of homeotic transformations at 

different lineage distances.

(I) Scatter plot shows the number of occurrences and the lineage distance of each observed 

transformation.

(J) Scatter plot shows the correlation between the occurrence of X-to-Y and Y-to-X 

transformations for each detected fate pair.
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Figure 3. Regulatory Switches of Cell Fate
(A) Categories of cell fate regulators. Genes were classified as three categories based on 

their knockdown phenotypes: without phenotypes, induced homeotic transformations and 

induced abnormal fates. Venn diagram shows the overlap between genes that induced fate 

transformations and abnormal fates. See also Table S3.

(B) The wild-type cell lineage. Circles represent cells with lines connecting mother and 

daughter cells. Cell names are indicated as text near cells and germline precursors are 

highlighted in black.

(C) Regulatory switches of progenitor cell fate. Figure shows all identified homeotic 

transformations, their associated developmental processes and the regulatory genes. 

Numbers in parentheses indicate the number of new genes found in this study. See also 

Table S3.

(D) Functional distribution of regulatory switch of cell fate. Bar plot shows the expected 

(orange) and observed (green) number of genes in each functional category.

(E) Heatmap shows the regulation of fate choice by genes in different biological processes.

(F) Status of functional annotation of genes analyzed in this study. See also Table S1.
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Figure 4. Extensive Temporal Flexibility of Cell Fate Progression
(A) Regulation of temporal identity. Black arrows represent progression of normal 

development. Germline cells are shown above with numbers indicating different 

generations. Somatic cells are shown below. Red arrows indicate the fate transformations 

and boxes below show genes that induced the corresponding phenotype. Black indicates 

known genes and red indicates new genes found in this study.

(B) Regulation of cell fate restriction. Boxes show detected cases of fate renewal (delayed 

restriction, left) and skipping of cell fate (precocious restriction, right).

(C) Differentiation of the AB lineage in normal development. In the left panel, colored tree 

represents expression patterns of tissue markers used to assay cell fate. Purple bar below the 

tree highlights the ABp fate. Right panel summarizes cell fate progression from P0 to the 

ABx generation in the wild type. Texts denote cell name and different colors denote cell 

fates.

(D) cdc-25.1(RNAi) induces precocious differentiation. Left panel shows lineage 

differentiation and right panel summarizes the fate progression. Tissue marker expression 

pattern for the AB cell is identical to that of normal ABp. The pattern highlighted by cyan 

box-3 is different from that of box 1 in Figure 4C, but identical to that of box-2. This is 

presumably a secondary phenotype caused by fate change of AB cell in cdc-25.1(RNAi), 

which causes the loss of the third Notch signaling that distinguishes ABpla and ABpra fates. 

In the absence of third Notch, both ABpla and ABpra cell adopt the ABpra fate (box 2) 

(Hutter and Schnabel, 1995).
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(E) Schematic representation of ABp fate induction caused by Notch signaling (arrow) from 

the neighbor cell. Upper panel shows the process in the wild type that occurs at the 4-cell 

stage and lower panel shows a possible scenario of premature induction of ABp fate in the 

AB cell in cdc-25.1(RNAi). Text and color indicate cell and fates respectively.

(F) AB lineage adopts two “ABa” fates in glp-1(e2141). The hypodermis marker is used to 

assay differentiation. Bars below the tree highlight the “ABa fate”. The difference between 

the “ABa” fate and normal ABa fate (shown in Figure 4C) is due to additional function of 

Notch in ABalp and ABara sublineages (Hutter and Schnabel, 1994). Number shown above 

indicates penetrance.

(G) AB lineage adopts the “ABa” fate in glp-1(e2141); cdc-25.1(RNAi) suggesting AB 

skipping is not caused by to premature Notch induction. Hypodermis marker is used to assay 

differentiation and number shown above indicates penetrance. In cdc-25.1(RNAi) embryos, 

the position of ABal and ABar cells is not conventional.
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Figure 5. Gene Network Controlling Lineage Differentiation
(A) Gene regulatory network based on phenotype similarity. Nodes represents genes, edges 

represent genes that predicted to have similar function. Strong and weak edges are shown in 

different thickness. See also Figure S4 and Table S4.

(B) Box plot showing phenotypic similarity scores for genes within a protein complex/

pathway (red) compared to that of background (gray). Background similarity is calculated as 

the average similarity between members of a complex/pathway to all other genes. P-value 

was calculated by two-tailed Mann-Whitney U Test. See also Table S4.

(C) Venn diagrams show the number of shared genes among three studies.

(D) Frequency of shared and distinct edges among three studies. For Green’s network, the 

automatically clustered network at medium resolution (CSI≥0.95) was used although 

different resolutions showed similar results.

Du et al. Page 26

Dev Cell. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Multiscale Model of Lineage Differentiation
(A) Depiction of a canalized landscape as a directed graph. Each homeotic transformation 

(dashed box) is interpreted as an alternative trajectory of fate in a landscape (orange) (left 

panel). Canalized trajectories of fate progression are depicted as arrows. Genes causing a 

homeotic transformation are interpreted as repressors of the alternative trajectory (middle 

panel). To simplify the view, an alternative trajectory is not linked to the major node for the 

corresponding fate but to a small red node denoting the destination (right panel).

(B) Concept of multiscale model.

(C) Visualization of the multiscale model. Progenitor cell fates (green boxes) are organized 

based on the wild-type lineage. A gene network repressing each alternative path (light blue 

boxes) is placed on the corresponding trajectories. Gene networks regulating the execution 

of cell fate differentiation are placed inside the corresponding fates. See also Figure S5 and 

Table S5.
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Figure 7. Effect of Landscape Topology
(A) Directed graph shows the landscape contained in the multiscale model in Figure 6.

(B) Fate trajectories leading to the MS fate. Black arrows show the trajectories in normal 

embryogenesis. Red arrows show the alternative trajectories revealed by homeotic 

transformations. Solid arrows show the observed trajectories to MS. Dashed ones show 

possible trajectories by combining phenotypes of multiple genes.

(C) Distribution of the in- and out-degree of the directed graph.

(D) Top: frequency of each terminal cell in (A) being generated by the zygote (P0) following 

random fate choices (n=1,000) based on the detected landscape (histogram) and randomized 
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landscapes (line, 1,000 randomized landscapes with 1,000 runs each). Bottom: degree of 

bias among the terminal cells in (A) across random landscapes. Vertical line marks the 

experimentally mapped landscape.

(E) Curves show the success rate of differentiation in a multicellular system with a given 

number of cells randomly differentiating into a given number of cell types (n=10,000 for 

each multicellular system).
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Figure 8. Context-specific Regulation of Notch Signaling
(A–B) Multiscale model of a Notch-mediated fate choice between ABala and ABara. (A) 

Notch signaling (N) induces the ABara fate. Color-coded trees below represent tissue 

marker expression patterns in the corresponding sublineages. (B) Gene regulatory networks 

that regulate cell fate choices between ABala and ABara. The network required for the 

ABara fate is shown in the red box, which contains known genes in the Notch pathway 

(stars). The network required for the ABala fate is shown in the blue box. It is further 

divided into 3 modules based on network connectivity. See also Figure S6.

(C) Differentiation of the ABala lineage for different genotypes. Expression of PHA-4 (red) 

was used to assay lineage differentiation. For each genotype a micrograph of embryo at the 

terminal stage is shown on the left (green labels all cells and red labels PHA-4 expressing 

cells) and PHA-4 expression pattern in the ABala lineage is shown on the right. Number 

shows the penetrance of each phenotype.

(D) Differentiation of the ABara lineage for different genotypes.
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(E) Schematic representation of the CAF-1 complex.

(F) Quantification of ref-1::mCherry expression in ABala and ABarp lineages in the wild 

type and rba-1(RNAi). Each bar represents an embryo assayed. Expression level was 

averaged for ABala8 and ABarp8 cells in each embryo. P-value was calculated by T-test.

(G) Summary of genetic epistasis.
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