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ABSTRACT We present a general hidden Markov model framework called reconstructing ancestry blocks bit by bit (RABBIT) for
reconstructing genome ancestry blocks from single-nucleotide polymorphism (SNP) array data, a required step for quantitative trait
locus (QTL) mapping. The framework can be applied to a wide range of mapping populations such as the Arabidopsis multiparent
advanced generation intercross (MAGIC), the mouse Collaborative Cross (CC), and the diversity outcross (DO) for both autosomes and
X chromosomes if they exist. The model underlying RABBIT accounts for the joint pattern of recombination breakpoints between two
homologous chromosomes and missing data and allelic typing errors in the genotype data of both sampled individuals and founders.
Studies on simulated data of the MAGIC and the CC and real data of the MAGIC, the DO, and the CC demonstrate that RABBIT is
more robust and accurate in reconstructing recombination bin maps than some commonly used methods.
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ANY synthetic animal and plant resources have been cre-
ated for genetic mapping of quantitative trait loci (QTL).
Examples include the mouse Collaborative Cross (CC) (Churchill
et al. 2004), the heterogeneous stock (HS) (Mott et al. 2000), the
diversity outcross (DO) (Svenson et al. 2012), the maize nested
associated mapping (NAM) population (Buckler et al. 2009),
the advanced intercross lines (AIL) (Darvasi and Soller
1995), the Arabidopsis multiparent recombinant inbred lines
(RIL) (AMPRIL) (Huang et al. 2011), the Arabidopsis multi-
parent advanced generation intercross lines (MAGIC) (Kover
et al. 2009), and the Drosophila synthetic population resource
(DSPR) (King et al. 2012). The genome of an individual sam-
pled from such a population is a random mosaic of ancestry
blocks, each alternatively inherited from an inbred founder.
The focus of this article is on reconstructing these ancestry
blocks from single-nucleotide polymorphism (SNP) array
data, a necessary step for downstream QTL mapping.
The pedigree-based approaches, such as MERLIN (Abecasis
et al. 2002), are often used to solve ancestral inference in
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human genetics. However, in the fields of animal and plant
breeding, these algorithms become computationally inten-
sive because of the large size of breeding pedigrees, the
absence of genotypic data in intermediate generations, and
the dense marker data in the last generation. Recently, Liu
et al. (2010) presented an efficient algorithm, GAIN, for
simplifying the inbreeding structure of complex pedigrees.
Specifically, the authors accounted for the symmetry of re-
peated sibling (brother—sister) mating in the CC, so that the
four alleles in the beginning generation of inbreeding have
equal probability 1/4 of being passed down.

Nevertheless, the large breeding pedigrees (since the
founder population) in advanced mapping populations such as
the MAGIC and the DSPR are often unavailable or inaccurate.
Moreover, inbreeding by selfing instead of sibling mating is
usually adopted in plant population resources such as the
MAGIC. The relatively simple hidden Markov model (HMM),
implemented in HAPPY (Mott et al. 2000), is thus widely used,
since it does not incorporate any pedigree information except
the effective number of generations. HAPPY has implemented
two extremes: the diploid mode where the ancestral origin
processes between two homologous chromosomes are inde-
pendent and the haploid mode for haploid genomes and for
diploid lines where the processes are completely dependent.

The full range of the dependencies of the ancestral origin
processes between two homologous chromosomes has been
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modeled by a continuous-time Markov chain (CTMC) for
both autosomes (Zheng et al. 2014) and X chromosomes
(Zheng 2015), where the optimal breeding design in terms
of mapping resolution is of interest. In this article, we im-
plement a Bayesian framework, denoted by reconstructing
ancestry blocks bit by bit (RABBIT), in multiparental pop-
ulations from SNP array data, where the previously devel-
oped CTMC is used as the prior of ancestral origin processes.
RABBIT incorporates information on breeding designs
through the hyperparameter €}, a full set of parameters on
which ancestral origin processes depend, describing the in-
breeding level and the densities of junctions (recombination
breakpoints) along two homologous chromosomes.

RABBIT is highly flexible, because a wide range of
breeding designs and population types can be specified
through the hyperparameter . If the breeding design is
stage-wise random mating, we may calculate  analytically
according to our previous developed framework (Zheng
et al. 2014; Zheng 2015), where the calculation is essen-
tially an average over gene dropping on all the possible
pedigrees conditional on the specified mating schemes. If
the breeding pedigree is known but it cannot be regarded
as stage-wise random mating, we may calculate £ by sim-
ulating many replicates of gene dropping on the given ped-
igree. If both the breeding pedigree and the mating schemes
are not known, we may estimate € from the marker data, an
empirical Bayes method for setting the hyperparameter €.

In Materials and Methods, we describe three models for
RABBIT, where the observation models are the same and the
prior models of ancestral origin processes are similar to
those used in GAIN and HAPPY; we describe in detail the
calculations of the hyperparameter {2 by RABBIT in the Ap-
pendix. The observation model accounts for missing data
and allelic typing errors in the genotype data of both sam-
pled individuals and founders, which are not fully modeled
in GAIN and HAPPY. We use simulated data from two ex-
ample populations of the CC and the MAGIC to evaluate the
three models of RABBIT and to compare among RABBIT,
GAIN, and HAPPY. These methods are further evaluated
by analyzing the real data of the MAGIC (Kover et al.
2009), the DO (Svenson et al. 2012), and the pre-CC (Durrant
et al. 2011). Finally, the limitations of these methods and the
possible extensions of RABBIT are discussed.

Materials and Methods
Data

We analyze independently each linkage group of each in-
dividual sampled from a mapping population. Each in-
dividual is genotyped at T biallelic SNPs of a linkage
group, and the genetic distances d; (t =1...T — 1) between
consecutive marker locations t and t + 1 are measured in
morgans and known without errors. Let {Yt}thl denote the
unphased genotype data along the two homologous chromo-
somes of a sampled individual, and H denote the founder
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haplotype, with matrix element H, being the observed
homozygous allele at locus t =1...T of inbred founder
i=1...L

The genotype data are analyzed by an HMM model,
where the process model describes the ancestral origin
processes along two homologous chromosomes, and the
observation model describes the probability of genotypes
given latent ancestral origin states. In addition to the
founder haplotypes and the sampled genotypes, we assume
that there are no genetic data available in the intermediate
generations.

The process model

Let {O{“}Ll denote the ancestral origins along the mater-
nally derived chromosome and {Olt’}tT:1 those along the pa-
ternally derived chromosome. Let O, = (O, Of) be the
ordered ancestral origin state at locus t, and it is identical
by descent (IBD) if O™ = Of and non-IBD otherwise. We
label the ancestral origins by natural integers starting from
1. Let n denote the number of possible ancestral origins, and
for simplicity set n =L, the number of inbred founders,
throughout the article.

To study how the prior processes affect the reconstruc-
tion of ancestry blocks, we designate three models:
jointModel, indepModel, and depModel, where the ances-
tral origin processes along two homologous chromosomes
are modeled jointly, independently, and completely de-
pendently, respectively. All three models have the same
observation model described in the next section. The
indepModel and the depModel apply to completely outbred
and fully inbred genomes and correspond to the diploid and
haploid modes of HAPPY, respectively. On the other hand, the
jointModel applies to the full range of inbreeding levels and
corresponds to the model of GAIN.

The introduction of the three models has multiple pur-
poses. First, the indepModel and the depModel serve as two
extreme baselines to show how much the jointModel can
improve the reconstruction of genome ancestry blocks.
Second, the comparison among the three models serves as
a baseline to show whether the differences among RABBIT,
HAPPY, and GAIN are due to the prior models of ancestral
origin processes. Finally, the depModel is the only suitable
model for haploid genomes such as the X chromosomes of
males.

The three models are fitted into the framework of discrete
time Markov chains, which can be described completely by
the initial distribution at the first locus and the transition
probability matrix from one locus to the next (Norris 1997).
In the following, we focus on the two components of Markov
chains and the hyperparameter  for each of the three
models.

jointModel: We model jointly the latent ancestral origin
states {O[}Zzl along the two homologous chromosomes. Let
f =P(O™ = OP) be the IBD probability at a locus, and the
initial distribution is given by
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where n ancestral origins are assumed to be symmetric given
the initial IBD state or non-IBD state. Denoting by Q the
transition rate matrix of the CTMC with dimension
n? X n?, the transition probability matrix from O; to Oy
is given by

P[( t+1’of+l>

(Norris 1997) for t =1...T — 1, where I is an identity ma-
trix, and the matrix exponential is approximated by its
Taylor expansion up to the second order of d; under the
assumption of small intermarker distances. We neglect the
scenario with more than two crossovers between consecu-
tive markers and assume that there are no genetic interfer-
ences. Higher-order Taylor expansion may be used for larger
d;, and more sophisticated methods for the calculation of the
matrix exponential may be alternatively used (Moler and
Van Loan 2003).

As described in detail in the previous method (Zheng et al.
2014; Zheng 2015), the rate matrix Q can be constructed
from junction densities, under the assumption of exchange-
able ancestral origins; see figure 1 of Zheng (2015) for an
example of the four-way RIL by sibling mating. Let J(abcd)
denote the density (per morgan) of junctions of type (abcd),
where haplotype ac(bd) is on the maternally (paternally) de-
rived chromosome, the genotype ab(cd) is on the left (right)
side of the junction, and the same integer labels denote IBD.
After accounting for the reversibility of chromosome directions,
we need only to consider five junction types (see figure 2
of Zheng et al. 2014) and obtain for the jointModel

1
(om, o{’)} =% ~ 14 Qd, +5 Qdf

Q = {f,J(1122),J(1211),J(1213),J(1222),J(1232) },

where junction type (1122) has two breakpoints shared on
both chromosomes, junction types (1211) and (1213) have
breakpoints only on the paternally derived chromosome,
and junction types (1222) and (1232) have breakpoints only
on the maternally derived chromosome. Junction type (1122)
has IBD states on both sides, junction types (1213) and (1232)
have non-IBD states on both sides, and junction types (1211)
and (1222) refer to the transitions from non-IBD to IBD.

indepModel: Two homologous chromosomes have a priori
completely independent ancestral origins. The initial distri-

bution is given by
of)]=P(or)p(ot) -

Pl(or

and thus the prior IBD probability f is implicitly set to 1/n.
The transition probability matrix for the indepModel is given by

Pl(0m.0.1)|(or.0t) | < p(0ms[or) (02 for)

P(05,,]07) =58(05,, = OF)e ™4 + 50z, #07)

X ].
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where § is an indicator function and it equals 1 if the argu-
ment is true and O otherwise, and R™(RP) is the map expan-
sion or the summed junction density on the maternally
(paternally) derived chromosomes. Thus the hyperpara-
meter ) = {R™ RP}

x € {m,p},

depModel: Two homologous chromosomes have a priori
identical ancestral origins. The initial distribution is given by

P[(or.of)] =5a(ch =or)

and thus the prior IBD probability f is implicitly set to 1. The
transition probability matrix for the depModel is given by

Pl (0 08,)| (0r-07)] - (o for)a(er, ~ o).
r ):5(Om1 _Om) —Rd,
+o(om #or) (1-e ™)

where R = (R™ + RP)/2 for autosomes or female XX chro-
mosomes, and R = R™ for the maternally derived X chromo-
some of a male. Thus the hyperparameter = {R}.

p(om,

Remarks: Although the maternally and paternally derived X
chromosomes are generally not symmetric because the latter
did not experience any crossovers with Y chromosomes, the
symmetry between the autosomes holds in many mapping
populations with multistage random mating. Under this sym-
metry, it holds J(1211) = J(1222) and J(1213) = J(1232) so
that the hyperparameter Q for the jointModel can be simplified
by removing two junction densities, and similarly it holds
R™ =RP so that the hyperparameter € for the indepModel
can be simplified to contain only one map expansion.

The general jointModel converges to the indepModel and
the depModel at the two extreme inbreeding levels. Com-
pletely outbred genomes are possible only if the number of
founder origins goes to be very large (n > 3), so that the
IBD probability f = 1/n goes to zero. Thus, the junction
types (1122), (1211), and (1222) become impossible, and
the junction densities J(1213) and J(1232) converge to RP
and R™, respectively. For fully inbred genomes, so that the
IBD probability f = 1, there exists only the junction type
(1122) with density equal to the map expansion R™ or RP.

The observation model

In an HMM, the unphased genotypes {Yt}thl are condition-
ally independent given the latent ancestral origin states
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{0,},_,. We thus focus on the likelihood at a locus and drop
the locus subscript t. Let D(H, O) = (Hom,Hor ) be the phased
genotype derived from the founder haplotypes H and the
ancestral origin state O at the locus. Denote by € and ef
the allelic typing error probabilities for sampled individuals
and founders, respectively. The aim is to calculate the likeli-
hood [ = P(Y|D(H, 0), O, €, e5) at the locus.

Let Z be the true phased genotype at the locus of the
sampled individual. The likelihood I is calculated by inte-
grating out the unknown true genotype Z, and it holds

1= EZ:P(Y.Z, E)P(Z’D70,€F>>

where P(Z|D, 0, e) is the posterior probability given the
derived genotype D and the ancestral origin state O. Accord-
ing to Bayes’ theorem, we have

P(D|z,0,¢:)P(2Z|0
P(Z‘D,O,EF): ( p(D’oF,)eFS ‘ )

where P(Z|O) is the prior probability of the true
genotype Z, and the marginal probability P(D|O,er) =
> P(D|Z,0,€ep)P(Z|0) according to the law of total proba-
Z

bility. We assign a noninformative prior probability to
P(Z]0). Let 1 and 2 denote the two possible alleles of SNPs.
Given non-IBD (O™ # OP) at the locus, the phased true
genotypes Z = (1,1), (1,2), (2,1), and (2,2) have equal
prior probability 1/4. Given IBD (O™ = OP) at the locus,
the true genotypes (1,1) and (2,2) have equal prior prob-
ability 1/2.

The probabilities P(Y|Z,€) and P(D|Z, O, er) are shown in
detail in Supporting Information, Table S1 and Table S2,
respectively. In the calculations of these probabilities, we
account for missing alleles for sampled individuals and
founders, conditional on the pattern of missing data. The
typing errors are assumed to occur independently across
observed alleles. Given that an error occurs, the observed
allele is the alternative one. The probability P(Y|Z, €) in
Table S1 is the same as the penetrance for a SNP described
by Bauman et al. (2008) where the founder allelic errors
are not modeled so that the true genotype Z is given by
the derived genotype D(H,O). For the X chromosome of
a male, the probabilities P(Y|Z, €) and P(D|Z, O, eg) are very
straightforward and shown in Table S3 and Table S4,
where the genotypes refer to the haplotypes (alleles) at
the locus.

Inference

We reconstruct ancestry blocks by independently sampling
many times from the joint posterior distribution of {O;}"_,,
conditional on the given hyperparameter  and allelic error
probabilities er and e. For each posterior sample, calculate
a(0y) = P({Y;}._,,0/|Q, € €r) iteratively for t=1...T
by the forward algorithm (Rabiner 1989). Then sample Oy
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according to the distribution «(Or), and subsequently sample
O; according to

P(Or’{of}fmu {YT}Z:LQ’E:EF) oca(Ot)P(OtH’Ot,Q)

backwardly for t =T —1,...,1, where the dependence of
the transition probability matrix on hyperparameter € is
explicitly shown.

The posterior samples contain complete information of
the ancestry blocks along two homologous chromosomes.

The marginal posterior probability of P<05|{YT}T Q. e, eF)

=1
can be obtained by averaging over all the posterior samples
or alternatively by the forward-backward algorithm (Rabiner
1989). The optimal sequence of the ancestry blocks can be
obtained by selecting the posterior sample with the maximum
marginal likelihood P({YT}L1 |Q, €, eF) = > «a(Or) or alter-
Or

natively by dynamic programming such as the Viterbi algo-
rithm (Rabiner 1989).

The marginal likelihood P({Y,}!_,|Q, €, er) is used as
a Bayesian evidence for model comparisons. If the difference
of the evidence in natural logarithm scale between two mod-
els is >5, the model with the higher evidence value is very
strongly supported, according to the widely cited interpre-
tation of Kass and Raftery (1995).

Simulation of mapping populations

The models are evaluated by simulation studies in two
example mapping populations: the Arabidopsis MAGIC and
the mouse CC. The pedigrees of the MAGIC and the CC are
first simulated according to the breeding design shown in
Figure 1, where more generations of inbreeding are set to
ensure complete inbreeding. In ancestral inferences, the
mating schemes rather than the true pedigree of the MAGIC
are assumed to be available. We simulate 100 funnels of the
CC, the eight founders of each funnel being randomly
permuted. A unique ancestral origin is assigned to each
founder’s genome. Each descendant gamete is specified as
a list of genome blocks determined by chromosomal cross-
overs between the two sets of parental chromosomes.
The number of crossovers follows a Poisson distribution
with mean being the chromosome length in morgans, and
the positions of crossovers are randomly distributed on
chromosomes.

We use available real data as the true founder haplo-
types. The SNP data for the 19 founder accessions of the
Arabidopsis MAGIC are from Kover et al. (2009). There are
1260 SNPs distributed over 5 pairs of chromosomes of
length 493 cM; there are no missing alleles. The SNP data
for the 8 founder mouse strains of the CC are from Iraqi et al.
(2012). The physical distances are transformed into genetic
distance by setting the recombination rate 0.5 cM/Mbp.
There are 7348 SNPs distributed on 19 pairs of autosomes
of total length 1204 cM and 495 SNPs on X chromosomes of
length 81 cM; 6% of alleles are missing.
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We obtain the simulated founder haplotype by applying
the same error model to the true founder data with error
probability er. The true genotypes of each individual in each
generation are derived by combining the true founder hap-
lotypes and the realized distribution of ancestry blocks of
the individual. The observed genotypes are obtained by ap-
plying the same error model to the true genotypes of the
individual with error probability e.

Software implementation

The RABBIT package is currently implemented in Mathe-
matica 9.0 (Wolfram Research 2012), and it is freely available
from the website https://github.com/chaozhi/RABBIT.git.
For each of the three models, jointModel, indepModel, and
depModel, RABBIT can output posterior marginal probabilities
at all markers, optimal ancestral state paths, and multiple pos-
terior samples of state paths by using the forward-backward
algorithm, the Viterbi algorithm, and the forward-calculation
backward sampling, respectively. The Appendix describes the
running setups of RABBIT for various mapping populations
and the setups for GAIN and HAPPY used in the comparisons
with RABBIT.

Results
Comparisons among RABBIT models

We evaluate the jointModel, the indepModel, and the
depModel of RABBIT by the forwardly simulated data, as
described in Materials and Methods, with the allelic error
probabilities er = € = 0.005. In each generation one individ-
ual from the MAGIC and one female from a single funnel of
the CC are analyzed by the three models. Conditional on
the true allelic error probabilities and the breeding design,
genome-wide ancestry blocks were sampled independently
1000 times from their posterior distribution. For each sam-
ple, the mismatch fraction is calculated as the fraction of
markers where the estimated ancestral origin states are dif-
ferent from the true values, the inbreeding coefficient is the

Figure 1 (A and B) Breeding schemes of the MAGIC (A)

F, and the CC (B). Inbred founders are represented by differ-

ent colors. (A) The L = 19 founders are intercrossed by the

full-diallel design, resulting in an F; population of size

L(L—1). Then the population is maintained at constant

size by random-mating intercrossing for 4 generations.

Fy Each individual of the Fs population is self-fertilized for

10 generations. (B) The L =8 founders are crossed by

F exclusively pairing for 2 generations, and then the two

A individuals in the F, population are inbred by sibling mat-

ing for 30 generations. The genders are alternatively fe-

male (circle) and male (rectangle) from left to right in each
generation.

F32

fraction of markers where the two alleles are IBD, and the
number of change points refers to the sampled ancestral
state path along two homologous chromosomes at the re-
solution of marker locations. The change points shared be-
tween two chromosomes are counted only once, and one
change point between consecutive markers may result from
multiple change points at the continuous chromosome scale.

Figure 2 and Figure 3 show a consistent pattern of model
evaluations by the four quantities: marginal likelihood, mis-
match fraction, inbreeding coefficient, and number of
change points. The jointModel converges to the indepModel
in the early generations when the individual has little in-
breeding and converges to the depModel in the late gener-
ations when the individual is almost fully inbred. In the
intermediate generations, the jointModel outperforms the
indepModel and the depModel. Specifically, the jointModel
has larger Bayesian evidences, smaller mismatch fractions,
and more accurate estimations of the inbreeding coefficient
and the number of change points. As shown in Figure 2, left,
the jointModel is statistically strongly supported (Kass and
Raftery 1995) in the intermediate generations.

Figure 3 shows that the inbreeding coefficients obtained
from jointModel fit the true values very well with tiny esti-
mation uncertainties, even though the true values fluctuate
across generations. In comparisons, the inbreeding coeffi-
cients obtained from the indepModel are underestimated
and those from the depModel are always constrained to be
1. The true numbers of change points mostly fall within the
95% central posterior intervals obtained from the jointModel,
whereas they are overestimated by the indepModel and
underestimated by the depModel. The posterior intervals
for the number of change points are larger than those for
the inbreeding coefficient.

The results of Figure 3 can be further illustrated from
the typical bin maps shown in Figure 4. The three models
reconstruct the ancestry blocks very well in the regions
between neighbor change points, and they differ mainly
around the change points. This explains why the inbreeding
coefficients can be well estimated since they are calculated
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as an average over all the marker locations and there are
only a small fraction of markers around change points. Be-
cause of the independent-transition assumption in the
indepModel, most of the true shared change points are re-
solved as nonshared, resulting in underestimated inbreeding
coefficients and overestimated numbers of change points,
whereas the assumption of completely dependent transi-
tions forces all the non-IBD ancestry blocks into IBD blocks,
resulting in complete inbreeding and underestimated num-
bers of change points.

Comparisons with GAIN and HAPPY

We compare RABBIT with the two commonly used packages
HAPPY and GAIN. We analyze six simulated data sets:
MAGIC-F5, MAGIC-F11, CC-F11-AA, CC-F22-AA, CC-F11-XX,
and CC-F22-XX, where the first part denotes the population
type, the second part denotes the generation, and the third
part denotes the pair of autosomes (AA) or X chromosomes
(XX); only the first pair of autosomes is included in the
analysis. Each MAGIC data set has 100 sampled individuals,
and each CC data set has females from each of the 100
independent funnels. The data set MAGIC-F5 refers to the last
generation of the intercrossing stage, and it represents
advanced intercross populations such as the AIL. The data
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10 15 20 25 30
Generation t

sets CC-F11-AA and CC-F11-XX represent heterogeneous pre-
CC lines.

Since the founder allelic typing errors are not modeled in
GAIN and HAPPY, the founder haplotypes without applying
allelic errors (ep = 0) are dropped on the breeding pedi-
grees. We obtain the observed genotypes by applying the
error model to the true genotypes with e = 0.005. GAIN
uses genotype error probability and it is approximately given
by 2e, and HAPPY accounts for allelic errors by adding €/L to
each of the input allele frequencies among the founder marker
data.

All three methods, RABBIT, GAIN, and HAPPY, output
the marginal posterior probabilities at each marker for each
of L(L 4+ 1)/2 unordered ancestral origin pairs, where L = 19
for the MAGIC and L = 8 for the CC. We evaluate the per-
formance of each method by the following three quantities.
The wrongly assigned probability is calculated as the sum of
the posterior probabilities over the nontrue ancestral origin
states, the wrongly called probability is the fraction of
markers where the states corresponding to the maximum
posterior probabilities are different from the true ancestral
origin states, and the pedigree inconsistency is defined only
for the CC as the sum of the posterior probabilities over the
four mating pairs of founder strains since each pair cannot
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appear at a single locus in generation t = 2 (Liu et al. 2010).
The three quantities are averaged over the 100 sampled
individuals in each data set.

Table 1 shows the comparisons among the three methods
in terms of the three probability quantities. We focus on the
jointModel of RABBIT since it always performs better than
the indepModel and the depModel. The wrongly called
probabilities for GAIN are similar to those for RABBIT, but
the wrongly assigned probabilities for GAIN are a bit larger
than those for RABBIT, particularly for CC-F11-XX and CC-
F22-XX since the scenarios of X chromosomes are roughly
approximated in GAIN. GAIN has incorporated the pedigree
information of the initial two generations of the CC, and
thus the pedigree inconsistency is always 0. However, Table 1
shows that for RABBIT (jointModel) the contributions of the
pedigree inconsistency to the wrongly assigned probability
are only ~2%, indicating that the pedigree provides little
extra information relative to the dense marker data.

As shown in Table 1, HAPPY performs worst for all the
simulated data sets. The wrongly called probabilities for
HAPPY are around twice as large as those for RABBIT and
GAIN, and the differences are larger for the wrongly as-
signed probabilities. Figure S1 and Figure S2 show that

Generation t

the posterior probabilities for an example individual ob-
tained from HAPPY are noisier than those from GAIN and
RABBIT. Notably for the data set MAGIC-F5, the background
noises distributed among the 190 states result in a very high
wrongly assigned probability for HAPPY (diploid), although
its wrongly called probability is only modestly larger than
that for RABBIT and similarly for the data set MAGIC-F11
using HAPPY (haploid).

To remove the effects of the genotype error model, we
analyzed the true genotype data without applying the error
model so that eg = € = 0. As shown in Table 2, the overall
performances for all three methods are improved due to the
higher data qualities, but the relative performances are more
or less the same, except that the outperformances of RABBIT
are reduced a bit. According to the performances of the
three models of RABBIT in Table 1 and Table 2, the poor
performances of HAPPY are probably due to the differences
in the data likelihood or the estimation details, but not due
to the prior ancestral origin processes or the error model.

Evaluations with real data

We evaluate RABBIT, GAIN, and HAPPY by the real data of
the MAGIC lines (Kover et al. 2009), the DO individuals
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from a posterior sample of ancestral origins along a pair of homologous
chromosomes. The ancestral origins are represented by different colors.
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autosomes of a pre-CC line. (C) The XX chromosomes of a female pre-CC
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(Svenson et al. 2012), and the pre-CC lines (Durrant et al.
2011), and they were downloaded from the websites
http://mus.well.ox.ac.uk/magic, http://cgd.jax.org/datasets/
phenotype/SvensonDO.shtml, and http://mus.well.ox.ac.uk/
CC, respectively. For comparisons, all the markers with missing
data in the founder haplotypes are removed since GAIN and
HAPPY cannot account for them, and the conditional prob-
abilities over intermarker intervals obtained from HAPPY are

transformed into marker-wise probabilities. The real marker
densities are 2.6, 5.2, and 145 SNPs/cM for the MAGIC, the
DO, and the pre-CC, respectively. The very high marker den-
sity of the real pre-CC lines makes it possible to reconstruct
ancestry blocks very accurately and to study the effects of
marker density by analyzing subsets of the markers. We
assume that there are no allelic errors in the founder marker
data (e = 0) and conservatively set e = 0.005 for the sam-
pled individuals.

Arabidopsis MAGIC: The real MAGIC lines were sampled in
t =11, the sixth generation of selfing. Figure 5 shows the
genome-wide marginal posterior probabilities of the 19 an-
cestral origins obtained from RABBIT (jointModel) and
HAPPY (haploid); GAIN is not applicable. The HAPPY
results are noisier especially around the probable recombi-
nation breakpoints and the chromosome ends (Figure 5B);
the average maximum posterior probabilities from HAPPY
are always smaller than those from RABBIT (Figure 5C).

As shown in Figure 5, there are some unambiguous an-
cestry blocks detected by RABBIT but not by HAPPY, for
example, ~110 cM and at the right end of the fourth chro-
mosome, although it is unknown whether those detected
blocks are the true ones. We call ancestral origins for both
methods by their maximum posterior probabilities. Among
all the markers of the 703 MAGIC lines, 93.5% of the called
ancestral origins are the same, and over these locations the
average maximum posterior probabilities are 0.968 and
0.856 for RABBIT and HAPPY, respectively.

Mouse DO: We use the 94 DO individuals sampled at the
fourth generation (G,4), where the founder population con-
sists of 144 pre-CC lines that were at various generations with
frequencies in figure 1 of Svenson et al. (2012). We analyze
marker data of the 19 pairs of autosomes by RABBIT and
HAPPY and denote by DOHMM the haplotype reconstruction

Table 1 Comparisons of ancestral inferences using RABBIT, GAIN, and HAPPY

RABBIT
Probability Simulated data set  jointModel indepModel depModel  GAIN HAPPY (diploid)  HAPPY (haploid)
Wrongly assigned MAGIC-F5 0.143 0.143 0.935 NA 0.779 0.949
MAGIC-F11 0.096 0.144 0.106 NA 0.446 0.323
CC-F11-AA 0.027 0.036 0.209 0.037 0.196 0.243
CC-F22-AA 0.024 0.038 0.046 0.032 0.123 0.090
CC-F11-XX 0.013 0.017 0.185 0.032 0.160 0.208
CC-F22-XX 0.011 0.019 0.029 0.027 0.078 0.058
Wrongly called MAGIC-F5 0.105 0.105 0.934 NA 0.225 0.937
MAGIC-F11 0.074 0.121 0.085 NA 0.200 0.129
CC-F11-AA 0.020 0.028 0.205 0.020 0.050 0.214
CC-F22-AA 0.018 0.030 0.040 0.016 0.051 0.050
CC-F11-XX 0.008 0.012 0.182 0.014 0.031 0.188
CC-F22-XX 0.008 0.014 0.026 0.011 0.027 0.032
Pedigree inconsistency CC-F11-AA 0.00075 0.0040 0 0 0.026 0
CC-F22-AA 0.00017 0.0039 0 0 0.015 0
CC-F11-XX 0.00031 0.0014 0 0 0.020 0
CC-F22-XX 0.00017 0.0017 0 0 0.009 0
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Table 2 Similar to Table 1, but without applying the error model to the simulated true genotypes of sampled individuals

RABBIT
Probability Simulated data set  JointModel indepModel depModel GAIN  HAPPY (diploid)  HAPPY (haploid)
Wrongly assigned MAGIC-F5 0.132 0.132 0.935 NA 0.690 0.943
MAGIC-F11 0.095 0.132 0.105 NA 0.324 0.239
CC-F11-AA 0.024 0.031 0.209 0.030 0.139 0.225
CC-F22-AA 0.023 0.033 0.045 0.028 0.079 0.068
CC-F11-XX 0.012 0.015 0.185 0.018 0.105 0.194
CC-F22-XX 0.011 0.015 0.028 0.016 0.043 0.041
Wrongly called MAGIC-F5 0.098 0.098 0.934 NA 0.178 0.936
MAGIC-F11 0.073 0.114 0.084 NA 0.151 0.097
CC-F11-AA 0.017 0.024 0.205 0.017 0.039 0.210
CC-F22-AA 0.017 0.027 0.040 0.016 0.040 0.045
CC-F11-XX 0.008 0.011 0.182 0.008 0.023 0.186
CC-F22-XX 0.007 0.012 0.026 0.007 0.020 0.029
Pedigree inconsistency CC-F11-AA 0.00057 0.0034 0 0 0.020 0
CC-F22-AA 0.00011 0.0032 0 0 0.009 0
CC-F11-XX 0.00021 0.0012 0 0 0.015 0
CC-F22-XX 0.000054 0.0014 0 0 0.005 0

results by the DO-specific method where the probe intensity
values rather than genotype calls were used (Svenson et al.
2012). Figure 6 shows the marginal posterior probabilities of
the 36 ancestral origin states for the real DO individuals.
Similarly, the HAPPY results are noisier and have on average
lower maximum posterior probabilities.

We call ancestral origin states at the 6259 markers of the
94 DO individuals by their maximum posterior probabilities.
Overall, 81.3% of markers have the same calls among the

three methods, and 86.9% of markers have the same calls
between RABBIT and DOHMM, 91.5% between RABBIT and
HAPPY, and 82.6% between HAPPY and DOHMM. Thus,
DOHMM has many calls inconsistent with those by RABBIT
and HAPPY, although we do not know the true ancestral
origin states. This is illustrated in Figure 6 for an example
DO individual around 630 cM, where a large segment given
by RABBIT and HAPPY is shown as many different small seg-
ments by DOHMM, probably because the transition probability
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Figure 6 The posterior probabilities of the 36 ancestral origin states for the real DO individuals. The dashed vertical lines indicate the chromosome
boundaries. (A—C) The posterior probabilities for a sampled individual (FO1) are represented by levels of gray shading, with white = 0 and black = 1. (D)
The maximum posterior probabilities at each marker, averaged over all 94 DO individuals.

parameters of DOHMM were selected so that evidence from
approximately 4 sequential markers is necessary to change
founder state (Svenson et al. 2012).

Mouse pre-CC: For each pre-CC line, we estimate the funnel
code, which is required by GAIN, based on the concept of
pedigree inconsistency (Liu et al. 2010), conditional on the
sampling generation t estimated by the maximum a posteriori
with the prior being a discrete uniform distribution in the
range of 8 =t =14 (Durrant et al. 2011). We first obtain
the optimal ancestral origin state path by the Viterbi algo-
rithm of RABBIT (jointModel) for the 19 pairs of auto-
somes. Then we identify the founder pairs that never
appear on the optimal state path, after removing ~ 5% of
small segments along the path. Finally, we set a funnel
code for the pre-CC line compatible with those missed
founder pairs. We are left with 103 pre-CC lines after de-
leting the 17 lines for which the above approach failed to
estimate the funnel codes.
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To study the effect of marker densities on ancestral
inference, we analyze only the first pair of autosomes and
thin the full data set by taking every second SNP marker and
repeating the process to obtain nested subdata sets. The
data fractions or the relative marker densities are given by
oy =1,271,...,277. We set the pseudotrue ancestral origin
states according to the marginal posterior probabilities
obtained by RABBIT, GAIN, and HAPPY from the full data
set. For each pre-CC line, the markers are called only if their
best ancestral origin states are the same among the three
methods. Overall 87.8% of markers are called to their best
origin states.

Figure 7 shows the posterior probabilities of the ancestral
origin states for an example pre-CC line (IL-18) along the
chromosomes obtained by the three methods. There are no
visible differences between the results from RABBIT (joint-
Model) and GAIN for the full data set, although GAIN per-
forms a little worse for the low SNP density (py; = 27°). The
results from HAPPY (diploid) are noisier than those from
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used in the ancestral inferences.

RABBIT and GAIN for both data sets, even for the two large
non-IBD blocks ~30 ¢cM and 80 cM, respectively. The tiny
non-IBD block ~45 c¢M can be identified by RABBIT and
GAIN from the full data set, but is almost nonidentifiable
in other panels of Figure 7.

Similar to Figure 7, Figure S3 shows the marginal poste-
rior probabilities for each of the eight ancestral origins,
where IBD blocks appear as a single black band and non-
IBD blocks appear as two gray bands. As expected, Figure
S3E apparently looks the same as figure 1 of Durrant et al.
(2011) for the pre-CC line (IL-18), apart from some back-
ground noise.

Figure 8 shows the effects of marker densities on the
ancestral inferences from the nested data sets. The wrongly
called probabilities converge to zero for the full data set due
to the definition of the pseudotrue values. The three proba-
bilities decrease with the increasing marker densities for
RABBIT and GAIN as expected. However, they become al-
most flat for HAPPY when close to the full data set, and the
reasons are not clear. The wrongly called probabilities for
RABBIT are only a bit less than those for GAIN, but the
wrongly assigned probabilities for RABBIT are about half
those for GAIN, consistent with the simulation results
(Tables1 and Table 2). The pedigree inconsistencies from

RABBIT are very small, although they contribute 14% to
the wrongly assigned probabilities at the lowest density.

Discussion

We have implemented an HMM framework, RABBIT, for
reconstructing genome ancestry blocks, where the general
jointModel has been shown to be always the best choice.
RABBIT can reconstruct genome-wide ancestry blocks in-
cluding X chromosomes, whereas methods such as GAIN
and HAPPY analyze X chromosomes roughly. The studies of
the simulated data and the real data have shown that
RABBIT (jointModel) is more robust and accurate than
HAPPY and GAIN, although GAIN obtained similar results
from a high density of marker data for the autosomes of the
CC line.

In addition to the examples of the MAGIC, the DO, and
the CC, RABBIT can be applied to RILs by sibling mating or
selfing, the NAM, the AMPRIL, the AIL, the HS, the DSPR,
and other mapping populations whether their breeding
designs are available or not. By contrast, GAIN can be
applied only to the CC (Liu et al. 2010), and HAPPY was
developed for the outbred HS (Mott et al. 2000) and lately
extended to the homozygous MAGIC lines (Kover et al.
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2009). Durrant et al. (2011) have shown that the level of
inbreeding was underestimated when applying HAPPY to
pre-CC lines with residual heterozygosity. This is confirmed
in Figure 3, where the indepModel of RABBIT underestimates
the inbreeding coefficients and overestimates the numbers of
change points.

There are two possible ways to fully incorporate pedigree
information, if available, into RABBIT. First, as a generaliza-
tion of GAIN, we may design a Lander-Green algorithm
(Lander and Green 1987) where symmetric pedigree sub-
structures are encoded into inheritance vectors. Second, we
may incorporate the asymmetric information into the con-
struction of HMMs, such as the impossible founder mating
pairs of the CC. For the XX chromosomes of a female CC line,
there are no contributions from two of the male founder
strains, and we could set the number of possible ancestral
origins n = 6 rather than 8. However, our results indicate
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that it may not be worthwhile even in relatively low marker
densities, for the example of the CC.

The sample individuals have been assumed to be in-
dependent, given the genotype data of founders. This is
valid for CC lines if each of them is sampled from different
funnels. The individuals from advanced intercross popula-
tions such the AIL and the HS are related to a certain extent
based on the effective population size. RABBIT would
underestimate the number of shared recombination break-
points across sampled individuals. However, the similar
results between jointModel and indepModel at the inter-
cross stage of the MAGIC (Figure 2, A and B, Figure 3, A and
B, and Figure 4A) demonstrate that the relationships be-
tween outbred sampled individuals may be well ignored,
particularly for dense marker data to improve computational
efficiency.

Since standard HMM algorithms (Rabiner 1989) are used
in the methods of RABBIT, GAIN, and HAPPY, their time
complexities remain similar, and running times depend crit-
ically on their implementation details. For the full real data
set of the 103 pre-CC lines (14,076 markers), the running
times on a standard desktop computer are ~360, 182, and
28 sec for RABBIT, GAIN, and HAPPY, respectively. RABBIT
is currently written in Mathematica (Wolfram Research
2012), and rewriting the core HMM algorithms in C++
may improve the speed, as GAIN and HAPPY did. HAPPY
is much faster than GAIN, consistent with the previous com-
parisons (Liu et al. 2010).

There are a few other specially designed methods for
ancestry block reconstruction in breeding populations. The
R/qtl package (Broman et al. 2003) can be applied only to
backcross and intercross data and possibly homozygous RIL
data. King et al. (2012) have implemented an HMM for
analyzing dense semicodominant restriction site-associated
DNA (RAD) markers, where the prior model is parameter-
ized for the DSPR. Zhou et al. (2012) have developed a
penalized-likelihood imputation of ancestral origins, which is
more competitive in computational efficiency and less pre-
ferred in accuracy than probabilistic HMM estimations.

Genotyping by sequencing (GBS) is becoming an attractive
tool for linkage mapping in breeding populations (Stange
et al. 2013), and HMM:s for analyzing these data have been
developed in biparental RILs (Xie et al. 2010; Andolfatto et al.
2011). It will be valuable to extend RABBIT to analyze GBS
data in multiparental populations, while accounting for the
large error rate in low-coverage sequencing.
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Appendix: Running Setups for RABBIT, GAIN, and HAPPY
RABBIT

We describe briefly how to use RABBIT for reconstructing ancestral blocks in mapping populations; refer to the tutorial on
the RABBIT website for details. The main function of RABBIT is magicReconstruct, and its usage is given by magicRe-
construct[magicSNP, model, epsF, eps, pop, outfile], where magicSNP is the marker data or the input csv filename
containing the marker data for both founders and sampled individuals; model must be “jointModel,” “indepModel,” or
“depModel”; epsF and eps are the allelic error probabilities for founders and samples, respectively; pop specifies the
information of population design; and outfile specifies the file names for RABBIT outputs.

In addition, we may use the option HMMMethod to specify the three possible methods of the HMM algorithms. By
default, HMMMethod — “origPathSampling” and SampleSize — 1000 output 1000 posterior samples of state paths
by using the forward-calculation backward-sampling algorithm. Alternatively, HMMMe thod — “origPosteriorDecod-
ing” outputs marginal posterior probabilities at all markers of all sampled individuals by using the forward-backward
algorithm, or HMMMethod — “origViterbiDecoding” outputs optimal state paths of all sampled individuals by using
the Viterbi algorithm. We overload the function magicReconstruct with various forms of pop, according to the
availability of the breeding design of a mapping population.

Multistage random-mating populations

For a stage-wise random-mating population with discrete generations, pop = scheme where scheme is a list of random
mating schemes. For example, schemes for the simulated data sets MAGIC-F5, MAGIC-F11, and CC-F11-AA are given by
{“Fullbiallel”, “RM1-E”,...,“RM1-E"}, {“FullDiallel”, “RM1-E”,...,“RM1-E”,“Selfing”,...,“Selfing”}, {“Pairing”,
“Pairing”,“sibling”,...,“Sibling”}, respectively, where RM1-E is repeated in total 4 times for the intercross stage,
Selfing is repeated in total 6 times for the inbreeding stage, and Sibling is repeated in total 9 times for the inbreeding
stage. For CC-F22-AA, Sibling is repeated in total 20 times. Scheme is the same for autosomes or XX chromosomes.

We may also set pop = () and calculate ) by using the function magicOrigPrior[nFounder, scheme] for autosomes
and magicOrigPriorXY[nFounder, scheme] for sex chromosomes if they exist, where nFounder is the number of inbred
founders. These functions are used internally if set pop = scheme.

The founder population of DO consists of pre-CC lines that were at different generations. Thus we set pop = Q) and
calculate the hyperparameter () analytically by using the function magicOrigPriorDO[nPower, preCCfreq, popSize,
gCross, crossScheme], where nPower = 3 refers to the 23-way RIL in producing the pre-CC lines; preCCfreq is
the frequency distribution of the inbreeding generations when the pre-CC were sampled, and it is set to {{4, 0.148},
{5, 0.451}, {6, 0.169}, {7, 0.07}, {8, 0.035}, {9, 0.063}, {10, 0.021}, {11, 0.021}, {12, 0.021}} according to figure 1 of
Svenson et al. (2012); the intercross population size popSize = 334; the number of intercross generations gCross = 4;
and the intercross mating scheme crossScheme = RM1-E. As shown in Zheng et al. (2014) and Zheng (2015), the exact
population size and the different random-mating scheme hardly affect the value of Q). For X chromosomes use the function
magicOrigPriorDOXY.

Fixed breeding pedigree

For a population with a fixed pedigree, the hyperparameter () can be calculated by simulations, using the function
simOrigPrior[popPed, founderFGL, chrLength, interferStrength, isObligate, isOogamy, sampleSize],
where popPed is the fixed pedigree, founderFGL is a list of founder genome labels, chrLength is a list of chromosome
lengths in centimorgans and it has no effects if isObligate = False, interferStrength = 0 and isObligate =
False so that there are no genetic interference and obligate crossovers, i sOogamy = True if simulating sex chromosomes,
and sampleSize is the number of simulation replicates of gene dropping on the pedigree popPed.

No information on breeding design

If we do not have any information on breeding design, the hyperparameter () can be estimated empirically from the
marker data, by maximizing the log-marginal likelihood calOrigLogl[magicSNP, model, epsF, eps, popl, with respect
to the parameter pop = (). The indepModel with one or two parameters in (2 is recommended if the sampled individuals are
approximately completely outbred, and the depModel with one parameter in () is recommended if the sampled individuals
are approximately fully inbred. The function calOrigLogl can also be used to estimate the mating schemes such as the
number of inbreeding generations if set pop = scheme.
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GAIN

GAIN can be applied only to the CC. The input of the genotype error probability is set to 2¢, where € is the allelic error rate
used in RABBIT. The input of the total number of generations is set to 12, 23, 12, and 23 for the simulated data sets CC-F11-AA,
CC-F22-AA, CC-F11-XX, and CC-F22-XX, respectively, where the options -f-x are used for the female XX chromosomes. Similarly
for a pre-CC line, the total number of generations is given by one plus the sampling generation.

HAPPY

The main parameter input for HAPPY is the effective number of generations, which is set according to the map expansion of
the population. The effective number of generations is set to 4, 6, 6, 7, 4, and 5 for the simulated data sets MAGIC-F5,
MAGIC-F11, CC-F11-AA, CC-F22-AA, CC-F11-XX, and CC-F22-XX, respectively; it is set to 6, 9, and 6 for the real MAGIC
lines, the DO individuals, and the pre-CC lines, respectively.
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Figure S1 The posterior probabilities of the 19 ancestral origins obtained from the simulated datasets MAGIC-F5 (left panels)
and MAGIC-F11 (right panels). The top and bottom panels denote the results obtained from RABBIT (jointModel) and HAPPY,
respectively. The mode of HAPPY is diploid for the MAGIC-F5 and haploid for the MAGIC-F11. The probabilities are represented
by gray levels, with white =0 and black =1. The red lines denote the true ancestral origins. The green vertical bars in the bottom
panels denote the marker locations.
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Figure S2 The posterior probabilities of the 36 ancestral origin states obtained from the simulated datasets CC-F11-AA (left
panels) and CC-F11-XX (right panels). The top, middle, and bottom panels denote the results obtained from RABBIT
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(jointModel), GAIN, and HAPPY (diploid), respectively. The probabilities are represented by gray levels, with white =0 and black

=1. The red lines denote the true ancestral origin states. The green vertical bars in the bottom panels denote the marker

locations.
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Figure S3 Similar to Figure 7 but for the posterior probabilities of the eight ancestral origins along the first pair of autosomes of
the example pre-CC line (IL-18).
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Table S1 Probability P(Y|Z, €) of the observed genotype Y given the true phased genotype Z, and the allelic
typing error probability e. Dashes denote missing alleles in a sampled individual. In practice, genotypes 1/— and
2/— are rarely called from probe intensity data.

Observed True phased genotype Z

genotype Y (1,1) (1, 2) (2,1) (2,2)
—/= 1 1 1 1
1/— 1—¢ 172 172 €
2/— € 1/2 1/2 1—¢
1/1 (1—¢)? e(1—¢) e(1—¢) e?
1/2 2¢(1—¢) e+ (1—¢)? e+ (1—¢)? 2¢(1—¢)
2/2 €? e(1—¢) e(1—¢) (1—¢)?
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Table S2 Probability P(D|Z, 0, €5) of the derived genotype D given the true phased genotype Z, the latent
ancestral origin state O, and the allelic typing error probability €. The ¢ is an indicator of the latent IBD, and the
question marks denote missing alleles derived from founders.

Derived True phased genotype Z
genotype D (1,1) 1,2 (2,1) (2,2
(2,?) 1 1-68 1-6 1
(2. 1) (1-8)1 —e€p) (1-908eg (1-8)(1 —€p) (1—-0)eg
1.?) (1-8)(1 —ep) (1-8)(1 —€p) (1-90eg (1—-98eg
(2,7 (1 —98)er (1-8)1—¢€p) (1—9)ep (1-81-€p)
(2.2 (1 —8)er (1 —8)er (1-8)(1 —€p) (1-8)(1—e€p)
1,1) 8(1 —ep) + (1-8)er(1—€p) (1-8)er(1—e€p) Sep + (1 — 8)e?
(1=8)(1 —€p)®
1.2 (1—8)ep(1 —€p) (1-8)(1 —¢€p)? (1 — 8)ef (1 —8)ep(1 —€p)
(2,1) (1—56)epr(1 —€p) (1 = 8)ef (1-8)(1 —€p)? (1—6)ep(1 —€p)
1,2 Sep + (1 — 8)€? (1-=8)er(1 —€p) (1-8)er(1 —€p) 8(1 —ep) +

(1-8)(1 —€p)?
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Table S3 Probability P(Y|Z, €) of the observed allele Y given the true allele Z, and the allelic typing error
probability e. Dashes denote missing alleles in a sampled individual.

Observed allele Y True allele Z

-
=Y

| [
m

m (N
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Table S4 Probability P(D|Z, 0, ) of the derived allele D given the true allele Z, the latent ancestral origin O, and
the allelic typing error probability €. The question marks denote missing alleles derived from founders.

Derived allele D True allele Z
1 2
? 1 1
1 1—€p €r
2 €p 1-— €r
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