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ABSTRACT Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped,
and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of
combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear
models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be
used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics
are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are
performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed
statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel
association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed
methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are
usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome
and whole-exome association studies.
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META-ANALYSIS is a statistical method to combine mul-
tiple studies for a unified analysis and it plays an

important role in genetic studies (de Bakker et al. 2008;
Zeggini and Ioannidis 2009; Cantor et al. 2010; Evangelou
and Ioannidis 2013). One obvious advantage of meta-analysis is
that the sample size is large (Liu et al. 2014). Therefore, meta-
analysis should lead to more significant results. It is argued that
most of the reported complex disease associations came from

large-scale meta-analysis of genome-wide association studies
(GWASs) (Zeggini and Ioannidis 2009; Evangelou and Ioannidis
2013; Liu et al. 2014). Therefore, there has been great in-
terest in developing novel statistical methods to perform
GWAS meta-analysis (Ioannidis et al. 2007; Hu et al. 2013;
Liu et al. 2014). Meta-analysis combines studies with differ-
ent study designs. The genotype data and covariates may vary
from study to study. Moreover, the effects of genetic variants
in different populations may not be the same, i.e., the hetero-
geneity (Tang and Lin 2014). Thus, meta-analysis of combin-
ing data of multiple studies is difficult. Novel statistical
methods for meta-analysis are needed.

The statistical methods for meta-analysis fall into two
classes: (1) single genetic variant-based approaches and (2)
gene-based variant analysis approaches. The single genetic
variant approaches only use one genetic variant at a time and
are usually based on fixed-effect linear regression models for
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quantitative traits, x2-tests, or score tests for qualitative traits.
The single genetic variant approaches are mainly applied to
analyze common variants (Zeggini et al. 2008; Hindorff et al.
2009; Stahl et al. 2010). Gene-based approaches use multiple
genetic variants in genetic regions in the analysis and can
analyze rare variants, common variants, or combinations of
the two. Developing gene-based approaches for association
analysis is a major area of interest. A few recent studies have
targeted analysis of rare variants.

Three types of tests are available for gene-based associ-
ation analysis of complex diseases. The first type is burden
tests that are based on collapsing rare variants in a genetic
region to be a single variable that is then used to test for
association with the phenotypes (Li and Leal 2008; Madsen
and Browning 2009; Morris and Zeggini 2010; Price et al.
2010). Burden tests were built to analyze rare variants
by aggregating statistics of multiple rare variants for an
analysis.

The second type is variance-component tests such as the
sequence kernel association test (SKAT) and its optimal
unified version (SKAT-O) (Lee et al. 2012). In Lee et al.
(2012), it was shown that SKAT-O has higher power than
some burden tests, such as the combined collapsing and
multivariate method (Li and Leal 2008) and the nonparametric
weighted sum test (Madsen and Browning 2009). By extend-
ing SKAT and SKAT-O to perform meta-analysis, Lee et al.
(2013) developed meta-analysis SKAT and SKAT-O (MetaSKAT
and MetaSKAT-O) to carry out meta-analysis for rare variants
in multiple studies. Both SKAT and MetaSKAT are score tests
based on mixed-effect models.

The third type is tests based on fixed-effect models that
include (1) traditional additive effect models that are well
studied (Cordell and Clayton 2002; Fan and Xiong 2002;
Fan et al. 2006) and (2) functional regression models as
shown in our previous research (Luo et al. 2012; Fan et al.
2013, 2014; Wang et al. 2015). Note that functional regres-
sion models are fixed-effect models, which extend traditional
population genetics models to analyze multiple genetic var-
iants and can analyze rare variants, common variants, or
combinations of the two. For individual studies with small
and moderate sample sizes, functional linear models (FLMs)
were proposed to analyze quantitative traits. The FLMs lead
to x2-score tests and F-distributed statistics, which are more
powerful than SKAT and SKAT-O while controlling type I
error correctly (Luo et al. 2012; Fan et al. 2013; Wang
et al. 2015). For dichotomous traits, generalized FLMs were
developed to perform gene-based association analysis (Fan
et al. 2014).

In functional regression models, we treat multiple genetic
variants of an individual as a realization of an underlying
stochastic process (Ross 1996). Therefore, the genome of an
individual in a chromosome region is a continuum of se-
quence data rather than discrete observations. The genome
of an individual is viewed as a stochastic function that contains
both genetic position and linkage disequilibrium (LD) infor-
mation of the genetic markers. In short, the functional regres-

sion models have a number of advantages: (1) the genetic
effects at the major gene locus are modeled as fixed effects,
which fit traditional population genetics theory and modern
genetic data very well; (2) the models fully utilize LD and
genetic position information; and (3) themodels test for a joint
effect of genetic variants, including both common and rare.

It is worth of noting that SKAT and SKAT-O were found to
perform better than C-alpha (Neale et al. 2011) and burden
tests (Li and Leal 2008; Madsen and Browning 2009; Morris
and Zeggini 2010; Price et al. 2010). Hence, FLMs are po-
tentially very powerful in association analysis of complex
quantitative traits. The superior performance of the FLMs
motivates us to extend them to perform meta-analysis.

In this article, FLMs are developed for meta-analysis of
multiple studies to connect genetic data to quantitative
traits, adjusting for covariates. We allow that different
studies may have different environmental factors/covariates,
and genetic variants may differ among studies. The effects of
genetic variants may differ from population to population,
i.e., heterogeneity. This makes it possible for us to build
flexible models for meta-analysis of multiple studies. We assume
that individual genotype data are available from all studies.

Both likelihood-ratio test (LRT) and F-distributed statis-
tics of FLMs are introduced to test association between
quantitative traits and multiple genetic variants in one gene
region. Extensive simulations are performed to evaluate the
empirical type I error rates and power performance of the
proposed models and tests. The proposed methods are ap-
plied to analyze four blood lipid levels in data from meta-
analysis of eight European studies.

Materials and Methods

Consider a meta-analysis with L studies in a genomic region.
For the ℓth study, we assume that there are nℓ individuals
who are sequenced in the genomic region at mℓ variants. We
assume that the mℓ variants are located with ordered genetic
positions 0# tℓ1 ,⋯, tℓmℓ #T: To make the notation sim-
pler, we normalized the region ½tℓ1;T� to be [0, 1]. For the ith
individual in the ℓth study, let yℓi denote her/his quantitative
trait, Gℓi ¼ ðXℓiðtℓ1Þ;⋯;XℓiðtℓmℓÞÞ9 denote her/his genotypes of
the mℓ variants, and Zℓi ¼ ðzℓi1;⋯; zℓicℓÞ9 denote her/his cℓ
covariates. Hereafter, 9 denotes the transpose of a vector
or matrix. For the genotypes, we assume that XℓiðtℓjÞ
ð¼ 0; 1; 2Þ is the number of minor alleles of the individual
i at the jth variant.

General functional linear model

In this section, we view the ith individual’s genotype data as
a genetic variant function (GVF) XℓiðtÞ; t 2 ½0; 1�: Note that
the sample includes nℓ discrete realizations or observations
Gℓi ¼ ðXℓiðtℓ1Þ;⋯;XℓiðtℓmℓÞÞ9 of the human genome. By using
the genetic variant information Gℓi; we may estimate the
related GVF XℓiðtÞ; which is discussed below. To relate the
GVF to the phenotypic trait adjusting for covariates, we con-
sider the following functional linear model,
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yℓi ¼ aℓ0 þ Z9ℓi aℓ þ
Z 1

0
XℓiðtÞbℓðtÞdt þ eℓi;

ℓ ¼ 1; 2;⋯; L; i ¼ 1; 2;⋯; nℓ; (1)

where aℓ0 is the overall mean, aℓ ¼ ðaℓ1;⋯;aℓcℓÞ9 is a cℓ 3 1
column vector of regression coefficients of covariates, bℓðtÞ is
the genetic effect of GVF XℓiðtÞ at the position t, and eℓi is
an error term. For each ℓ and i, the error term eℓi is nor-
mally distributed with a mean of zero and a variance s2

e :

Moreover, eℓ1;⋯; eℓnℓ are independent variables, and
eℓ ¼ ðeℓ1;⋯; eℓnℓÞ9 are independent vectors of variables,
ℓ ¼ 1; 2;⋯; L: Similar to the GVF, we assume that the ge-
netic effect bℓðtÞ is a function of the genetic position t.

Expansion of genetic effect function: The genetic effect
function bℓðtÞ is assumed to be smooth. One may expand it
by B-spline or Fourier basis functions. Formally, let us
expand the genetic effect function bℓðtÞ by a series of Kb

basis functions cðtÞ ¼ ðc1ðtÞ;⋯;cKb
ðtÞÞ9 as bℓðtÞ ¼ cðtÞ9bℓ;

where bℓ ¼ ðbℓ1;⋯;bℓKb
Þ9 is a vector of coefficients

bℓ1;⋯;bℓKb
: We consider two types of basis functions:

(1) the B-spline basis, ckðtÞ ¼ BkðtÞ; k ¼ 1;⋯;Kb; and (2)
the Fourier basis, c1ðtÞ ¼ 1;c2rþ1ðtÞ ¼ sinð2prtÞ; and
c2rðtÞ ¼ cosð2prtÞ; r ¼ 1;⋯; ðKb 2 1Þ=2: Here for the Four-
ier basis, Kb is taken as a positive odd integer (de Boor
2001; Ramsay and Silverman 2005; Ferraty and Romain
2010; Horváth and Kokoszka 2012).

Estimation of genetic variant function: To estimate the
genetic variant functions XℓiðtÞ from the genotypes Gℓi;

we use an ordinary linear square smoother (Ramsay and
Silverman 2005; Ramsay et al. 2009; Fan et al. 2013). Let
fkðtÞ; k ¼ 1;⋯;K; be a series of K basis functions, such as
the B-spline basis and Fourier basis functions. Denote
fðtÞ ¼ ðf1ðtÞ;⋯;fKðtÞÞ9: Let F denote the mℓ by the K ma-
trix containing the values fkðtℓjÞ; where j 2 1;⋯;mℓ: Using
the discrete realizations Gℓi ¼ ðXℓiðtℓ1Þ;⋯;XℓiðtℓmℓÞÞ9; we may
estimate the GVF XℓiðtÞ; using an ordinary linear square
smoother as follows (Ramsay and Silverman 2005, Chap. 4):

X̂ ℓiðtÞ ¼ ðXℓiðtℓ1Þ;⋯;XℓiðtℓmℓÞÞF
h
F9F

i21
fðtÞ: (2)

Revised functional linear model: We expand XℓiðtÞ by the
ordinary linear square smoother. Assume that the genetic
effect bℓðtÞ is expanded by a series of basis functions as
bℓðtÞ ¼ ðc1ðtÞ;⋯;cKb

ðtÞÞðbℓ1;⋯;bℓKb
Þ9 ¼ cðtÞ9bℓ: Replacing

XℓiðtÞ in the functional linear model (1) by X̂ ℓiðtÞ in (2)
and bℓðtÞ by the expansion, we have a revised linear regres-
sion model

yℓi ¼ aℓ0 þ Z9ℓi aℓ þ  

�
ðXℓiðtℓ1Þ;⋯;XℓiðtℓmℓÞÞF

h
F9F

i21

Z 1

0
fðtÞc9ðtÞdt

�
bℓ þ eℓi ¼ aℓ0 þ Z9ℓiaℓ þW9ℓibℓ þ eℓi;

(3)

where W9ℓi ¼ ðXℓiðtℓ1Þ;⋯;XℓiðtℓmℓÞÞF½F9F�21 R 1
0 fðtÞc9ðtÞdt: In

the above revised regression model, one needs to calculate
F½F9F�21 and

R 1
0 fðtÞc9ðtÞdt to get Wℓi: In the statistical

packages R or Matlab, there are readily available codes to
calculate them (Ramsay et al. 2009).

b-smooth only functional linear models

Model (1) is a theoretical FLM in functional data analysis
literature (Ramsay and Silverman 2005). For analysis of
dense genetic data, one may use a simplified model,

yℓi ¼ aℓ0 þ Z9ℓi aℓ þ
Xmℓ

j¼1

X ℓiðtℓjÞbℓðtℓjÞ þ eℓi;

ℓ ¼ 1; 2;⋯; L; i ¼ 1; 2;⋯; nℓ; (4)

where bℓðtℓjÞ is the genetic effect at the position tℓj for the ℓth
study, and the other terms are similar to those in the general
model (1). In the above model, the integration termR 1
0 X ℓiðtÞbℓðtÞdt in model (1) is replaced by the summation
term

Pmℓ
j¼1XℓiðtℓjÞbℓðtℓjÞ: It turns out that model (4) performs

very similarly to model (1) in real data analysis and simu-
lations due to high resolution of genotype data (Fan et al.
2013, 2014; Wang et al. 2015).

In model (4), bℓðtℓjÞ is introduced as the genetic effect at
the position tℓj: We assume that the genetic effect function
bℓðtÞ is a function of the genetic position t. Therefore,
bℓðtℓjÞ; j ¼ 1; 2;⋯;mℓ; are the values of function bℓðtÞ at the
mℓ genetic positions. The genetic effect function bℓðtÞ is as-
sumed to be smooth. One may expand it by B-spline or
Fourier basis functions as above. Replacing bℓðtℓjÞ by the
expansion, model (4) can be revised as

yℓi ¼ aℓ0 þ Z9ℓi aℓ þ
"Xmℓ

j¼1

XℓiðtℓjÞ
�
c1ðtℓjÞ;⋯;cKb

ðtℓjÞ
�#

3  
�
bℓ1;⋯;bℓKb

�
9 þ eℓi ¼ aℓ0 þ Z9ℓiaℓ þW9ℓibℓ þ eℓi;

(5)

where W9ℓi ¼
Pmℓ

j¼1XℓiðtℓjÞðc1ðtℓjÞ;⋯;cKb
ðtℓjÞÞ: In model (4)

and its revised version (5), we use the raw genotype data
Gℓi ¼ ðXℓiðtℓ1Þ;⋯;XℓiðtℓmℓÞÞ9 directly in the analysis. The ge-
netic effect function bℓðtÞ is assumed to be smooth. Hence,
the models are called b-smooth only.

Traditional additive effect models

Traditionally, an additive effect model can be used to
analyze the relation between the trait and the mℓ variants in
the ℓ study as

yℓi ¼ aℓ0 þ Z9ℓi aℓ þ
Xmℓ

j¼1

XℓiðtℓjÞbℓj þ eℓi;

ℓ ¼ 1; 2;⋯; L; i ¼ 1; 2;⋯; nℓ; (6)

(Fan and Xiong 2002; Fan et al. 2006), where bℓj is the
additive genetic effect of variant j for the ℓth study, and
the other terms are similar to those in the functional linear
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models (1) and (4). There is only one difference between
model (4) and model (6); i.e., the genetic effect coefficients
bℓj in model (6) do not depend on the genetic position tℓj;
while bℓðtℓjÞ in model (4) depend on the genetic position tℓj:
The genetic effect coefficients bℓj in model (6) are discrete,
while bℓðtℓjÞ in model (4) are the values of function bℓðtÞ at
the genetic positions tℓj; j ¼ 1; 2;⋯;mℓ:

The number of parameters of model (6) can be large, and
so it may not be powerful. Moreover, model (6) can model
only the LD between the trait and each of the genetic
variants as well as the pairwise LD between the genetic
variants, but it cannot model higher-order LD among the
genetic variants (Fan and Xiong 2002; Fan et al. 2006). In
spite of the potential drawbacks, model (6) can be easily
implemented by standard statistical software such as R,
and we use it to make comparison with models (1) and
(4). To facilitate the computation in applications, the QR
decomposition can be applied to the genotype data to
remove the redundancy if the number of genetic variants
is large, i.e., to decompose the genotype matrix into the
product of an orthogonal matrix Q and a triangular matrix
R via Gram-Schmidt process.

One common feature of models (1), (4), and (6) is that
they are all fixed-effect models. The novel part of models (1)
and (4) is that we may revise them to be models (3) and (5)
by functional data analysis techniques, in which the num-
bers K and Kb of basis functions do not depend on the num-
bers mℓ of genetic variants. This makes models (1) and (4)
able to conveniently analyze high-dimension genetic variant
data.

LRT and F-distributed statistics

We consider the revised regression models (3) and (5)
as usual multiple linear regressions. First, assume that
the genetic effects among the L studies are different/
heterogeneous. To test the association between the ge-
netic variants and the quantitative trait, the null hypothesis
is H0   : bℓ ¼ ðbℓ1;⋯;bℓKb

Þ9 ¼ 0; ℓ ¼ 1;⋯; L: By using the
standard statistical approach, we may test the null
H0   : bℓ ¼ 0 by a LRT and an F-distributed statistics. The
LRT statistic is x2 distributed with LKb d.f. and is denoted
as Het-LRT. The F-distributed statistic’s degrees of freedom
(d.f.) are ðLKb;

PL
ℓ¼1ðnℓ 2KbÞ2 1Þ (Weisberg 2005). The

F-distributed statistic is denoted as Het-F.
If the genetic effects are homogeneous, i.e., bℓ ¼

ðbℓ1;⋯;bℓKb
Þ9 ¼ b ¼ ðb1;⋯;bKb

Þ9; ℓ ¼ 1;⋯; L; we may test
the association between the genetic variants and the quantita-
tive trait by testing a simplified null H0   : b ¼ ðb1;⋯;bKb

Þ9 ¼
0: Again, a LRT and an F-distributed statistics can be used to test
the null H0   : b ¼ ðb1;⋯;bKb

Þ9 ¼ 0: The F-distributed statistic
has d.f. ðKb;

PL
ℓ¼1nℓ 2Kb 2 1Þ: The F-distributed statistic is

denoted as Hom-F. The LRT is x2 distributed with Kb d.f.
and is denoted as Hom-LRT.

For the additive effect model (6), the null hypothesis of
no association between the genetic variants and the quan-
titative trait is H0   : bℓ ¼ ðbℓ1;⋯;bℓmℓ

Þ9 ¼ 0; ℓ ¼ 1;⋯; L; un-

der an assumption of heterogeneous genetic effect. The
corresponding LRT statistic is x2 distributed with

PL
ℓ¼1mℓ

d.f., and the corresponding F-distributed statistic has d.f.
as ðPL

ℓ¼1mℓ;
PL

ℓ¼1ðnℓ 2mℓÞ2 1Þ: The tests are denoted as
Het-LRT and Het-F.

Assume that each individual of the L studies is se-
quenced at the same variants located at 0# t1 ,⋯, tm
and so m1 ¼ ⋯ ¼ mℓ ¼ m: In addition, assume that the ge-
netic effects are homogenous; i.e., bℓ ¼ ðbℓ1;⋯;bℓmℓ

Þ9 ¼
b ¼ ðb1;⋯;bmÞ9: Then, model (6) is simplified as

yℓi ¼ aℓ0 þ Z9ℓi aℓ þ
Xm
j¼1

XℓiðtjÞbj þ eℓi;

ℓ ¼ 1; 2;⋯; L; i ¼ 1; 2;⋯; nℓ: (7)

The null hypothesis of no association between the gen-
etic variants and the quantitative trait is H0   : b ¼
ðb1;⋯;bmÞ9 ¼ 0: The corresponding LRT statistic is x2 dis-
tributed with m d.f., and the corresponding F-distributed
statistic has d.f. as ðm;

PL
ℓ¼1nℓ 2m2 1Þ: The tests are

denoted as Hom-LRT and Hom-F.

Parameters of functional data analysis

In the data analysis and simulations, we used the functional
data analysis procedure in the statistical package R. We use
two functions in library fda of the R package as follows to
create basis:

basis = create.bspline.basis(norder = order, nbasis = bbasis)
basis = create.fourier.basis(c(0,1), nbasis = fbasis).

The three parameters were taken as order = 4, bbasis =
15, fbasis = 25 in all data analysis. In the simulations, the
three parameters were taken as order = 4, bbasis = 15,
fbasis = 21 for the heterogeneous genetic effect model and
order = 4, bbasis = 15, fbasis = 25 for the homogeneous
genetic effect model. Specifically, the order of B-spline basis
was 4, the number of basis functions of B-spline was
K ¼ Kb ¼ 15 and the number of Fourier basis functions
was K ¼ Kb ¼ 21 for the heterogeneous genetic effect
model, and similarly the number of basis functions of B-
spline was K ¼ Kb ¼ 15 and the number of Fourier basis
functions was K ¼ Kb ¼ 25 for the homogeneous genetic
effect model.

To make sure that the results are valid and stable, we
tried a wide range of parameters: (1) 10#K ¼ Kb # 23 for
the heterogeneous genetic effect model and (2) 10#
K ¼ Kb # 29 for the homogeneous genetic effect model.
The results are similar to each other.

Results

Meta-analysis of lipid traits in eight European cohorts

Lipid traits from eight European cohorts were analyzed: five
from Finnish (FUSION Stage 2, D2d-2007, DPS, METSIM,
and DRs EXTRA), two from Norway (HUNT and Tromso),
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and one from Germany (DIAGEN). The two Norwegian
cohorts are combined as one study for a joint analysis. The
genotype data were from Metabochip genotyping, which
was designed to fine map regions that have been associated
to metabolic traits (Altshuler et al. 2010). For each cohort,
54,741 genetic variants were genotyped.

For our analysis, we utilized the existing literature as
a reference for gene selection and found that 22 gene
regions were fine mapped (Liu et al. 2014). We used Builder
Mar. 2006 (NCBI36/hg18) to determine gene positions and
5 kb was used to extend the gene region on each side of
a gene. The summary of 22 genes and the number of genetic
variants in each gene region are given in Supporting
Information, Table S1.

Four lipid traits were analyzed: high-density lipoprotein
(HDL) levels, low-density lipoprotein (LDL) levels, trigly-
cerides (TG), and total cholesterol (CHOL). The sample
sizes for each trait are provided in Table S2. For each trait,
inverse normal rank transformation was performed to make
sure that normality is valid. For all studies except for METSIM,
age, sex, and type 2 diabetes status were used as covariates.
For METSIM, age and type 2 diabetes status were used as
covariates since no female was included in the study. A
significance threshold of P, 3:13 1026 was taken from
Liu et al. (2014) (corresponding to 0.05/16,153 and
allowing for the number of genes tested therein). In addi-
tion, a covariate for Norwegian study origin was created,
since the two Norwegian cohorts were analyzed jointly.

Table 1 reports results of association analysis of the eight
European cohorts by homogeneous LRT (Hom-LRT), Hom-
MetaSKAT-O, and Hom-MetaSKAT; and Table 2 reports
results by heterogeneous LRT (Het-LRT), Het-MetaSKAT-O,
and Het-MetaSKAT. The results of Hom-F and Het-F are
reported in Table S3 and Table S4. At the significance

threshold of P, 3:13 1026; we observe the following asso-
ciations by both Hom-LRT and Hom-F of functional regres-
sion models (3) and (5): (1) at the LPL for HDL levels; (2) at
the APOB, APOE, LDLR, and PCSK9 for LDL levels; (3) at the
APOE and LPL for TG levels; and (4) at the APOB, APOE,
HNF1A, and LDLR for CHOL levels. Hom-MetaSKAT and
Hom-MetaSKAT-O detect the following associations: (1) at
the APOE, LDLR, and PCSK9 for LDL levels and (2) at the
APOE and LDLR for CHOL levels.

By both Het-LRT and Het-F of functional regression
models (3) and (5) shown in Table 2 and Table S4, we
observe the following associations: (1) at the APOB, APOE,
CDC123, CDKAL1, CDKN2B, FTO,HNF1A, LDLR, OASL, PCSK9,
and TSPAN8 for LDL levels; (2) at the LPL for TG levels; and
(3) at the APOB, APOE, CDC123, CDKAL1, CDKN2B, FTO,
HNF1A, IDE, JAZF1, KIF11, LDLR, MTNR1B, OASL, PCSK9,
and TSPAN8 for CHOL levels. Het-MetaSKAT and Het-
MetaSKAT-O detect the following associations: (1) at the APOE
and LDLR for LDL levels and (2) at the APOE for CHOL levels.

In addition to the results of functional regression models
(3) and (5), MetaSKAT, and MetaSKAT-O, Table 1, Table 2,
Table S3, and Table S4 report the results of the traditional
additive effect models (6) and (7). The additive effect mod-
els (6) and (7) detect more association signals than Meta-
SKAT and MetaSKAT-O, but less than the functional regression
models (3) and (5).

Generally, the P-values of Hom-LRT in Table 1 are slightly
smaller than those of Hom-F in Table S3, and the P-values of
Het-LRT in Table 2 are slightly smaller than those of Het-F in
Table S4. Hence, the LRT statistics are slightly more power-
ful than the F-distributed statistics. In addition, Het-LRT
and Het-F detect more association signals than Hom-LRT
and Hom-F. Overall, the P-values of Hom-MetaSKAT-O and
Hom-MetaSKAT are bigger than those of Hom-LRT and

Table 1 Association analysis of lipid traits in eight European cohorts by homogeneous likelihood-ratio tests (Hom-LRT), Hom-MetaSKAT-
O, and Hom-MetaSKAT

P-values of Hom-LRT

Basis of both GVF and bℓðtÞ Basis of b-smooth only P-values of Hom-Meta-

Traits Gene B-spline basis Fourier basis B-spline basis Fourier basis Additive model (7) SKAT SKAT-O

HDL LPL 3:0631026 6:1331029 3:6431026 6:7531027 8:323 1024 1:0831023 1:2131023

LDL APOB 3:3531029 7:503 1024 5:7631028 1:8731024 3:843 1025 1:6331022 2:5131022

APOE 1:27310287 3:42310291 4:07310283 4:42310290 4:23310289 1:18310243 6:67310244

LDLR 8:25310215 1:67310214 5:09310215 9:24310214 7:14310217 1:03310210 2:94310210

PCSK9 2:2931026 5:36310210 1:6531026 1:2731027 2:35310217 6:1831027 2:0031026

TG APOE 4:953 1026 6:613 1026 5:1331027 1:9031026 1:3731026 1:3431023 2:5931023

LPL 2:03310211 7:48310213 2:60310211 4:23310214 5:5231027 1:7831025 1:7731025

CHOL APOB 1:9831028 7:883 1023 2:1931027 1:1631024 6:6031028 6:1731022 1:0031021

APOE 2:48310253 3:12310253 1:52310248 1:36310251 1:98310251 9:08310223 2:15310222

HNF1A 1:083 1021 1:843 1022 8:9431023 2:8431026 1:743 1021 1:8931021 2:7731021

LDLR 8:10310211 8:49310210 8:59310210 6:6831029 2:07310212 3:4331027 1:1531026

The associations that attain a threshold significance of P, 3:13 1026 are boldface (Liu et al. 2014). The results of “Basis of both GVF and bℓðtÞ” were based on smoothing
both GVF and genetic effect functions bℓðtÞ of model (3), the results of “Basis of b-smooth only” were based on the smoothing bℓðtÞ only approach of model (5), the results
of “Additive model (7)” were based on the additive effect model (7), and the P-values of Hom-MetaSKAT and Hom-MetaSKAT-O were based on the R package MetaSKAT.
GVF, genetic variant function.
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Hom-F, and the P-values of Het-MetaSKAT-O and Het-MetaSKAT
are bigger than those of Het-LRT and Het-F. Therefore,
MetaSKAT is less sensitive than the proposed LRT and
F-distributed statistics.

When we analyze the data sets separately for each study,
significant association is detected only at APOE for LDL and
CHOL, levels for a few studies and at LDLR for CHOL levels
in the study of METSIM (Table S5). No significant associa-
tion is detected for TG and HDL levels in any separate study.
The P-values of separate analysis in Table S5 are much big-
ger than those of meta-analysis in Table 1, Table 2, Table
S3, and Table S4. Thus, it is more advantageous to perform
meta-analysis of multiple studies.

A simulation study

To evaluate the performance of the proposed methods, we
carried out simulation analyses for two cases: (1) the causal
variants are all rare and (2) the causal variants are both rare
and common. Simulations were performed for three scenar-
ios listed in Table 3 (Lee et al. 2013). For scenarios 1 and 2,
we used the European-like (EUR) sequence data used in Lee
et al. (2012). For scenario 3, we used both the EUR and

African–American-like (AA) sequence data. Specifically, the
EUR sequence data were generated using COSI’s (available
at: http://www.broadinstitute.org/�sfs/) calibrated best-fit
models, and the generated European haplotypes mimick
Centre d’Etude du Polymorphisme Humain (CEPH) Utah
individuals with ancestry from northern and western Europe
in terms of site frequency spectrum and LD pattern (figure 4
in Schaffner et al. 2005; International HapMap Consortium
2007). Similarly, the AA sequence data mimick individuals
with a 20:80 mixture of Europeans and Africans, together
with parameters calibrated to model realistic demographic
history (including bottleneck, population expansion, and mi-
gration events). The EUR sequence data included 10,000
chromosomes covering 1-Mb regions, and the AA sequence
data included 45,000 chromosomes covering 0.1-Mb regions.
Genetic regions of 3-kb length were randomly se-
lected in the simulations for type I error and power
calculations.

Type I error simulations: To evaluate the type I error rates
of the proposed models and tests, we generated phenotype
data sets by using the model

Table 2 Association analysis of lipid traits in eight European cohorts by heterogeneous likelihood-ratio tests (Het-LRT), Het-MetaSKAT-O,
and Het-MetaSKAT

P-values of the Het-LRT

Basis of both GVF and bℓðtÞ Basis of b-smooth only P-values of Het-Meta-

Traits Gene B-spline basis Fourier basis B-spline basis Fourier basis Additive model (6) SKAT SKAT-O

LDL APOB 5:05310211 4:7231028 5:05310211 4:7231028 3:3731026 7:6131022 1:4031021

APOE 1:59310281 1:11310279 1:59310281 1:11310279 7:47310279 2:23310233 1:28310238

CDC123 1:7231026 3:1931028 1:7231026 3:1931028 5:0431023 2:5431021 4:1931021

CDKAL1 5:0631027 4:7831028 5:0631027 4:7831028 6:4131023 3:7431021 5:8131021

CDKN2B 6:6431027 9:8231026 6:6431027 1:2031025 1:5131025 7:4631021 9:2031021

FTO 2:0831026 1:0531025 2:0831026 1:0531025 3:3231024 1:1131022 2:2331022

HNF1A 6:22310211 5:4131028 6:22310211 2:2631028 8:07310211 1:3131021 2:2631021

LDLR 6:0931029 1:4031029 8:6131029 1:2331029 2:2931029 4:2731027 4:9331027

OASL 1:1331027 4:1731026 1:1331027 5:9831026 8:0631026 1:2031021 8:8131022

PCSK9 4:9531029 8:98310213 4:9531029 2:01310211 4:54310212 9:0331024 2:0931023

TSPAN8 6:9431029 1:63310210 7:94310211 1:03310210 1:63310210 6:4731022 1:2231021

TG LPL 1:2631025 8:5031027 1:2631025 8:5031027 4:4431025 3:3831026 6:3031026

CHOL APOB 1:38310212 3:37310210 1:38310212 3:37310210 1:1531029 6:0431022 1:1231021

APOE 2:47310255 1:36310252 2:47310255 1:36310252 1:60310252 2:76310220 3:08310222

CDC123 2:2931026 1:4031026 2:2931026 1:4031026 1:0331022 7:1331021 8:9731021

CDKAL1 4:6231028 2:7031029 4:6231028 2:7031029 1:1131024 1:1731021 2:0631021

CDKN2B 1:8231027 1:3631026 1:8231027 6:3831027 1:2031026 1:1731021 6:3931021

FTO 2:8531027 1:4831026 2:8531027 1:4831026 5:3731027 9:8431023 1:9931022

HNF1A 4:32310211 8:9831029 4:32310211 8:3131029 3:64310210 4:3331021 5:3831021

IDE 6:1231025 1:3731026 6:1231025 1:3731026 7:5231025 2:3031021 3:8631021

JAZF1 2:2031026 3:9531026 2:2031026 3:9531026 6:8931024 9:5231022 1:7131021

KIF11 9:7531027 6:6931027 9:7531027 6:6931027 1:2631025 2:7731021 4:4031021

LDLR 2:4231026 3:9131028 3:2231026 3:7331028 7:1531028 4:7731024 2:2831025

MTNR1B 6:8031027 5:9131027 6:8031027 1:3431027 5:7131027 4:1631022 7:4831022

OASL 1:1131027 9:2731028 1:1131027 1:4231027 9:6631028 3:1131021 5:0631022

PCSK9 1:8731025 2:0931026 1:8731025 8:1731026 5:4531027 1:8931022 3:7231022

TSPAN8 1:11310210 2:29310213 3:15310213 2:89310213 2:70310213 9:4331022 1:7431021

The associations that attain a threshold significance of P, 3:13 1026 are boldface (Liu et al. 2014). The results of “Basis of both GVF and bℓðtÞ” were based on smoothing both GVF
and genetic effect functions bℓðtÞ of model (3), the results of “Basis of b-smooth only” were based on the smoothing bℓðtÞ only approach of model (5), the results of “Additive model
(6)” were based on the additive effect model (6), and the P-values of Het-MetaSKAT and Het-MetaSKAT-O were based on the R package MetaSKAT. GVF, genetic variant function.
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yℓi ¼ 0:5zℓi1 þ 0:5zℓi2 þ eℓi; ℓ ¼ 1; 2; 3; (8)

for scenario 1 in Table 3 and

y1i ¼ 0:5z1i1 þ e1i
y2i ¼ 0:5z2i1 þ 0:5z2i2 þ e2i
y3i ¼ 0:5z3i1 þ 0:5z3i2 þ 0:5z3i3 þ e3i

(9)

for scenarios 2 and 3 in Table 3, where zℓi1 is a dichotomous
covariate taking values 0 and 1 with an equal probability of
0.5, zℓi2 and zℓi3 are continuous covariates from standard nor-
mal distributions Nð0; 1Þ; and eℓi follows a standard normal
distribution Nð0; 1Þ: To obtain genotype data, 3-kb subregions
were randomly selected in the 1-Mb region of EUR-like data
and the 0.1-Mb region of AA-like data. The ordered genotypes
were these SNPs in the 3-kb subregions. Note that the trait
values are not related to the genotypes, and so the null hy-
pothesis holds. The sample sizes of the data sets were taken as
1600 (study 1), 2200 (study 2), and 3200 (study 3), respec-
tively. The simulation settings are summarized in Table 3. For
each sample size combination, 106 phenotype–genotype data
sets were generated to fit the proposed models and to calculate
the test statistics and related P-values. Then, an empirical type
I error rate was calculated as the proportion of 106 P-values
that were smaller than a given a-level (i.e., 0.05, 0.01 and
0.001, 0.0001, respectively).

Empirical power simulations: To evaluate the power
performance of the proposed tests, we simulated data sets
under the alternative hypothesis by randomly selecting 3-kb
subregions to obtain causal variants for the phenotype values
as follows. Once a 3-kb subregion was selected, a subset of p
causal variants located in the 3-kb subregion was then ran-
domly selected to obtain ordered genotypes ðgðt1Þ;⋯; gðtpÞÞ:
Then, we generated the quantitative traits by

yℓi ¼ 0:5zℓi1 þ 0:5zℓi2 þ bℓi1gðt1Þ þ⋯þ bℓipg
�
tp
�þ eℓi;

ℓ ¼ 1; 2; 3;

for scenario 1 and for scenarios 2 and 3,

y1i ¼ 0:5z1i1 þ b1i1gðt1Þ þ⋯þ b1ipg
�
tp
�þ e1i

y2i ¼ 0:5z2i1 þ 0:5z2i2 þ b2i1gðt1Þ þ⋯þ b2ipg
�
tp
�þ e2i

y3i ¼ 0:5z3i1 þ 0:5z3i2 þ 0:5z3i3
þb3i1gðt1Þ þ⋯þ b3ipg

�
tp
�þ e3i;

where zℓij and eℓi are the same as in the type I error
models (8) and (9), and the b’s are the additive effect
for the causal variants defined as follows. We used
jbℓijj ¼ cℓjlog10ðMAFjÞj=2; where MAFj was the minor allele
frequency (MAF) of the jth variant. Three genetic effect
scenarios were used to perform power calculations: (1) all
causal variants had positive effects, (2) 20%/80% causal
variants had negative/positive effects, and (3) 50%/50%
causal variants had negative/positive effects. As in Lee
et al. (2013), four different settings were considered: 5%,
10%, 20%, and 50% of variants in the 3-kb subregion are
chosen as causal variants. When 5%, 10%, 20%, and 50% of
the variants were causal, two parameter settings of genetic
effects were considered for cℓ   : (1) homogeneous and (2)
heterogeneous (Table 4). In the homogeneous case, the ge-
netic effects are the same for the three studies; i.e.,
c1 ¼ c2 ¼ c3: In the heterogeneous case, the genetic effects
are different for the three studies; i.e., c2 ¼ c1 þ 0:15;
c3 ¼ c1 2 0:15: For each setting, 1000 data sets were simu-
lated to calculate the empirical power as the proportion of
P-values that are smaller than a given a ¼ 0:0001 level. The
homogeneous settings of genetic effect are taken from Lee
et al. (2013).

Type I error simulation results: The empirical type I error
rates are reported in Table 5 when the causal variants are
only rare and in Table 6 when the causal variants are both
rare and common. For each entry of empirical type I error
rates, we generated 106 data sets. Results of four different
a ¼ 0:05;  0:01;  0:001; and 0.0001 levels are reported. For
both the proposed F-distributed tests and LRT statistics of
the functional linear models, all empirical type I error rates
are around the nominal a-levels for both B-spline basis and
Fourier basis (columns 4–11 of Table 5 and Table 6). There-
fore, both the F-distributed tests and LRT statistics of the
functional linear models controlled type I error rates cor-
rectly for all scenarios at all significance levels. The func-
tional linear models and related F-distributed tests and LRT
statistics can be useful in both whole-genome and whole-
exome association studies.

Statistical power results: We compared the power perfor-
mance of the proposed tests with MetaSKAT and MetaBurden
tests based on the simulated COSI sequence data. The
empirical power levels of the proposed LRT statistics at the

Table 3 Simulation study settings

Sample sizes Covariates

Scenario Population Study 1 Study 2 Study 3 Study 1 Study 2 Study 3

1 EUR 1600 2200 3200 ðz1; z2Þ ðz1; z2Þ ðz1; z2Þ
2 EUR 1600 2200 3200 z1 ðz1; z2Þ ðz1; z2; z3Þ
3 EUR + AA 1600 2200 3200 z1 ðz1; z2Þ ðz1; z2; z3Þ
Sample sizes are total sample sizes in each study. Covariates represent covariates in each study. EUR refers to the scenario where all three studies had EUR samples. EUR + AA
refers to the scenario where studies 1 and 2 had EUR samples and study 3 had AA samples. z1 is a binary covariate taking values 0 and 1 each with probability 0.5, and z2 and
z3 are continuous covariates and distributed as standard normal.
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a ¼ 0:0001 level are plotted in Figure 1, Figure 2, Figure 3,
Figure 4, Figure S1, Figure S2, Figure S3, and Figure S4. In
the legends of all the figures, “GVF&Beta, B-sp” (or
“GVF&Beta, F-sp”) means that both genetic variant function
and genetic effect function bðtÞ were smoothed by B-spline (or
Fourier) basis functions, and “Beta, B-sp” (or “Beta, F-sp”)
means that only the genetic effect function bðtÞ was smoothed
by B-spline (or Fourier) basis functions (i.e., b-smooth only).
Moreover, the results of “Het-MetaSKAT,” “Het-MetaSKAT-O,”
“Hom-MetaSKAT,” “Hom-MetaSKAT-O,” and the metaburden
weighted sum test (MetaBurdenWST) using the R package
MetaSKAT are reported for power comparison (Madsen and
Browning 2009; Lee et al. 2012, 2013).

In Figure 1, Figure 2, Figure 3, and Figure 4, the results of
“Hom-LRT” are reported, where the LRT statistics are con-
structed using the homogeneous effect model that assumes
b1 ¼ b2 ¼ b3: In Figure S1, Figure S2, Figure S3, and Figure
S4, the results of “Het-LRT” are reported, where the LRT
statistics are constructed using the heterogeneous effect
model in which the regression coefficients b1;b2; and b3
are different from each other. In Figure 1, Figure 2, Figure
S1, and Figure S2, the simulated data are generated under
the assumption of homogeneous genetic effect; and in Fig-
ure 3, Figure 4, Figure S3, and Figure S4, the simulation
data are generated under the assumption of heterogeneous
genetic effect (Table 4).

The proposed homogeneous LRT statistics (Hom-LRT) of
the functional linear models have higher power than that of
MetaSKAT and MetaSKAT-O in Figure 1, Figure 2, Figure 3,
and Figure 4. The heterogeneous LRT statistics (Het-LRT) of
the functional linear models also have higher power than
that of MetaSKAT and MetaSKAT-O in Figure S1, Figure S2,
Figure S3, and Figure S4, except for a few cases in Figure S2
when 20% or 50% of variants were causal. Therefore, the
proposed LRT statistics of the functional linear models have
superior performance in most cases. In Figure S2, the simu-
lated data were generated using the homogeneous genetic
effect (Table 4), but the data were analyzed by the hetero-
geneous effect model and the test is Het-LRT. Thus, it is not
strange that there is power loss by Het-LRT in Figure S2.

As shown in Lee et al. (2013, p. 44), MetaSKAT-O takes
the minimum P-value of a weighted average of MetaSKAT
and the metaburden weighted sum test for a range of r

values over ½0; 1� and the metaburden weighted sum test

corresponds to r ¼ 1 in the construction of SKAT-O. There-
fore, the power of MetaBurdenWST is generally lower than
that of MetaSKAT-O. This is consistent with the results of
Lee et al. (2013).

In Figure 1 and Figure 2, the simulated data were gen-
erated under the assumption of homogeneous genetic effect
and the data were analyzed by the homogeneous effect
model and the test was Hom-LRT. In Figure S3 and Figure
S4, the simulated data were generated under the assump-
tion of heterogeneous genetic effect and the data were an-
alyzed by the heterogeneous effect model and the test was
Het-LRT. Therefore, “correct models” were used in analyz-
ing the simulated data in Figure 1, Figure 2, Figure S3, and
Figure S4, in which the proposed LRT statistics have signif-
icantly higher power levels than those of MetaSKAT. Even
when “wrong models” were used to analyze the simulated
data in Figure 3, Figure 4, Figure S1, and Figure S2, the
empirical power levels of the proposed LRT statistics were
much higher than those of MetaSKAT in most cases except
a few in Figure S2.

In total, we compared four LRT statistics of the functional
linear models in each graph: two are based on B-spline basis
functions, and two are based on Fourier basis functions. In
the two LRT statistics to use B-spline (or Fourier) basis
functions, one is to smooth both the genetic variant
functions and the genetic effect function bðtÞ, and the other
is to smooth only the genetic effect function bðtÞ (i.e.,
b-smooth only). Generally, the four LRT statistics of the
functional linear models have similar power. The power lev-
els of b-smooth only are almost identical to those of smooth-
ing both the genetic variant functions and the genetic effect
function bðtÞ by B-spline basis (or Fourier basis). Thus, the
tests do not strongly depend on whether the genotype data
are smoothed or not. In addition, the LRT statistics do not
strongly depend on which basis functions are used.

In addition to the LRT statistics, we calculated the
empirical power levels of the F-distributed statistics, which
provide very similar empirical power levels as the LRT
statistics (data not shown).

Discussion

In this article, FLMs are developed to perform gene-level
meta-analysis of quantitative traits for a combined analysis

Table 4 Simulation parameter settings

Causal %

Genetic effect Study ðcℓÞ 5 10 20 50

Homogeneous 1 ðc1Þ 0.475 0.375 0.25 0.175
2 ðc2Þ 0.475 0.375 0.25 0.175
3 ðc3Þ 0.475 0.375 0.25 0.175

Heterogeneous 1 ðc1Þ 0.475 0.375 0.25 0.175
2 (c2) 0:475þ 0:15 0:375þ 0:15 0:25þ 0:15 0:175þ 0:15
3 ðc3Þ 0:47520:15 0:37520:15 0:2520:15 0:17520:15

The constants cℓ in bℓ ¼ cℓjlog10ðMAFÞj=2 of power simulations, ℓ ¼ 1; 2;3; are given for two cases: (1) homogeneous genetic effect and (2) heterogeneous genetic effect.
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of multiple studies. By using functional data analysis
techniques, the theoretical FLMs (1) and (4) are trans-
formed to be traditional multiple linear regressions (3) and
(5) (de Boor 2001; Ramsay and Silverman 2005; Ramsay
et al. 2009; Ferraty and Romain 2010; Horváth and
Kokoszka 2012). The null hypothesis of association is tested
by LRT and F-distributed statistics. We show that the pro-
posed LRT and F-distributed statistics control the type I error
very well and have higher empirical power levels than the
existing methods such as MetaSKAT and MetaBurdenWST in
most simulations. By applying the proposed methods to an-
alyze four blood lipid levels in data from a meta-analysis of
eight European studies, it is found that the proposed meth-
ods detect more significant association than MetaSKAT and
MetaSKAT-O, and the P-values of the proposed LRT and F-
distributed statistics are usually much smaller than those of
MetaSKAT and MetaSKAT-O.

One reason that the proposed functional linear
models perform better is that SKAT and MetaSKAT
do not model LD among genetic markers sufficiently. Spe-
cifically, the test statistic of SKAT is given by Qs ¼
ðy2p̂Þ9GWWG9ðy2 p̂Þ ¼ Pm

j¼1w
2
j f
Pn

i¼1gijð yi2p̂iÞg2; where
y ¼ ð y1;⋯; ynÞ9 is the trait value column vector, G ¼
ðG1;⋯;GnÞ9 is the n3m genotype matrix, and W ¼

diagðw1;⋯;wmÞ is an m3m diagonal weight matrix using
the notations of Lee et al. (2012). Let Sj ¼

Pn
i¼1gijð yi 2 p̂iÞ:

Then, Sj is the score test statistic for testing H0   : bj ¼ 0 in
the single genetic variant model with only the jth genetic
variant

logitðpiÞ ¼ a0 þ Z9aþ gijbj:

Thus, Sj models the pairwise LD between the jth genetic
variant and the trait locus. Note that QS ¼

Pm
j¼1w

2
j S

2
j is

a weighted summation of the squared score test statistics
Sj: Therefore, the test statistics of SKAT and MetaSKAT
model pairwise LD only between each individual marker
and the trait locus, while the LD among genetic markers
are not modeled.

Note that Lee et al. (2012) used dichotomous traits to
present the test statistic Qs; but the formulation of Qs is also
the same for continuous traits or survival traits (Chen et al.
2014). SKAT and MetaSKAT were constructed as score tests
on the variance component parameter for the genetic ran-
dom variations in linear or logistic mixed-effects models.
The reason that the regression coefficients of genetic terms
were assumed to be random in the models of SKAT and
MetaSKAT is that the number of genetic variants in a genetic

Table 5 Empirical type I error rates of F-distributed statistics and LRT statistics at different a-levels based on 106 simulated data sets,
when the causal variants are only rare

F-distributed statistics LRT statistics

Basis of both GVF and bℓðtÞ Basis of b-smooth only Basis of both GVF and bℓðtÞ Basis of b-smooth only

Type of tests Scenario Level a B-spline Fourier B-spline Fourier B-spline Fourier B-spline Fourier

Het-F and Het-LRT 1 0.05 0.049876 0.049922 0.050093 0.049924 0.050611 0.050895 0.050819 0.050916
0.01 0.009932 0.010006 0.009987 0.010029 0.010173 0.010407 0.010225 0.010422
0.001 0.000991 0.000974 0.001000 0.000971 0.001055 0.001056 0.001065 0.001056
0.0001 0.000089 0.000097 0.000091 0.000095 0.000094 0.000107 0.000097 0.000105

2 0.05 0.049838 0.050189 0.050077 0.050194 0.050546 0.051163 0.050789 0.051164
0.01 0.009944 0.009848 0.009998 0.009851 0.010239 0.010251 0.010305 0.010253
0.001 0.001024 0.001021 0.001036 0.001025 0.001079 0.001082 0.001090 0.001088
0.0001 0.000094 0.000101 0.000094 0.000102 0.000103 0.000118 0.000105 0.000118

3 0.05 0.049886 0.050002 0.050081 0.049940 0.050593 0.050934 0.050789 0.050906
0.01 0.009948 0.010084 0.009989 0.010090 0.010255 0.010454 0.010294 0.010446
0.001 0.000981 0.001044 0.000985 0.001035 0.001029 0.001104 0.001033 0.001098
0.0001 0.000106 0.000093 0.000108 0.000097 0.000116 0.000105 0.000118 0.000108

Hom-F and Hom-LRT 1 0.05 0.049834 0.049795 0.049948 0.049906 0.050131 0.050221 0.050240 0.050337
0.01 0.009932 0.009901 0.009896 0.010018 0.010050 0.010062 0.010012 0.010216
0.001 0.000987 0.001039 0.001030 0.000996 0.001000 0.001070 0.001054 0.001022
0.0001 0.000091 0.000102 0.000077 0.000108 0.000098 0.000104 0.000078 0.000112

2 0.05 0.050140 0.050340 0.050057 0.050050 0.050459 0.050784 0.050349 0.050475
0.01 0.009995 0.010131 0.010001 0.009911 0.010103 0.010308 0.010141 0.010078
0.001 0.000965 0.001029 0.000977 0.000998 0.000984 0.001061 0.001001 0.001031
0.0001 0.000095 0.000106 0.000085 0.000092 0.000099 0.000111 0.000088 0.000097

3 0.05 0.049900 0.049757 0.050173 0.049742 0.050201 0.050213 0.050453 0.050180
0.01 0.010043 0.010068 0.010047 0.009950 0.010157 0.010260 0.010161 0.010138
0.001 0.001025 0.001002 0.001010 0.001017 0.001045 0.001023 0.001035 0.001060
0.0001 0.000090 0.000121 0.000098 0.000118 0.000092 0.000128 0.000100 0.000125

The results of “Basis of both GVF and bℓðtÞ” were based on smoothing both GVF and genetic effect functions bℓðtÞ of model (3), and the results of “Basis of b-smooth only”
were based on the smoothing bℓðtÞ only approach of model (5). GVF, genetic variant function.
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region is usually large. For instance, there are 660 genetic
variants in the region of the KCNQ1 gene in data of Euro-
pean cohorts, Table S1. Due to a large number of genetic
terms in a regression model, it is hard to estimate the ge-
netic effects of all genetic variants by ordinary fixed-effect
regression models. By making the regression coefficients of
the genetic terms to be random, the theory of mixed models
was used to build the test statistics of SKAT and MetaSKAT
(Lee et al. 2012, 2013).

In association studies, association between phenotypic
traits and major gene loci is tested. If the number of causal
genetic variants at a major gene locus is very large and each
causal variant makes a small contribution to the phenotype,
the assumption of mixed models will be satisfied and SKAT
and MetaSKAT should perform well (Fisher 1918). On the
other hand, if the number of causal genetic variants at a ma-
jor gene locus is not large and the contribution of a few
causal variants to the phenotype is reasonably large, fixed-
effect models should work well. In our simulation studies
and real data analysis, the proposed functional linear mod-
els perform better than SKAT and MetaSKAT in most cases.
Thus, the mixed models of SKAT and MetaSKAT could be
statistically convenient and attractive but not necessarily bi-

ologically reasonable. We argue that the fixed-effect models
are useful in most cases. In practice, it makes sense to per-
form analysis by both the fixed- and mixed-effect models
and make a comparison, and this can be readily done using
our R codes and SKAT and MetaSKAT packages.

The proposed FLMs are fixed-effect models that can
analyze large numbers of genetic variants and extend
traditional population genetics models naturally. Unlike
other methods such as SKAT or MetaSKAT and burden tests
that treat genetic variants as discrete variables, FLMs treat
the genetic variant data as continuous stochastic functions
or realizations of an underlying stochastic process (Ross
1996). Since genetic variant data are treated as functions,
the genetic effects are modeled as functions. One advantage
of treating genetic variant data as functions is that the LD
information and genetic positions of genetic variant data
are contained in the genetic variant functions. The regres-
sion coefficients of genetic terms in the models of SKAT and
MetaSKAT do not depend on the genetic position, while our
genetic effect function depends on the genetic position and
is actually a function of genetic position. Hence, the pro-
posed models can fully utilize LD and genetic position
information.

Table 6 Empirical type I error rates of F-distributed statistics and LRT statistics at different a-levels based on 106 simulated data sets,
when the causal variants are both rare and common

F-distributed statistics LRT statistics

Basis of both GVF and bℓðtÞ Basis of b-smooth only Basis of both GVF and bℓðtÞ Basis of b-smooth only

Type of tests Scenario Level a B-spline Fourier B-spline Fourier B-spline Fourier B-spline Fourier

Het-F and Het-LRT 1 0.05 0.050146 0.049931 0.050220 0.049953 0.050853 0.050913 0.050928 0.050936
0.01 0.009964 0.009942 0.009983 0.009945 0.010250 0.010303 0.010268 0.010308
0.001 0.000993 0.000996 0.000997 0.000996 0.001057 0.001078 0.001061 0.001078
0.0001 0.000108 0.000088 0.000109 0.000088 0.000116 0.000097 0.000117 0.000097

2 0.05 0.049942 0.050298 0.050014 0.050324 0.050705 0.051303 0.050786 0.051330
0.01 0.009974 0.009993 0.010001 0.010001 0.010268 0.010396 0.010291 0.010402
0.001 0.000960 0.000970 0.000967 0.000970 0.001013 0.001046 0.001017 0.001046
0.0001 0.000079 0.000092 0.000080 0.000093 0.000089 0.000099 0.000090 0.000099

3 0.05 0.050100 0.050012 0.050159 0.050008 0.050844 0.051006 0.050911 0.051000
0.01 0.010060 0.010008 0.010089 0.010010 0.010328 0.010367 0.010360 0.010375
0.001 0.000989 0.001022 0.000989 0.001021 0.001032 0.001098 0.001034 0.001096
0.0001 0.000109 0.000099 0.000111 0.000099 0.000117 0.000111 0.000118 0.000110

Hom-F and Hom-LRT 1 0.05 0.049899 0.049875 0.050077 0.050165 0.050193 0.050331 0.050374 0.050595
0.01 0.010127 0.010135 0.010014 0.010043 0.010225 0.010309 0.010135 0.010230
0.001 0.001004 0.001031 0.001007 0.001001 0.001017 0.001050 0.001027 0.001047
0.0001 0.000084 0.000113 0.000092 0.000085 0.000087 0.000119 0.000095 0.000089

2 0.05 0.049982 0.050054 0.050017 0.049746 0.050267 0.050461 0.050289 0.050168
0.01 0.010037 0.010105 0.009901 0.009977 0.010170 0.010280 0.010020 0.010157
0.001 0.001025 0.001019 0.000993 0.000982 0.001048 0.001056 0.001016 0.001018
0.0001 0.000108 0.000101 0.000098 0.000096 0.000111 0.000109 0.000104 0.000101

3 0.05 0.050401 0.049749 0.050276 0.050243 0.050693 0.050187 0.050551 0.050694
0.01 0.009975 0.009920 0.010148 0.009904 0.010097 0.010082 0.010272 0.010088
0.001 0.000993 0.000993 0.000966 0.000997 0.001019 0.001039 0.000995 0.001037
0.0001 0.000116 0.000100 0.000097 0.000089 0.000119 0.000108 0.000097 0.000093

The results of “Basis of both GVF and bℓðtÞ” were based on smoothing both GVF and genetic effect functions bℓðtÞ of model (3), and the results of “Basis of b-smooth only”
were based on the smoothing bℓðtÞ only approach of model (5). GVF, genetic variant function.
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Figure 1 The empirical power of the homogeneous LRT statistics (Hom-LRT) of models (3) and (5), MetaSKAT, and MetaBurdenWST at a ¼ 0:0001;
when causal variants were both rare and common and the genetic effect is simulated as homogeneous. When Neg pct = 0, all causal variants had
positive effects; when Neg pct = 20, 20%/80% of causal variants had negative/positive effects; when Neg pct = 50, 50%/50% of causal variants had
negative/positive effects.
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The functional linear models (1) and (4) are built to
analyze data of multiple studies that may have different
covariates and genetic variants. If all studies are genotyped
at the same markers and they have the same covariates, then
models (1) and (4) are the same as those of Fan et al.

(2013) if the genetic effects are homogeneous; i.e.,
b1ðtÞ ¼ ⋯ ¼ bLðtÞ: In reality, the homogeneity assumption
may not be valid in which case the functional linear models
(1) and (4) are not a trivial extension of the models of Fan
et al. (2013). In the analysis of the eight European cohorts,

Figure 2 The empirical power of the homogeneous LRT statistics (Hom-LRT) of models (3) and (5), MetaSKAT, and MetaBurdenWST at a ¼ 0:0001;
when causal variants were only rare and the genetic effect is simulated as homogeneous. When Neg pct = 0, all causal variants had positive effects;
when Neg pct = 20, 20%/80% of causal variants had negative/positive effects; when Neg pct = 50, 50%/50% of causal variants had negative/positive
effects.
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Figure 3 The empirical power of the homogeneous LRT statistics (Hom-LRT) of models (3) and (5), MetaSKAT, and MetaBurdenWST at a ¼ 0:0001;
when causal variants were both rare and common and the genetic effect is simulated as heterogeneous. When Neg pct = 0, all causal variants had
positive effects; when Neg pct = 20, 20%/80% of causal variants had negative/positive effects; when Neg pct = 50, 50%/50% of causal variants had
negative/positive effects.
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more association signals are detected by Het-LRT and Het-F
than by Hom-LRT and Hom-F, reflecting the presence of
heterogeneity of the genetic effects.

In single studies with sample sizes of #1000, LRT sta-
tistics of FLMs were found to inflate the type I error rates

while F-distributed statistics controlled type I error rates
correctly (Fan et al. 2013). Hence, F-distributed statistics
are recommended for small and moderate sample size sin-
gle studies. In this article, we show that both F-distributed
and LRT statistics control the type I error rates correctly

Figure 4 The empirical power of the homogeneous LRT statistics (Hom-LRT) of models (3) and (5), MetaSKAT, and MetaBurdenWST at a ¼ 0:0001;
when causal variants were only rare and the genetic effect is simulated as heterogeneous. When Neg pct = 0, all causal variants had positive effects;
when Neg pct = 20, 20%/80% of causal variants had negative/positive effects; when Neg pct = 50, 50%/50% of causal variants had negative/positive
effects.
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and their empirical power levels are similar when the sam-
ple sizes of combined multiple studies are large. In Fan
et al. (2013), the LRT statistics were found to have correct
type I error rates when the sample sizes were $1500 in
a single study. Therefore, the conclusion that both LRT and
F-distributed statistics can be used for large sample meta-
analysis in this article is consistent with the result of Fan
et al. (2013).

The proposed method requires full genotype data; i.e.,
we assume that individual genotype data are available
from all studies. One reason is that we have this type of
data in the eight European cohorts. The proposed ap-
proach is more powerful than MetaSKAT and MetaSKAT-
O when genotype data are available from all studies, and
the proposed method cannot meta-analyze summary sta-
tistics while MetaSKAT can. If summary statistics of func-
tional regression models are available from different
studies only using Fan et al. (2013), it is still an open
question if those statistics can be used to meta-analyze
the data of multiple studies. Note that the functional
regressions are simply ordinary regressions after revising
the theoretical functional models by functional data anal-
ysis techniques, and so the strategy of usual meta-analysis
would be useful. Hence, it should be possible to use results
from functional regression models for a meta-analysis across
cohorts. However, the details are still waiting for further
work.

With the rapid advance of high-throughput sequencing
technologies (Mardis 2008; Ansorge 2009), more sequenc-
ing data from large cohorts will be collected and more
meta-analyses will be performed in different populations.
Association analysis has been increasingly carried out to
identify risk or protective genetic variants of complex
traits. It is important to develop powerful and efficient
statistical methods to test for associations. Our meta-
analysis FLMs provide an effective approach for the as-
sociation analysis of complex traits.
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Supplementary Materials I: “Gene Level
Meta-analysis of Quantitative Traits by

Functional Linear Models”

Appendix A. Information and Extra Results of the Eight

European Cohorts

For each of the eight European cohorts, we performed analysis for four lipid traits and 22 genes.

The information of the 22 genes is given in Table S.1. The sample sizes of each trait are presented

in Table S.2. The results of association analysis by Hom-F and Het-F are reported in Tables

S.3 and S.4.
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Table S.1: Summary of 22 Genes and the Number of Genetic Variants in Each Gene
Region by Mar. 2006 (NCBI36/hg18). The number of variants is the number of genetic
variants in a region of Start (-5Kb) - End (+5Kb) Positions. ∗ The gene region of PCSK9
is (55277737, 55303114), and (55271537, 55286109) is the region in the database. # The length
is the length of the region in bp.

Gene
Chromosome Gene Start (-5Kb) - End (+5Kb) Number of

Region Positions (bp) Positions (Length#) Variants

PCSK9∗ 1 55277737 - 55303114 55271537 - 55286109 (14572) 74
APOB 2 21077806 - 21120450 21072806 - 21125450 (52644) 223

IGF2BP2 3 186844221 - 187025521 186839221 - 187030521 (191300) 231
CDKAL1 6 20642667 - 21340613 20637667 - 21345613 (707946) 560
JAZF1 7 27836718 - 28186962 27831718 - 28191962 (360244) 384
LPL 8 19840862 - 19869050 19835862 - 19874050 (38188) 212

CDKN2B 9 21992902 - 21999312 21987902 - 22004312 (16410) 64
CDC123 10 12277971 - 12332593 12272971 - 12337593 (64622) 265
IDE 10 94201421 - 94323832 94196421 - 94328832 (132411) 327
KIF11 10 94342805 - 94405132 94337805 - 94410132 (72327) 216
HHEX 10 94439661 - 94445388 94434661 - 94450388 (15727) 30
TCF7L2 10 114699999 - 114917426 114694999 - 114922426 (227427) 258
KCNQ1 11 2422797 - 2826916 2417797 - 2831916 (414119) 660
MTNR1B 11 92342437 - 92355596 92337437 - 92360596 (23159) 106
HMGA2 12 64504507 - 64646338 64499507 - 64651338 (151831) 214
TSPAN8 12 69805144 - 69838046 69800144 - 69843046 (42902) 54
HNF1A 12 119900932 - 119924697 119895932 - 119929697 (33765) 71
OASL 12 119942478 - 119961428 119937478 - 119966428 (28950) 108
FTO 16 52295376 - 52705882 52290376 - 52710882 (420506) 191
LDLR 19 11061038 - 11105505 11056038 - 11110505 (54467) 43
APOE 19 50100879 - 50104490 50095879 - 50109490 (13611) 35
GIPR 19 50863342 - 50877557 50858342 - 50882557 (24215) 37

Table S.2: Sample Sizes of the Four Lipid Traits for Each of the Seven Studies.

Study HDL LDL TG CHOL

D2d-2007 2075 2074 2075 2075
DIAGEN 1470 1454 1470 1471

Dps 412 410 412 412
DRs EXTRA 1157 1157 1157 1157

FUSION Stage 2 2496 1892 2062 2500
METSIM 1346 1345 1346 1346
Norway 2484 2320 2487 2476

Total 11440 10652 11009 11437

2
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Appendix B. Empirical Power Figures of Heterogeneous

Likelihood Ratio Tests (Het-LRT)

In this section of the Supplementary Materials I, more empirical power results are presented

based on heterogeneous likelihood ratio tests (Het-LRT).
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Figure S.1: The Empirical Power of the Heterogeneous LRT Statistics (Het-LRT) of
the Models (3) and (5), MetaSKAT, and MetaBurdenWST at α = 0.0001, When
Causal Variants Were Both Rare and Common and the Genetic Effect is Simulated
as Homogeneous. When Neg pct = 0, All Causal Variants Had Positive Effects; When Neg pct
= 20, 20%/80% Causal Variants Had Negative/Positive Effects; When Neg pct = 50, 50%/50%
Causal Variants Had Negative/Positive Effects.
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Figure S.2: The Empirical Power of the Heterogeneous LRT Statistics (Het-LRT) of
the Models (3) and (5), MetaSKAT, and MetaBurdenWST at α = 0.0001, When
Causal Variants Were Only Rare and the Genetic Effect is Simulated as Homo-
geneous. When Neg pct = 0, All Causal Variants Had Positive Effects; When Neg pct = 20,
20%/80% Causal Variants Had Negative/Positive Effects; When Neg pct = 50, 50%/50% Causal
Variants Had Negative/Positive Effects.
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Figure S.3: The Empirical Power of the Heterogeneous LRT Statistics (Het-LRT) of
the Models (3) and (5), MetaSKAT, and MetaBurdenWST at α = 0.0001, When
Causal Variants Were Both Rare and Common and the Genetic Effect is Simulated
as Heterogeneous. When Neg pct = 0, All Causal Variants Had Positive Effects; When
Neg pct = 20, 20%/80% Causal Variants Had Negative/Positive Effects; When Neg pct = 50,
50%/50% Causal Variants Had Negative/Positive Effects.
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Figure S.4: The Empirical Power of the Heterogeneous LRT Statistics (Het-LRT) of
the Models (3) and (5), MetaSKAT, and MetaBurdenWST at α = 0.0001, When
Causal Variants Were Only Rare and the Genetic Effect is Simulated as Hetero-
geneous. When Neg pct = 0, All Causal Variants Had Positive Effects; When Neg pct = 20,
20%/80% Causal Variants Had Negative/Positive Effects; When Neg pct = 50, 50%/50% Causal
Variants Had Negative/Positive Effects.
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