Table 5. Empirical type I error rates of F-distributed statistics and LRT statistics at different α-levels based on simulated data sets, when the causal variants are only rare.
F-distributed statistics | LRT statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Basis of both GVF and | Basis of β-smooth only | Basis of both GVF and | Basis of β-smooth only | |||||||
Type of tests | Scenario | Level α | B-spline | Fourier | B-spline | Fourier | B-spline | Fourier | B-spline | Fourier |
Het-F and Het-LRT | 1 | 0.05 | 0.049876 | 0.049922 | 0.050093 | 0.049924 | 0.050611 | 0.050895 | 0.050819 | 0.050916 |
0.01 | 0.009932 | 0.010006 | 0.009987 | 0.010029 | 0.010173 | 0.010407 | 0.010225 | 0.010422 | ||
0.001 | 0.000991 | 0.000974 | 0.001000 | 0.000971 | 0.001055 | 0.001056 | 0.001065 | 0.001056 | ||
0.0001 | 0.000089 | 0.000097 | 0.000091 | 0.000095 | 0.000094 | 0.000107 | 0.000097 | 0.000105 | ||
2 | 0.05 | 0.049838 | 0.050189 | 0.050077 | 0.050194 | 0.050546 | 0.051163 | 0.050789 | 0.051164 | |
0.01 | 0.009944 | 0.009848 | 0.009998 | 0.009851 | 0.010239 | 0.010251 | 0.010305 | 0.010253 | ||
0.001 | 0.001024 | 0.001021 | 0.001036 | 0.001025 | 0.001079 | 0.001082 | 0.001090 | 0.001088 | ||
0.0001 | 0.000094 | 0.000101 | 0.000094 | 0.000102 | 0.000103 | 0.000118 | 0.000105 | 0.000118 | ||
3 | 0.05 | 0.049886 | 0.050002 | 0.050081 | 0.049940 | 0.050593 | 0.050934 | 0.050789 | 0.050906 | |
0.01 | 0.009948 | 0.010084 | 0.009989 | 0.010090 | 0.010255 | 0.010454 | 0.010294 | 0.010446 | ||
0.001 | 0.000981 | 0.001044 | 0.000985 | 0.001035 | 0.001029 | 0.001104 | 0.001033 | 0.001098 | ||
0.0001 | 0.000106 | 0.000093 | 0.000108 | 0.000097 | 0.000116 | 0.000105 | 0.000118 | 0.000108 | ||
Hom-F and Hom-LRT | 1 | 0.05 | 0.049834 | 0.049795 | 0.049948 | 0.049906 | 0.050131 | 0.050221 | 0.050240 | 0.050337 |
0.01 | 0.009932 | 0.009901 | 0.009896 | 0.010018 | 0.010050 | 0.010062 | 0.010012 | 0.010216 | ||
0.001 | 0.000987 | 0.001039 | 0.001030 | 0.000996 | 0.001000 | 0.001070 | 0.001054 | 0.001022 | ||
0.0001 | 0.000091 | 0.000102 | 0.000077 | 0.000108 | 0.000098 | 0.000104 | 0.000078 | 0.000112 | ||
2 | 0.05 | 0.050140 | 0.050340 | 0.050057 | 0.050050 | 0.050459 | 0.050784 | 0.050349 | 0.050475 | |
0.01 | 0.009995 | 0.010131 | 0.010001 | 0.009911 | 0.010103 | 0.010308 | 0.010141 | 0.010078 | ||
0.001 | 0.000965 | 0.001029 | 0.000977 | 0.000998 | 0.000984 | 0.001061 | 0.001001 | 0.001031 | ||
0.0001 | 0.000095 | 0.000106 | 0.000085 | 0.000092 | 0.000099 | 0.000111 | 0.000088 | 0.000097 | ||
3 | 0.05 | 0.049900 | 0.049757 | 0.050173 | 0.049742 | 0.050201 | 0.050213 | 0.050453 | 0.050180 | |
0.01 | 0.010043 | 0.010068 | 0.010047 | 0.009950 | 0.010157 | 0.010260 | 0.010161 | 0.010138 | ||
0.001 | 0.001025 | 0.001002 | 0.001010 | 0.001017 | 0.001045 | 0.001023 | 0.001035 | 0.001060 | ||
0.0001 | 0.000090 | 0.000121 | 0.000098 | 0.000118 | 0.000092 | 0.000128 | 0.000100 | 0.000125 |
The results of “Basis of both GVF and ” were based on smoothing both GVF and genetic effect functions of model (3), and the results of “Basis of β-smooth only” were based on the smoothing only approach of model (5). GVF, genetic variant function.