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Abstract

The optic radiation (OR) is one of the major components of the visual system and a key
structure at risk in white matter diseases such as multiple sclerosis (MS). However, it is
challenging to perform track reconstruction of the OR using diffusion MRI due to a sharp
change of direction in the Meyer’s loop and the presence of kissing and crossing fibers
along the pathway. As such, we aimed to provide a highly precise and reproducible
framework for tracking the OR from thalamic and visual cortex masks. The framework
combined the generation of probabilistic streamlines by high order fiber orientation distri-
butions estimated with constrained spherical deconvolution and an automatic post-pro-
cessing based on anatomical exclusion criteria (AEC) to compensate for the presence of
anatomically implausible streamlines. Specifically, those ending in the contralateral
hemisphere, cerebrospinal fluid or grey matter outside the visual cortex were automati-
cally excluded. We applied the framework to two distinct high angular resolution diffu-
sion-weighted imaging (HARDI) acquisition protocols on one cohort, comprised of ten
healthy volunteers and five MS patients. The OR was successfully delineated in both
HARDI acquisitions in the healthy volunteers and MS patients. Quantitative evaluation of
the OR position was done by comparing the results with histological reference data.
Compared with histological mask, the OR reconstruction into a template (OR-TCT) was
highly precise (percentage of voxels within the OR-TCT correctly defined as OR), ranging
from 0.71 to 0.83. The sensitivity (percentage of voxels in histological reference mask
correctly defined as OR in OR-TCT) ranged from 0.65 to 0.81 and the accuracy (mea-
sured by F1 score) was 0.73 to 0.77 in healthy volunteers. When AEC was not applied
the precision and accuracy decreased. The absolute agreement between both HARDI
datasets measured by the intraclass correlation coefficient was 0.73. This improved
framework allowed us to reconstruct the OR with high reliability and accuracy indepen-
dently of the acquisition parameters. Moreover, the reconstruction was possible even in
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the presence of tissue damage due to MS. This framework could also be applied to other
tracts with complex configuration.

Introduction

Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) modality that mea-
sures the amount and directionality of water molecule diffusion within tissue [1]. From DWI,
the direction of maximal diffusivity along axonal fibers can be estimated for each voxel. This
information enables the reconstruction of the architectural configuration of white matter
(WM) trajectories between regions of interest (ROIs) through fiber tractography [2]. Detailed
tractography studies have created virtual anatomic atlases of WM connections in the human
brain [3, 4] that agree with results from dissection and tracer studies [5, 6]. However, fiber
tracking has several limitations that may affect the reliability and reproducibility of outcomes
resulting from different approaches. First, the image resolution in diffusion MRI (dMRI) is
usually several orders of magnitude higher than the actual axons size, so each voxel contains
information from hundreds of thousands of axon fibers [7]. Moreover, the presence of crossing
fibers, highly curved or diverging fiber bundles, might affect the directionality of each fiber
bundle within the voxel [8]. The selection and positioning of the specific seed ROIs used to per-
form the tractography may lead to considerable variability in the results [9]. In addition, several
tractography algorithms are available; the two main distinguishing factors relate to how WM
fiber tracts are modeled within a voxel and how the tracts are reconstructed [10]. Deterministic
streamline tractography is primarily based upon streamline algorithms in which the local tract
direction is defined by the major eigenvector of the diffusion tensor and can produce anatomi-
cally faithful reconstructions of WM fascicules. However, in general, branching will not be rep-
resented and this approach may be less effective in regions where considerable fiber crossing is
present and curvature is high [11]. Probabilistic tractography algorithms based on a fiber ori-
entation density function provide information about the confidence that one can assign to a
reconstructed trajectory and can indicate the occurrence of branching [12]. The high-order
tractography model, constrained spherical deconvolution (CSD), is advisable for performing a
robust tractography [13]. Deterministic tractography can also be estimated from the fiber ori-
entation distribution (FOD) and obtain robust tracking in the presence of crossing fibers. How-
ever, deterministic tractography with high order models is prone to missing existing
streamlines [14]. The use of high order integration over fiber orientation distributions (iFOD2)
[15] derived from CSD could improve tracking in regions containing complex fiber architec-
ture [16]. Unfortunately, probabilistic fiber tracking frequently generates anatomically implau-
sible streamlines. New methods based on anatomical information from whole-brain
tractography, such as anatomically-constrained tractography (ACT) [17], have been developed
to provide a more biologically accurate reconstruction through dynamic thresholding strategy.
However, this method does not resolve the problem of false positives and systematic errors in
the tractography. For that reason, we propose the use of post-processing based on anatomical
exclusion criteria (AEC) to define the final tracking results and exclude aberrant streamlines.
The optic radiation (OR) is one of the major components of the human visual system. It
links the lateral geniculate nucleus (LGN) with the visual cortex and is one of the most difficult
tracts to reconstruct with dMRI-based methods [18] due to a sharp change of direction in the
Meyer’s loop and the presence of kissing and crossing fibers along the pathway [19]. The
topography of the OR is evident in histological sections [20], however, the reconstruction of
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the OR in vivo suffers from inaccuracy and different levels of success have been reported [21,
22]. Variability in the results may derive from a lack of consistency in the selection of the seed
regions and tractography algorithms (deterministic and probabilistic) used for fiber tractogra-
phy [23, 24] as well as in the selection or exclusion of streamlines representing the OR [25]. To
reconstruct the OR through tractography some authors have placed a waypoint seed distal to
the Meyer’s loop in order to map the rapidly curving anterior fibers [26-29] while few studies
have been able to obtain the OR from LGN seeds [19, 30, 31]. Although most techniques suc-
ceeded in representing the simplest anterior-posterior streamlines of the OR, aberrant fibers
were eliminated by visual inspection [32] or by looking at the anatomical plausibility of the
highest scoring pathways [33]. These approaches can induce biases in the position, shape, size
and length of the streamline distribution [34] and do not ensure the representation of the most
reliable pathway based on neuroanatomical knowledge.

The OR can be damaged in diseases such as multiple sclerosis (MS). The visual pathway can
be used to evaluate the interplay of different mechanisms of damage in MS such as inflamma-
tion (lesions and normal appearing WM), demyelination and axonal damage and also particu-
lar mechanisms such as trans-synaptic degeneration [35-38]. The presence of lesions with low
fractional anisotropy can erroneously terminate the tracking algorithm from conventional
DTI-tractography or cause a deviation of the streamlines at the level of the lesions [39]. As
such, an accurate and reproducible reconstruction of the OR and other tracts is essential to
evaluate the consequences of WM damage in MS or other neurological diseases, and for sur-
gery planning [24].

The purpose of this article is to introduce an improved tractography framework to recon-
struct the OR using the thalamus and visual cortex as seed and target masks that combines
probabilistic streamline fiber tracking by iFOD2 and automatic post-processing based on AEC.
We aim to demonstrate its precision, accuracy and reproducibility in two different single-shell
high angular resolution diffusion-weighted imaging (HARDI) datasets from healthy volunteers
and explore its applicability in the presence of tissue damage caused by MS.

Materials and Methods
Material and Imaging

Ten healthy volunteers and five patients with MS were recruited for this study. The included
healthy volunteers [3 male and 7 female, mean (SD) age 30 (+ 8) years] did not have any
known neurological or psychiatric diseases. The MS patients [2 male and 3 female, mean (SD)
age 35 (£ 9) years] were recruited from the MS Unit at the Hospital Clinic in Barcelona. The
Ethics Committee of Hospital Clinic of Barcelona approved the study and a signed consent
form was obtained from all the participants.

MRI data acquisition

MRI images were acquired on a 3T Magnetom Trio (Siemens, Erlangen, Germany) scanner,
using a thirty-two channel phased-array head coil. One 3D T1-weighted structural and two dif-
ferent DWT sequences were acquired in the same scanning session. The 3D-structural image
was a T1-weighted MPRAGE sequence with the following acquisition parameters: TR: 2050
ms, TE: 2.41 ms TT: 1050 ms, flip angle: 9°, 192 contiguous sagittal slices with 0.86 x 0.86 x 0.9
mm’ voxel size, 256 x 256 matrix size. Two HARDI datasets were acquired, HARDI A: TR/TE,
16600/110 ms; acquisition matrix, 154 x 154; 100 contiguous axial slices; 1.5 mm isotropic
voxel size; b value, 1500 s/mm?; 16 minutes acquisition time and HARDI B: TR/TE, 6200/84
ms; acquisition matrix, 96 x 96; 55 contiguous axial slices; 2.5 mm isotropic voxel size; b value,
1000 s/mm?; 4 minutes acquisition time. Both HARDI datasets used the same 60 numbers of
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gradient directions [40] and a single baseline image acquired at 0 s/mm?. Parallel imaging was
applied with a geometric reduction factor of 2 to reduce the distortion caused by susceptibility
differences at tissue interfaces. In addition, a 2D field map sequence was acquired to correct
geometric distortions of the DWI caused by susceptibility differences between air-bone or air-
tissue interfaces. The field map was obtained at two different echo times (TE, = 4.92 ms and
TE, = 7.38 ms) and in the same slice prescription, slice thickness and field of view as both
HARDI datasets.

Construction and inspection of seed and target masks

The 3D-structural image served as an anatomical landmark to obtain GM ROIs in each hemi-
sphere. The parcellation scheme from Freesurfer (FS) software [41] was used as a first approxi-
mation to outline the thalamus and visual cortex that were going to serve as the seed and target
masks, respectively. In patients, the 3D-structural image was also used to manually create a
lesion mask with the ITK-SNAP toolkit [42]. Afterwards, an automated lesion filling was
applied to the 3D-structural image to improve segmentation and registration steps in patients
[43]. The seed and target masks were then further inspected and corrected by an experienced
neuroanatomist using AMIRA 5.1 software (Mercury Computer Systems, Berlin, Germany) to
reduce inaccuracies and limitations of the parcellation algorithm. The thalamus seed mask
used in this study corresponds to the Thalamus-Proper parcellation in the Desikan-Killiany
Atlas while the visual cortex target mask was obtained by merging the pericalcarine, cuneus,
lateraloccipital, lingual and precuneus parcellations. As the LGN was not properly parcellated
in the thalamus-proper ROI, we manually selected and included this nucleus in the seed mask.

Proposed framework to reconstruct the OR

The schematic diagram of the framework is presented in Fig 1. Initially, we performed standard
preprocessing of the DWIs that included geometric distortion correction for echo planar
images (EPI) with fieldmap images and head motion correction. Fieldmap-based unwarping of
the EPI was done using PRELUDE to unwrap the phase and FUGUE to compute the distortion
by means of FMRIB Software Library (FSL, http://www.fmrib.ox.ac.uk/fs]) [44]. After applying
eddy current corrections we rotated the gradient vectors in both HARDI datasets in order to
compensate for head motion. This was followed by the registration of the structural images to
the corresponding HARDI dataset using the Boundary-Based-Registration method [45]. Prob-
abilistic tractography from seed to target masks was performed in each hemisphere using the
MRtrix3 package (https://github.com/jdtournier/mrtrix3) [46]. A set of 100,000 streamlines
was generated from the seed mask in only one direction and stopped as soon as it entered the
target mask. The default step size, curvature and FOD amplitude threshold (0.1) were used. We
applied probabilistic streamline fiber tracking by iFOD2 derived from CSD with a maximum
harmonic order of 8 [47, 48], and used FreeSurfer tissue segmentations for ACT. Anatomically
unrealistic streamlines were present in the final tracking results. To correct for this problem,
we automatically applied AEC to the results. We first converted the tract file into a track den-
sity image at native resolution based on the map of the fraction of tracks that enter each voxel.
We set a threshold of 1% of the maximum value included in the track density image [32, 49]
and selected the biggest cluster in order to get a temporary tract. The temporary tract file
retained plausible streamlines that connected the seed mask to the target mask and removed
streamlines of low confidence, i.e. false positives. Second, we applied a binary exclusion mask
to the temporary tract file comprised of the cerebrospinal fluid (CSF), whole contralateral
hemisphere and ipsilateral GM regions that did not include the seed and target masks. As a
result, any streamline crossing the midline or reaching cortical and subcortical GM regions
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Fig 1. Tractography reconstruction framework of the optic radiations. (1) Standard preprocessing of the
DWIs including Echo Planar Imaging distortion correction, eddy current distortion correction and head motion
correction. (2) Distortion correction of the DWI. (3) Quantitative diffusion fractional anisotropy (FA) mapping.
(4-5) Subcortical segmentation and cortical parcellation from FS of the 3D-structural image. (6) Registration
of the structural images to the corresponding DWI sequence. (7) Seed and target masks. (8) Probabilistic
streamline fiber tracking by high order integration over fiber orientation distributions (iFOD2) derived from
constrained spherical deconvolution (CSD) with a maximum harmonic order of 8 and use of ACT during
tracking. (9) Conversion of the tract file into a track density image. (10) Exclusion mask comprising CSF,
whole contralateral hemisphere and ipsilateral GM regions. (11) Final optic radiation reconstruction in track
density image and 3D tract file.

doi:10.1371/journal.pone.0137064.g001

outside the seed and target masks were excluded. Next, we converted the tract file back into a
track density image and the resulting images were scaled to a range of [0-1] [50] to enable the
comparison between individual samples. In patients with MS we overlaid the lesion mask
obtained with ITKsnap on the reconstructed OR to identify how many patients presented
lesions at that level.

In order to compare our framework with conventional DTI-tractography, we performed the
same pre-processing and applied deterministic fiber tracking based on the fiber assignment by
continuous tracking (FACT) [51] method in the healthy volunteers with the same seed and tar-
get mask. This fiber tracking was done with MRtrix3 software using the default setting parame-
ters and an FA threshold of 0.1.

Qualitative and quantitative evaluation of the method

Visual inspection of the OR resulting from streamlines in both HARDI datasets was performed
by a neuroanatomy specialist to evaluate concordance in morphology and position with the
known anatomical description of this pathway [52]. Quantitative evaluation of the OR position
was done by comparing the results with histological reference data of the OR [20, 53]. The OR
obtained in each HARDI dataset was converted into a template (tractography-constructed tem-
plate, OR-TCT) (S1 File). To do so, each individual track density image was aligned to the
highest resolution sequence (HARDI A) and was normalized into a standardized space (Mon-
treal Neurological Institute, MNI152) and then averaged. The histological reference data was
edited to exclude GM and CSF regions from the MNI152 structural template image in order to
preserve only WM regions. It was then converted to a binary mask to incorporate the
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information of all the subjects included in the histological atlas. The sensitivity, precision, spec-
ificity and F-measure of our method were calculated in each HARDI dataset to assess the simi-
larities between the OR-TCT and the histological reference data.

Sensitivity was measured as the proportion of voxels within the reference mask that were
correctly defined as OR in the OR-TCT.

True positives

Sensitivity = (1)

(True positives + False negatives)

Specificity was the proportion of voxels outside the reference mask that were correctly classified
as non-OR voxels in the OR-TCT.

True negatives

Specificity = ( (2)

True negatives + False positives)

Precision was calculated as the proportion of voxels within the OR-TCT that were correctly
defined as OR.

True positives
(True positives + False positives)

Precision = (3)
We included the F1 score, a measure of the tests accuracy, in order to estimate the weighted
harmonic mean of precision and sensitivity.

Precision - Sensitivity

F, =2.
! (Precision + Sensitivity) )

We also performed a quantitative evaluation of the OR in the absence of the AEC. In order to
evaluate the reproducibility of the OR reconstruction we compared the results obtained from
the two different HARDI datasets in each subject. The agreement in OR volume was evaluated
with Bland-Altman plots [54] and the intraclass correlation coefficient (ICC). Considering the
well-recognized anatomical differences between left hemisphere (lh) and right hemisphere (rh)
[55], we merged comparison from lh and rh into the same analysis. We used SPSS v.18 to con-
struct the Bland-Altman plots and calculate the ICC.

Results

The proposed framework reconstructed OR fiber tracking in both HARDI datasets in all the
healthy volunteers included in the study. The results were visually concordant with the ana-
tomical description of the streamlines (Fig 2b). The resulting fiber trajectories emerged from
the posterior part of the thalamus, including the LGN. A portion of the streamlines looped
anterior and laterally around the temporal horn of the lateral ventricle forming the Meyer’s
loop, where it sharply turned in a posterior direction, while another portion followed a more
direct trajectory. The streamlines then followed the curvature of the ventricular atrium and
reached the visual cortex. On the contrary, the application of conventional DTI-tractography
was unable to solve the complex configuration in the Meyer’s loop, generated unrealistic
streamlines and in some cases was unable to even produce an OR reconstruction in two sub-
jects (see Fig 3). Morever, the results were largely dependent upon the sequence used, with
worse reconstruction obtained with HARDI B.

In patients with MS, the OR were also accurately reconstructed with the proposed frame-
work (Fig 4c) although all the subjects presented lesions within the tracts (Fig 4a).

The framework provided good anatomical correspondence between the OR-TCT and the
histological reference data in healthy volunteers (see Fig 5). The sensitivity, precision,

PLOS ONE | DOI:10.1371/journal.pone.0137064 September 16,2015 6/16



el e
@ ) PLOS ’ ONE Improved Tractography of the Optic Radiation

(a) Probabilistic streamline tracking by iFOD2

(b) Probabilistic streamline tracking by iFOD2 + AEC
p— L o S S\

Fig 2. Streamlines of the reconstructed OR in ten healthy subjects: (a) Probabilistic streamlines fiber tracking
by iFOD2. (b) Probabilistic streamlines fiber tracking by high order integration over fiber orientation
distributions (iFOD2) adding the anatomical exclusion criteria (AEC).

doi:10.1371/journal.pone.0137064.9002

specificity and F-measure results are shown in Table 1. The results demonstrate a good match
between the OR-TCT in both HARDI datasets and the histological reference mask. Precision
ranged from 0.71 to 0.83 depending on the HARDI dataset or hemisphere explored (false posi-
tive from 17 to 29%, while accuracy ranged from 0.73 to 0.76. In the HARDI A dataset, with
smaller voxel size, the sensitivity was lower than HARDI B while the precision was higher
(Table 1). The application of AEC also increased the precision and accuracy ranges in MS
patients (S1 Table).

When AEC was not applied, streamlines not concordant with prior anatomical knowledge
appeared in all subjects (Figs 2a and 4b) and the accuracy of the OR compared to the histologi-
cal mask decreased (range from 0.25 to 0.33) while sensitivity was very high (range from 0.99
to 1.0) due to the overestimation of WM streamlines with false positives (Table 1); false positive
in non-AEC ranged from 80 to 86% (S2 Table).

Bland-Altman plots showed good agreement between the OR tracking obtained in both
HARDI datasets for all subjects (Fig 6). We did not detect any outliers, suggesting that the tech-
nique is reproducible. The OR was bigger in HARDI B, where voxel size is larger, than in
HARDI A (Table 1) but we did not detect a systematic bias between both images. The ICC
measuring the absolute agreement was 0.73 (95% confidence interval: 0.50 to 0.86, p < 0.001).
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Fig 3. Deterministic DTI tractography based on fiber assignement by continuous tracking (FACT) in
ten healthy subjects in two HARDI datasets.

doi:10.1371/journal.pone.0137064.g003

Discussion

We present an improved tractography framework that combines the use of available software
packages to reconstruct the OR from thalamus and visual cortex masks with the automatic
exclusion of aberrant streamlines through anatomical criteria. Contrary to conventional DTI-
tractography this methodology enabled the reconstruction of the whole OR in high concor-
dance with anatomical knowledge and high accuracy in comparison with the histological refer-
ence data. In patients with MS, the OR was obtained in all cases even though there were lesions
in these areas. Furthermore, this technique was applied in two different HARDI datasets and
the resulting OR fiber tracks were comparable, suggesting good reliability of the approach. Our
framework used high order probabilistic streamlines derived from CSD and automatic post-
processing based on AEC. The AEC steps included the application of a threshold and the selec-
tion of the maximally connected volume to retain plausible OR reconstructed streamlines that
connect the seed to the target mask. Most widely used methods are based on the application of
a threshold to eliminate low probability connections not corresponding to the OR. Another
method, ACT, uses information from high-resolution images to decrease the presence of
anatomically implausible streamlines generated on fiber tracking. Despite the application of
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(a) Lesion masks

Fig 4. Streamlines of the reconstructed OR in five patients with multiple sclerosis: (a) Lesion masks is shown
in red. (b) Probabilistic streamlines fiber tracking by iFOD2. (c) Probabilistic streamlines fiber tracking by high
order integration over fiber orientation distributions (iFOD2) adding the anatomical exclusion criteria (AEC).

doi:10.1371/journal.pone.0137064.9004

Histological reference mask

OR-TCT in HARDI B

Fig 5. Anatomical correspondence between the histological reference mask (in blue color) and
tractography-constructed templates (OR-TCT) from both HARDI datasets (in orange color).

doi:10.1371/journal.pone.0137064.g005
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Table 1. Comparison between tractography results and histological reference data in healthy volunteers.

OR-TCT (iFOD2) OR-TCT (iFOD2 + AEC) reference mask®

HARDI AP HARDI B°® HARDI AP HARDI B°® Histological

Tract volume (cm®), mean (+SD) Ih 44.87 (£7.69) 52.38 (+14.46) 12.25 (+2.73) 16.81 (+4.89) 18.4 (£2.1)

th 41.69 (+8.00) 43.37 (+11.03) 12.01 (+2.03) 14.99 (+3.52) 18.4 (+1.3)
Sensitivity lh 0.99 0.99 0.71 0.81 -
rh 0.99 1.00 0.65 0.70 -
Precision Ih 0.18 0.14 0.83 0.71 -
rh 0.20 0.17 0.83 0.79 -
Specificity lh 0.92 0.90 1.00 0.99 -
rh 0.93 0.92 1.00 1.00 -
F-measure Ih 0.30 0.25 0.77 0.76 =
rh 0.33 0.29 0.73 0.74 -

#Volumes in the histological reference mask were obtained from Clatworthy et al., 2010.
PHARDI A: 1.5 mm isotropic voxel size; b-value, 1500 s/mm?

°HARDI B: 2.5 mm isotropic voxel size; b-value, 1000 s/mm?

Abbreviations:

AEC: automatic post-processing based on anatomical exclusion criteria.

iFOD: high order integration over fiber orientation distributions.

Ih: left hemisphere.

OR-TCT: optic radiation tractography-constructed template.

rh: right hemisphere.

doi:10.1371/journal.pone.0137064.t001
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Fig 6. Bland-Altman plots comparing the mean volume of OR in both HARDI datasets. Left panel corresponds to non-AEC and right panel corresponds
to results with AEC method. The volume of optic radiation in each subject is the mean of both hemispheres. Most observed differences between the OR
volumes in the two sequences are within mean + 1.96 SD. Middle line indicate mean differences and dashed lines are limits of agreement, defined as mean
difference plus (upper line) and minus (lower line) 1.96 SD of differences.

doi:10.1371/journal.pone.0137064.9006
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ACT we observed a large number of false positives streamlines projecting to areas outside the
visual cortex (Fig 2a). The use of the top 1% track density threshold in AEC steps was found to
be the most convenient to preserve sensitivity and precision by largely reducing false positives
voxels (from more than 60% to 17%) rather than increase false negatives (from 3% to 40%) (S3
Table). Besides, we applied exclusion masks based on anatomical criteria in order to exclude
non OR tracks. This was done by excluding streamlines ending in other GM regions apart
from the seeds and target masks, as well as CSF and contralateral hemisphere voxels, that did
not match with the classical description of the OR anatomy. With the application of AEC steps
the accuracy of the streamlines improved in both healthy volunteers and MS patients.

We were able to reconstruct the whole OR, including the Meyer’s loop, using only a seed
and a target masks that corresponded to the initial and the final part of the tract (the thalamus
and the visual cortex, respectively). In comparison with previous reports, we did not require
the use of waypoints in the Meyer’s loop to reconstruct the part of the tract with higher curva-
ture. The decision to use the whole thalamus as a seed region was made in light of experimental
evidence showing that the visual pathway in primates not only connects the LGN with the cal-
carine cortex but also includes some projections from the pulvinar nuclei in the posterior thala-
mus [56]. We manually delineated the thalamus to include the LGN, which tended to be
systematically missing with FS segmentation [57]. The visual cortex target mask was built by
taking the original primary visual cortex FS parcellation (pericalcarine) and merging the sur-
rounding visual association areas (cuneus, lateraloccipital, lingual and precuneus) in order to
ensure the inclusion of extrastriate projections of the OR described in humans [58].

To validate the anatomical correspondence of our results in healthy subjects, we created a
template of our OR (OR-TCT) and compared it with a histological reference mask, which serves
as a gold standard. The comparison of the OR-TCT with histological reference data shows the
biological reliability of the tractography framework but also presents some drawbacks that limit
the comparison: the histological reference data is based on myelin-stained histological serial sec-
tions of 10 human brains and includes the LGNs and the striate GM areas, increasing the size of
the template. Since we assume that meaningful tracts only propagate through WM, we excluded
GM regions from the histological reference mask when calculating the precision and sensitivity.
As such, the differences in precision and sensitivity between both techniques arise not only from
the limitation of the tractography algorithm but also from the effect of unavoidable distortions
specific to fixation, cutting, staining and mounting of the histological samples. Nevertheless, the
accuracy of the results in both HARDI datasets suggested that our OR-TCT matched well with
the histological reference data in location and extent (see Fig 5).

Our study has several strengths. First, the proposed framework was used in different
sequences with similar results, demonstrating good reproducibility. We compared the volume
of the OR in two HARDI datasets that differ in voxel size and b-value. The results were consis-
tent in both sequences although they presented differences in terms of absolute volume, with
higher volumes in the sequence with larger voxel size. Those differences can be related to varia-
tions in partial volume effects, contrast in the angular domain and signal-to-noise ratio derived
from the different spatial resolutions and b-values [59]. Second, the OR was reconstructed in
all MS patients, even in the presence of lesions and microstructural damage. Although the
number of patients included was low, the technique appears to be capable of generating a reli-
able reconstruction of the OR. This can be very useful in the evaluation of the consequences of
global and local damage and could be applied to other neurological diseases or for neurosurgi-
cal procedures.

However, there are some limitations in the proposed methodology inherent to the technique.
First of all, the method is dependent on the seed and target masks positioning, which is the only
operator-dependent step and can influence the tractography results. In order to decrease the
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probability of bias, the ROIs should be properly segmented to obtain reliable and reproducible
positioning. In our study, the automatic segmentation from FS was not suitable so we decided to
correct the seed and target masks manually to ensure an accurate reconstruction based on neuro-
anatomical knowledge. However, our framework is intended to be used with any selected seed
and target masks. Second, this methodology was only evaluated in specific HARDI datasets;
therefore, it would be of interest to assess the reliability of OR tracking in higher resolution
sequences such as multi-shell HARDI and diffusion spectrum imaging (DSI). Third, the inclu-
sion of the AEC method reduces the sensitivity. This is due in part to exclusion of the most ante-
rior extent of the Meyer’s loop streamlines where fibers projecting to the putamen and temporal
cortex, not corresponding to the OR, have been described [60]. Despite the decrease in sensitivity,
the AEC method increased the precision and accuracy, obtaining an OR reconstruction similar
to the histological atlas. Finally, we didn’t analyze the presence of damage of the OR in MS
patients because our aim was to introduce a reliable tractography methodology. Further clinical
studies with higher number of subjects allowing the analysis of changes in MS patients and longi-
tudinal evaluations to assess the reproducibility of the technique are advisable.

Conclusion

We present a framework for tractography reconstruction that was able to reconstruct the OR
with high accuracy and reliability by combining high order probabilistic fiber tracking derived
from CSD and automatic post-processing based on anatomical exclusion criteria. Moreover,
this technique was applied to different HARDI datasets with equivalent results. Finally, despite
the presence of WM damage, it was possible to reconstruct the OR in patients with MS. This
framework could be used to accurately represent other tracts with complex configuration and
in pathologies affecting the WM.

Supporting Information

S1 File. OR-TCT. Optic radiation tractography-constructed template in both HARDI datasets.
The OR obtained in each HARDI dataset was converted into a template. To do so, each indi-
vidual track density image was aligned to the highest resolution sequence (HARDI A) and was
normalized into MNI152 space at Imm. The “S1 File” is composed by the OR reconstruction
in both HARDI datasets in binarized masks.
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S1 Table. Comparison between tractography results and histological reference data in MS
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