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Abstract. Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency
and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried
out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic
settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on
Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods
commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular
epidemiological tools and methods toward malaria control and elimination efforts.

INTRODUCTION

Malaria-endemic areas have traditionally been classified in
terms of transmission intensity, from hypo- to holoendemic.
However, malaria epidemiology cannot be characterized solely
on a one-dimensional scale. Prevalence of specific clinical man-
ifestations of disease or parasite species, the onset of natural
immunity, the spread of antimalarial drug resistance, and
vectors involved in transmission, among others, vary across
endemic areas.1,2 In the context of such complexity, the Inter-
national Centers of Excellence for Malaria Research (ICEMR)
network is taking advantage of state-of-the-art molecular tools
to better characterize malaria epidemiology.
The ICEMR provide an opportunity to follow endemic

areas over time and space, either longitudinally or by succes-
sive cross-sectional sampling at different spatial scales. These
site-based research projects generate information and resources
at regional scales, including epidemiologically contextualized
molecular data and specimens, with the expectation that glob-
ally generalizable knowledge will emerge and guide evidence-
based malaria elimination programs.

THE MALARIA EPIDEMIOLOGIC LANDSCAPE:
A MOLECULARVIEW

Molecular methods have been used in malaria epidemiology
for almost two decades.3 Although the initial emphasis was
on diagnostics and genotyping, current epidemiological inves-
tigations have been enriched by incorporating population biol-
ogy and population genetics modeling and concepts, which
move the field beyond simple descriptions of malaria inci-
dence and prevalence.
From an operational point of view, molecular tools allow

1) more sensitive estimations of prevalence and incidence
that include subclinical cases of parasitemia; 2) assessment of
the effectiveness of intervention strategies on the occurrence,
complexity, and duration of infections; 3) differentiation
between recrudescent, relapsing, and new infections; 4) esti-
mation of the effect of interventions on the allele frequency of
the targeted gene (e.g., mutations associated with drug resis-
tance or variants in a vaccine construct); 5) estimation of the
differential contribution of individual hosts to transmission by
targeting gametocyte-specific genes; and 6) assessment of
demographic patterns within parasite populations (gene flow–
migration–colonization of new areas and population expan-
sions), especially when transmission is driven by specific groups
of particularly mobile subclinically infected individuals or
migration across borders.3 This information, integrated with
appropriate mathematical modeling or epidemiologic investi-
gations, allows for the improvement of resource allocation
and provide an early warning system to modify the interven-
tion deployed in response to changing conditions.
A variety of coordinated efforts have focused on understand-

ing geographic patterns of malaria transmission.4 Nonetheless,
information derived from molecular data (e.g., malaria
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prevalence considering asymptomatic infections and/or para-
site genetic diversity) still must be effectively integrated into
standard reporting data to maximize public health benefit and
facilitate assessment of interventions. Part of the problem
resides in the challenge of integrating heterogeneous types of
data at different temporal and spatial scales. Here we introduce
efforts made across the ICEMR sites and discuss the challenges
of incorporating these new technologies and concepts into
evidence-based malaria control and elimination programs.

ASSESSING MALARIA PREVALENCE
AND TRANSMISSION

Diagnostics remain fundamental to molecular epidemiology.
Although many specific aspects of malaria diagnostics are
discussed separately in this supplement,5 here we address those
issues that relate to disease ecology and transmission dynamics.
Light microscopy based on Giemsa-stained thick blood

smears has limited the sensitivity for detecting low-density
infections, hampering its use for measuring actual transmis-
sion.5 This situation will likely worsen wherever control efforts
successfully reduce the incidence of clinical cases to the point
where submicroscopic/subclinical parasitemia becomes rela-
tively more common. For example, up to 73% of Plasmodium
vivax infections were missed by microscopy, as compared with
molecular detection, in hypoendemic areas of Brazil as the
incidence of clinical cases declined.6 Similar reports are coming
from all ICEMR projects where different diagnostic methods
have been used.5 Rapid diagnostic tests (RDTs) are considered
as an alternative to microscopy, but their utility is limited in
some regions (e.g., Peru) because of the high frequency of par-
asites lacking pfhrp2 and/or pfhrp3 genes (the antigens targeted
by the RDTs) in the Americas,7 and their low sensitivity in the
face of low parasitemia, especially with P. vivax.6 To address
this biological challenge, the ICEMR network has been testing
a variety of nucleic acid amplification (NAA) methods in dif-
ferent epidemiological settings.5 NAA methods are costly when
compared with microscopy, and some involve fairly complex
laboratory resources that remain challenging in endemic areas.
The ICEMR is developing strategies to circumvent this prob-
lem via field laboratories or mobile molecular laboratories
(e.g., in non-Amazonian areas of the Americas or in Asia).6,8

Those experiences aim to facilitate the use of NAA methods
in active case detection and reactive surveillance, but remain
to be implemented as standard surveillance practice for most
control programs.
In addition, the ICEMR is developing new approaches

to detecting low-level malaria parasite infections. At the
southwest Pacific ICEMR, two new quantitative polymer-
ase chain reaction (qPCR) assays have been developed for
Plasmodium falciparum that target repetitive genomic sequences,
substantially increasing diagnostic sensitivity without requir-
ing laborious sampling of large blood volumes or elaborate
sample processing.9 Applying these ultrasensitive PCR assays
in cross-sectional surveys in Tanzania and Papua New Guinea
revealed a 10% higher prevalence rate compared with a stan-
dard qPCR assay.

GAMETOCYTEMIA

Determining the different contributions of groups of patients
(e.g., clinical, asymptomatic) to malaria transmission requires

information about gametocytemia. Asymptomatic infections,
for example, represent a “hidden” parasite reservoir that can
sustain transmission.10 Analysis of the effects of asymptomatic
and submicroscopic infections on transmission must also con-
sider differences among vectors, since vector transmission effi-
ciency may vary with very low parasitemia. Furthermore, each
malaria species poses a different set of challenges. ICEMR proj-
ects are investigating and comparing such differences across
epidemiologic settings worldwide by using molecular tools.
The relationship between asymptomatic P. falciparum infec-

tions and parasite infectivity to mosquitoes has been investi-
gated in Africa,11,12 but little is known in this regard about
P. vivax or low endemic regions outside Africa, where other
vector species are involved in malaria transmission. The two
Latin American ICEMR sites have characterized P. vivax
transmission dynamics in symptomatic and asymptomatic vol-
unteers. Molecular assays (i.e., quantitative reverse transcrip-
tion PCR [qRT-PCR]) found comparable expression levels of
Pvs25 in symptomatic and asymptomatic volunteers.13,14

Blood from asymptomatic, low-parasitemia volunteer donors
was able to infect laboratory-reared Anopheles mosquitoes
(Anopheles albimanus) without statistically significant differ-
ences between direct feeding and membrane-feeding assays
(S. Herrera, personal communication) indicating that asymp-
tomatic carriers can infect mosquitoes in this setting. Studies
to quantify the transmissibility of subpatent and asymptom-
atic parasitemia to Anopheles darlingi in Peru are ongoing
(J. Vinetz and others, personal communication).
A major challenge to understanding parasite population

biology and epidemiology is the paucity of data characterizing
the different elements of intra-host dynamics.15–17 The south-
west Pacific ICEMR has developed a novel multispecies/
multistage approach that allows blood stage and gametocyte
quantification of multiple Plasmodium species by qPCR and
qRT-PCR.18 Furthermore, to understand intra-host dynamics
(i.e., differential contribution of clones to gametocyte produc-
tion, as well as possible within-host competition), a panel of
highly polymorphic markers is being evaluated for genotyping
P. falciparum gametocytes, including new and existing markers
(e.g., pfs230 and pfg377).19 Analogous highly polymorphic
gametocyte markers for P. vivax have not yet been identified.

MALARIA GENOTYPING: MOLECULAR
EPIDEMIOLOGYAND POPULATION GENETICS

Understanding the genetic diversity and structure of malaria
parasite populations is the key for predicting the emergence
and spread of phenotypes of interest, such as new antigenic
or drug resistance variants. Whereas population genomics is
an area of investigation reaching maturity in malaria,20,21 a
wide variety of genotyping methods are still largely used to
sample the parasite genome.3,22 Many of these methods have
been used and compared across the ICEMRs sites worldwide.
Traditional genotyping methods for malarial parasites rely

on the size polymorphism of genes encoding surface antigens
with variable number of tandem repeats, such as msp2 in
P. falciparum, msp3α in P. vivax, and msp1 and csp in both
species.3,23–26 This approach has been useful to determine
the number of different parasite genotypes coinfecting a single
patient or multiplicity of infection (MOI) (see Table 1).23,27,28

However, it is of limited utility for interpreting other patterns
(e.g., geographic population structure) since fragment sizes
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may converge at the population level, and the size itself may
be under selection.29–31 The problem worsens if genotyping
involves use of restriction enzymes, as demonstrated by one of
the ICEMR sites. Specifically, as a result of multiple insertion–
deletion mutations and recombination, alleles that differ at
the sequence level may yield the same restriction fragment
length polymorphism pattern.31

A second approach involves using partial or complete gene
sequences from nuclear or organellar genomes. Such analyses
have usually aimed to better understand the diversity of a
targeted gene under consideration as a vaccine candidate, or
because it harbors mutations linked to drug resistance.3,25,32,33

However, many studies have aimed to understand global pat-
terns of diversity, including gene flow and/or population struc-
ture.34–36 A clear advantage to this latter approach is that
such data are comparable across sites; however, this strategy
is costly.
Finally, a major trend across ICEMR is the use of multi-

locus genotyping that targets non-antigenic loci (Table 1). This
approach allows different aspects of population structure to
be studied, such as linkage disequilibrium and gene flow, as
long as the sampled loci are not linked to a gene under selec-
tion.22,37–40 Two types of markers are widely used: micro-
satellites37,38,40–43 and single nucleotide polymorphisms
(SNPs).39,44,45 Both approaches document similar epidemio-
logical processes.37,38,46 However, microsatellites have a higher
mutation rate than SNPs, which allows detection of recent
events.47,48 A problem with microsatellites, however, is that
they evolve according to complex evolutionary models, and
not all microsatellites are equally suitable worldwide.38,43

Microsatellites are highly abundant in the P. falciparum
genome; an average of one microsatellite locus is found per
2–3 kb of sequence. Microsatellite genotyping has revealed a
wide range of population structures in P. falciparum isolates
from four continents. Diversity and recombination rates are
highest in holoendemic Africa,49,50 lowest in the hypoendemic
areas of Central and South America,38,49,51 and intermediate
in southeast Asia49,52 and Papua New Guinea.53 Although the
observed recombination rate is related to transmission since it
is affected by the inbreeding rate (see below under “Transmis-
sion intensity and molecular patterns”), diversity itself does
not have a linear relationship with transmission, as it can be

affected by (among other factors) historical processes.3,54

Despite the fact that only 160 microsatellites have been found
in the genome of P. vivax,39 microsatellite-based studies have
provided valuable information on the genetic diversity of this
species. Genetic diversity of P. vivax was found to vary world-
wide, with highest levels in south and southeast Asia55 and
southwest Pacific,42,56 and lowest levels observed in South
America38,40,41 and South Korea.57

ICEMR has been working on standardizing different sets
of microsatellite loci to mitigate problems derived from these
complex patterns of evolution. Particularly important are the
efforts by Amazonia and southwest Pacific ICEMR sites to
standardize P. vivax microsatellite loci for use across sites.
ICEMR India and the non-Amazonia Latin America ICEMR
have developed their own sets of microsatellite loci that com-
plement those identified by others.
The high reproducibility of SNPs allows global comparisons

and exploration of patterns over long time scales.22,39 How-
ever, ascertainment bias is a problem in some contexts; SNPs
may be identified in a relatively small sample size, and may
be more likely to reflect common rather than rare alleles,58,59

affecting assumptions in some population genetic analyses
(e.g., inferences about parasite demographic history or selec-
tion). Thus, investigators should account for this bias when
analyzing their data in such contexts.
As with microsatellites, multiple ICEMR sites (southwest

Pacific, India, Amazonia, and Africa) are developing SNP typ-
ing protocols for P. falciparum and P. vivax to identify SNPs
that can distinguish between parasites from different geo-
graphic areas. These “region-specific SNPs” will provide a
means to predict the origins of outbreaks and to estimate the
contribution of imported infections to overall transmission
in areas where transmission has decreased to very low levels.
The southwest Pacific ICEMR is developing algorithms to
identify the most informative markers so that minimal numbers
of markers can be developed as a parasite “barcoding tool”;
other ICEMR sites are expected to follow suit. Regional molec-
ular barcodes also include elements of the global barcode44 so
that comparisons with regions outside the Pacific can be made.
The previously established term “molecular barcode” refers

to a small standardized set of SNPs used for genotyping.44 An
SNP barcode could permit tracking multi-locus genotypes in

TABLE 1
Genotyping methods used and prevalence of single-clone infections

ICEMR Genotyping method % Single-clone infections

Southeast Asia Pfmsp1, Pfmsp2, Pfglurp China–Myanmar border: Pf 54.3%*
Pf microsatellites Not yet determined

India Next-generation sequencing Not yet determined*
Southwest Pacific Pv microsatellites, Pvmsp1, Pfmsp1, Pfmsp2,

Pfs230, and Pfg377 using PCR fragment
sizing by capillary electrophoresis

Wosera, PNG: Pv 25% in N = 1,194; Pf 66%
in N = 1,868

West and central Africa Barcode based on 24 SNPs Thiès, Senegal: Pf > 90%
Gambissara, The Gambia: Pf 30–40%*
Dangassa, Mali: Pf 15–20%*

Amazonia Pf and Pv microsatellites Remansinho, Brazil: Pv 21.5%
Non-Amazonia Latin America Pf and Pv microsatellites Tierralta, Colombia: Pf 67.6% in N = 34; Pv 60.3%

in N = 262
Tumaco, Colombia: Pf 81.1% in N = 148; Pv 34.3%
in N = 67

Parasite species: Pf (P. falciparum), Pv (P. vivax); Loci: Pfmsp1 = Pf merozoite surface protein 1, fragment size polymorphism in the block 2 region within allele families; Pfmsp2 = Pf merozoite
surface protein 2, fragment size polymorphism within allele families; Pfglurp = Pf glutamate-rich protein, fragment size polymorphism; Pvmsp1 = Pv merozoite surface protein 1, fragment
size polymorphism; Pfs230 = Pf gametocyte specifically expressed gene, fragment size polymorphism; Pfg377 = Pf gene expressed in female gametocytes only, fragment size polymorphism;
PCR = polymerase chain reaction; PNG = Papua New Guinea; SNPs = single nucleotide polymorphisms.
*Work in progress.
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time and space provided the local transmission dynamics or
history yield stable SNPs.39,44,46 On the other hand, recombi-
nation between different parasite clones will break such
multi-locus genotypes. Many of the SNPs currently used in
P. falciparum have been selected from different chromosomes
so that demographic processes including origin of an infection
can be studied.44 Similar to other approaches, however, the
use of a SNP barcoding tool is challenged by a high propor-
tion of multi-clone infections3 and problems related to ascer-
tainment bias.58,59

HOWARE GENOTYPING METHODS APPLIED?

Individualization: does sample X match sample Y? In clini-
cal trials of antimalarial drugs, genotyping can help to distin-
guish between parasite recrudescence (i.e., the original parasites
remain detectable despite antimalarial treatment) and new
infections (i.e., blood-stage parasites detected after antimalar-
ial treatment are genetically distinct from those present before
treatment). A problem reported by ICEMR in hypoendemic
areas was that the circulating parasites may be closely related,
making it difficult to separate recrudescences from new infec-
tions.38,46,60 Furthermore, where the complexity of infection
(i.e., number of different clones being transmitted) is high,
relapse from hypnozoites (in the case of P. vivax) or recrudes-
cence of a previously undetected minority clone may lead to
a false conclusion.
Monitoring the infection dynamics of parasite clones over

time. A novel application developed by the southwest Pacific
ICEMR follows individual P. falciparum or P. vivax genotypes
over time to determine the number of new infections on a
background of preexisting parasite clones. This molecular
measure of the force of infection (defined as the number of
distinct parasite clones acquired over time) provides a marker
for individual exposure and transmission and thus is suitable
for measuring outcomes of interventions.27,28

Relatedness: are these individuals related? Determining
whether all infections had a single origin (outbreak) or multiple
origins is crucial for designing proper containment strategies,
and DNA analysis can help in this task.22 Furthermore, it is
essential in the case of urban malaria or reactive case detec-
tion where separating local from imported cases can dramati-
cally change the interpretation of the results. This interest in
tracking parasites in space and time is shared by a number
of the ICEMR sites. As an example, short-term spread of a
single clone or a few clones originating from a malaria out-
break was tracked in an area of declining malaria transmission
in rural Amazonia.40 Other studies in Central and South
America have also shown clonal or epidemic expansions of
malaria parasite populations.38,46

A common theme across the ICEMR settings is that the
number and type of loci needed for genotyping should be
tailored to the objective of the epidemiologic investigation in
the setting where such studies will be carried out. For example,
a global study of P. vivax microsatellites carried out by the
southwest Pacific and Amazonia ICEMR sites included
841 isolates from four continents collected in 1999–2008,
which were genotyped with 11 microsatellite markers.61 In the
context of their investigation, three loci were sufficient to
identify 90% of all haplotypes. However, studies conducted
by the non-Amazonia Latin America ICEMR in areas with
hypoendemic malaria have shown that multi-locus-linked

genotypes in both P. falciparum and P. vivax can be main-
tained over time, requiring a higher number of hypervariable
microsatellites to achieve the same discrimination.38 This obser-
vation suggests that in hypoendemic malaria areas, numerous
malaria cases may be infected by highly related parasites.38,46,60

Gene flow and population structure. Population structure
is the result of common processes in nature, including inbreed-
ing and geographic isolation.3,32,33,35,36,38,54,56 Such genetic
structures are detectable at time scales determined by the
locus-type mutation rates.38 Many ICEMR sites are standard-
izing different approaches to study population structure using
both SNPs and microsatellite loci. An important trend in the
ICEMR sites outside Africa is the comparison of population
structures in P. vivax and P. falciparum in the same endemic
settings. Whereas in some areas the two parasites show
similar patterns,38 in others there are clear differences.41,42

These differences are expected because population structures
will be affected by the local evolutionary history of each par-
asite species.35,54

A collaborative study of the geographic population struc-
ture of P. vivax performed by the southwest Pacific and
Amazonia ICEMR sites showed that parasite populations
from southeast Asia, where transmission was intermediate but
the migration of infected hosts was high, were more diverse
than populations sampled from South America.61 The interpre-
tation of these data reflected the fact that malaria was nearly
eliminated in South America in the 1960s. On the other hand,
studies carried out by the ICEMR sites from Asia and non-
Amazonia Latin America using complete mitochondrial
genome sequences have shown that the genetic diversity of
P. vivax in the Americas, as a region, may be comparable to
that in Asia and Oceania.34,35

Unlike Asia where human migration increases local genetic
diversity, the combined effects of the geographic structure and
the low incidence of P. vivax malaria in the Americas have
resulted in patterns of low local but high regional genetic
diversity where several populations are isolated from each
other. Thus, if only a handful of populations were sampled in
the Americas, one could observe low regional genetic diver-
sity. However, when aggregated, P. vivax in South America is
the result of a complex demographic history with limited gene
flow within and among some regions.32,35 This pattern offers
interesting perspectives in the context of malaria elimination
in the Americas. If smaller geographic areas that are relatively
isolated can be defined, these can be targeted by malaria pro-
grams as “elimination units” with limited risk of reintroduction.
Turning these observations into operationally relevant infor-
mation will be a matter of defining the spatial connectivity and
the factors leading to the observed gene flow at a time scale
usable for elimination. Also, low gene flow between areas
should facilitate containment in the event of the emergence
of drug resistance. The exploration of these patterns will be
accelerated by population genomics.20,21

Transmission intensity and molecular patterns. When
interventions lead to reduction in transmission, it is expected
that parasite population diversity, overall, will be reduced.
This process will yield signatures that can be captured with
molecular data (Table 2). There are two major approaches:
1) monitoring the reduction in MOI or the number of
multiclonal infections and 2) monitoring changes in genetic
diversity and in the parasite population structure (Table 2).
These indicators show how transmission affects the parasite
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genetic diversity in a given population. However, they do not
measure exactly the same processes.
MOI is the result of two ecologically distinct processes that

are hard to differentiate by genotyping only: coinfections
(two or more genotypes being transmitted simultaneously
by a mosquito) and superinfections (a patient acquiring mul-
tiple but independent infections). Both of these processes
relate to transmission intensity.62 Overall, the number of
coinfections/superinfections is expected to positively correlate
with transmission.3,49,62

Consistently, cross-sectional and longitudinal studies of
P. falciparum indicate that the prevalence of multiclonal
infections diminishes with a reduction in malaria transmis-
sion.3,49,50,62,63 This pattern seems to hold in all ICEMR sites
for P. falciparum, but an analysis across sites is still pending.
Despite this clear trend, the relationship between MOI and
transmission is not linear,3 as transmission is not homoge-
neous, but occurs in hot spots depending on microscale differ-
ences in mosquito biting rates.64 Furthermore, a similar trend
of reduction in MOI in low-transmission settings has not been
observed for P. vivax, where multi-clone infections remain
common even in low-transmission areas (Table 1).37,38,55,56

This could be the result of hypnozoites from prior infections
accumulating in the liver and thus causing multiple relapses of
distinct genotypes.37,60 More field studies are needed to
understand the relatively high MOI in P. vivax, both in areas
of intense transmission37,56 and in those approaching elimina-
tion.38,55 It is worth noting that the genotyping method used
may affect estimates of MOI (see Table 1), so some standardi-
zation in methodologies and study design (e.g., age range) is
required to compare results across sites/studies.
The second approach, evaluating changes in the parasite

population structure and reduction in the parasite genetic
diversity, focuses on looking for patterns consistent with an
increase in the effect of genetic drift in the parasite popula-
tion.38,39,63 This will lead to changes in allele frequencies and
the expectation that genetic variation will be lost in response
to declining transmission. More between-population divergence
is expected to occur, leading to fragmented population struc-
tures. It is important to realize that the relationship between
genetic variation and malaria transmission intensity is not lin-
ear simply because many patients could be infected by either
related (e.g., as a result of inbreeding) or distinct parasites
(see below in this section and Table 2).

As stated earlier, the proportion of infections comprised
of a single genotype (monoclonal) is expected to rise when
transmission decreases, so inbreeding is likely to increase.3

In areas with primarily single-clone infections (usually areas
with unstable or low transmission), multi-locus genotypes are
expected to persist in time and space. Thus, the number
of infections by identical non-segregating genotypes and, as
a consequence, linkage disequilibrium, is expected to
increase.38,39,49,63,65 Indeed, it has been observed that wherever
a dramatic increase in transmission occurred after a sustained
decrease in malaria incidence, many infections are caused by
identical or highly related parasites (a so-called clonal expan-
sion).3,38 This approach (estimating linkage disequilibrium and
frequency of infections with identical non-segregating geno-
types), however, does not take into account rates and mecha-
nisms of spontaneous mutations during an infection, which
remain understudied and a high priority area of investigation.
Furthermore, these investigations are difficult to perform in
areas where multi-clone infections prevail.3,37,49,62

Estimates of genetic diversity may show even more complex
patterns since they depend on the effective population size
(see below in this section) and the mutation rate of the loci
under study.55,66 One scenario is that, as a result of a reduction
in transmission, many malaria cases could be caused by related
(inbred) parasite lineages. However, changes in genetic diver-
sity could be almost undetectable if there are a few geneti-
cally divergent inbred lineages coexisting in an area. These
types of dynamics could explain, in part, the observed high
genetic diversity across a broad transmission spectrum in both
P. falciparum and P. vivax observed throughout the ICEMR
sites and elsewhere.38,39,55,66 Indeed, heterozygosity seems to
be less affected by population bottlenecks of short duration
than by the number of alleles at a given locus.67 Evaluating
the number of alleles is imprecise unless sample sizes are
large, so it has not been widely used by the ICEMR sites.
Finally, some studies have explored estimating changes in

the parasite effective population size, Ne.
44,55,63,68 This more

abstract concept requires some discussion. Ne is not equiva-
lent to heterozygosity but rather predicts loss in heterozygos-
ity. It relates to the uneven reproductive success of parasite
lineages.68 Importantly, Ne has the properties of the harmonic
mean, so its value is affected by the smallest population size.68

The Ne concept has important implications in malaria epide-
miology if we consider that changes in genetic diversity in a

TABLE 2
Molecular criteria used to measure the expected parasite population decline as a result of a reduction in malaria transmission

Metric Expectation Limitations

Prevalence of multi-clone infections Decreases with declining transmission Sensitive to the resolution of genotyping method
and loci used

Linkage disequilibrium Reflects an increasing inbreeding rate,
and increases with declining transmission

Cannot be measured in multi-clone infections
and depends on variation in genotyped loci

Prevalence of infections with identical
or related nonrecombinant genotypes

Reflects an increasing inbreeding rate,
and increases with declining transmission

Not suitable in settings with high prevalence
of multi-clone infections

Number of alleles (genetic diversity) Reflects reduction in effective population size,
and decreases with declining transmission

Sensitive to sampling bias (e.g., low-frequency
alleles require unrealistic sampling efforts)

Heterozygosity (genetic diversity) Reflects reduction in effective population size,
and decreases with declining transmission

Requires a sustained decrease in transmission
to decline

Effective population size (Ne) Decreases with declining transmission Sensitive to demographic processes (e.g., migration)
and to the method used to estimate it. Declines
after a sustained reduction in the parasite
population below the minimum naturally
occurring population size
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set of loci are observable at a time scale that is relative to
their mutation rates. For example, after a reduction in Ne that
might occur after a sustained intervention, heterozygosity
would be expected to recover faster at microsatellite loci than
SNPs simply because the former have a higher mutation rate.
Such a difference can be informative in terms of evaluating
the long-term effect of interventions.
Although a reduction in the effective population size is

expected if transmission is reduced, many factors could make
such an outcome difficult to observe. First, there are different
ways to measure Ne, each one measuring different aspects
(e.g., number of parents or differences in the number of
progeny).68 Second, the relationship between Ne and malaria
incidence is likely not linear as has been shown in other
pathogens,69 for example, a high malaria incidence in a com-
munity with closely related parasites and a high variance in
the number of new cases transmitted from infected individuals
could still yield a parasite population with low Ne. Third, Ne

estimates might be inflated by migration or population sub-
structure.63,68 Finally, since Ne has the property of the har-
monic mean,68 the number of infections that sustains the
parasite population between transmission seasons may have a
greater impact on Ne than the total number of cases in a given
year or the number of cases during the high-transmission sea-
son.63 Thus, epidemiologically relevant changes in transmis-
sion may not be detectable in terms of a reduction in Ne.

CONCLUSIONS

The use of technologies that capture genetic information
from the parasite, vector, and patients permits characterization
of malaria transmission in ways that were unthinkable 10 years
ago. That intra-host dynamics characterized by a combination
of RNA- and DNA-based measurements illustrates major
advances in malaria epidemiology from incorporating molec-
ular tools. The ICEMR sites are currently taking advantage
of such methods to better characterize malaria transmission
across study sites with divergent epidemiologic characteris-
tics. How to translate complex population genetic data into
epidemiologically relevant information on malaria transmission
is an ongoing discussion in the ICEMR network. Molecular
methods provide information on malaria prevalence/incidence
that considers subclinical/asymptomatic infections and better
characterizes gametocytemia. Population genetic parameters
will likely provide useful information if they are interpreted
properly; nevertheless, population genetic approaches require
further validation by evidence gathered by all ICEMR sites
and comparisons worldwide.
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