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Abstract

This paper builds on a recently developed immersogeometric fluid–structure interaction (FSI) 

methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the 

proposed framework in the areas of geometry design and constitutive modeling. With these 

enhancements, BHV FSI simulations may be performed with greater levels of automation, 

robustness and physical realism. In addition, the paper presents a comparison between FSI 

analysis and standalone structural dynamics simulation driven by prescribed transvalvular 

pressure, the latter being a more common modeling choice for this class of problems. The FSI 

computation achieved better physiological realism in predicting the valve leaflet deformation than 

its standalone structural dynamics counterpart.
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1 Introduction

Heart valves serve to ensure unidirectional flow of blood through the circulatory systems of 

humans and many animals. Heart valves consist of thin, flexible leaflets that open and close 

passively, in response to blood flow and the movements of the attached cardiac structures. 

Primarily in aortic heart valves, the leaflets may become diseased and, in some cases, valves 

must be replaced by prostheses. Hundreds of thousands of such devices are implanted in 

patients every year [1, 2].

The most popular class of prostheses are bioprosthetic heart valves (BHVs). BHVs imitate 

the structure of the native valves, consisting of flexible leaflets fabricated from chemically-

treated soft tissues. BHVs do not induce blood damage that can occur due to prostheses 

composed of rigid mechanical parts [2–4]. However, BHVs are less durable than their 

mechanical counterparts and require replacement, typically after 10–15 years, due to 

calcification and structural damage [5]. In spite of this long-standing problem, BHV material 

technologies have not changed since their introduction more than 30 years ago.

Improved durability remains an important clinical goal and represents a unique 

cardiovascular engineering challenge, resulting from the extreme valvular mechanical 

demands. Yet, current BHV assessment relies exclusively on device-level evaluations, 

which are confounded by simultaneous and highly coupled biomaterial mechanical fatigue, 

valve design, hemodynamics, and calcification. Thus, despite decades of clinical BHV usage 

and growing popularity, there exists no acceptable method for simulating BHV durability in 

any design context. There is thus a profound need for the development of novel simulation 

technologies that combine state-of-the-art fluid–structure interaction (FSI) analysis with 

novel constitutive models of BHV biomaterial responses, to simulate long-term cyclic 

loading [6, 7].
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Computational modeling of continuum mechanics has proven tremendously beneficial to the 

design process of many other products, but BHVs present unique challenges for 

computational analysis, and cannot yet be conveniently simulated using “off-the-shelf” 

software. The effect of hydrostatic forcing on a closed BHV may be modeled as a prescribed 

pressure load and simulated using standard FEM (see, e.g., [8–10]), but such models cannot 

capture the transient response of an opening valve or the so-called “water hammer effect” in 

a closing valve. Both of these phenomena likely contribute to long-term structural fatigue, 

but neither can be modeled without accounting for the surrounding hemodynamics. A 

complete mechanical model of a BHV must therefore include FSI.

In [11, 12], we developed a new numerical method that, in the tradition of immersed 

boundary methods [13–16], allows the structure discretization to move independently of the 

background fluid mesh. In particular, we focused on directly capturing design geometries in 

the unfitted analysis mesh and identified our technique with the concept of 

immersogeometric analysis. The methods that we developed in [11, 12] made beneficial use 

of isogeometric analysis (IGA) [17, 18] to discretize both the structural and fluid mechanics 

subproblems involved in the FSI analysis of BHVs. In this paper, we further advance our 

immersogeometric FSI methodology for BHVs by focusing on automating the IGA model 

design and improving constitutive modeling of the chemically-treated tissues forming the 

BHV leaflets.

Despite recent progress, several challenges remain in the effective use of IGA to improve 

the engineering design process. A major difficulty toward this end remains automatic (or 

semi-automatic) construction of analysis-suitable IGA models. In many cases, intimate 

familiarity with computer-aided design (CAD) technology and advanced programming skills 

are required to create high-quality IGA geometries and meshes. In a recent work [19] the 

authors introduced an interactive geometry modeling and parametric design platform that 

streamlines the engineering design process by hiding the complex CAD functions in the 

background through generative algorithms, and letting the user control the design through 

key parameters. In the present work, we apply this design-through-analysis framework to 

BHV analysis.

We further enhance the realism of the BHV FSI by extending the isogeometric rotation-free 

Kirchhoff–Love thin shell formulation [20, 21] used in the prior work to include the soft-

tissue constitutive modeling framework developed in [22]. An important feature of the 

framework in [22] is that it can accommodate arbitrary hyperelastic constitutive models, 

which adds a great deal of flexibility to the BHV FSI methodology developed in this work.

The remainder of this paper is structured as follows. Section 2 describes our BHV FSI 

modeling framework and methods. In Section 3, we construct a discrete model of a BHV 

immersed in the lumen of a flexible artery and apply the methodology of Section 2 to 

perform a BHV FSI simulation. We compare the FSI results with the results of a standalone 

structural dynamics BHV simulation driven by prescribed transvalvular pressure, considered 

to be “state-of-the-art” in the biomechanics community [9]. Section 4 draws conclusions.
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2 BHV FSI modeling framework and methods

In this section we present the main constituents of the recently developed FSI modeling 

framework for heart valves, focusing on the novel contribution of the present article. We 

begin by providing a discussion of the recently developed parametric design-through-

analysis platform for IGA [19] and its use in the modeling of heart valve geometry. We then 

summarize the shell formulation proposed in [22], which we use to incorporate 

incompressible Fung-type hyperelastic material behavior into our BHV simulations. We 

then provide an overview of the immersogeometric FSI [11] procedures employed to 

simulate this challenging class of problems.

2.1 Parametric modeling of heart valve geometry

In [19], an interactive geometry modeling and parametric design platform was proposed to 

help design engineers and analysts make effective use of IGA. Several Rhinoceros (Rhino) 

[23] “plug-ins”, with a user-friendly interface, were created to take input design parameters, 

generate parameterized surface and/or volumetric models, perform computations, and 

visualize the solution fields, all within the same CAD program. An important aspect of the 

proposed platform is the use of generative algorithms for IGA model creation and 

visualization. In this work, we make use of the developed platform to automate the geometry 

design of BHV models for use in FSI analysis.

The developments in [19] were based on Rhino CAD software, which gives designers a 

variety of functions that are required to build complex, multi-patch NURBS surfaces [25]. 

Recently, additional functionality was added in Rhino to create and manipulate T-spline 

surfaces [24, 26]. This is an important enhancement that allows one to move away from a 

fairly restrictive NURBS-patch-based geometry design to a completely unstructured, 

watertight surface definition respecting all the constraints imposed by analysis [27, 28]. 

Rhino also features a graphic programming interface called Grasshopper [29] suitable for 

parametric design, and utilizes open-source software development kits (SDK) [30] for plug-

in development. Furthermore, Rhino is relatively transparent as compared to other CAD 

software in that it provides the user with the ability to interact with the system through the 

plug-in commands. All of these features are well aligned with the needs of analysis-suitable 

geometry design for BHVs, and are employed in the present work.

Fig. 1 shows a snapshot of the Rhino CAD modeling software interface, with the T-spline 

BHV model used in the computations of the present paper. This BHV leaflet geometry is 

based on a 23-mm design by Edwards Life-sciences [8, 31]. The NURBS version of this 

model was analyzed earlier in [11, 12]. In the present case, the leaflets of the BHV are 

modeled using three cubic T-spline surfaces, as shown in Fig. 1. The use of unstructured T-

splines enables local refinement and coarsening [32] and avoids the small, degenerated 

NURBS elements near the commissure points used in [11, 12]. To improve the realism of 

the simulation, we include the metal stent in the BHV model. Although this complicates the 

geometry, it presents no difficulty for the design platform employed in this work to generate 

a single watertight surface.
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Using Grasshopper as a visual programming tool, the program that creates an analysis-

suitable geometry design is written in terms of “components” with pre-defined or user-

defined functionalities, and “wire connections” between the components that serve as 

conduits of input and output data. As a result, using an intuitive arrangement of components 

and connections one can rapidly generate an analysis model and establish parametric control 

over the design. A Grasshopper program for the geometry design of the BHV leaflet 

employed in this work is shown in Fig. 2. The visual program executes the following 

geometry construction steps (see Fig. 3 for a visual illustration): Parametric input is used to 

construct NURBS curves, which are the bounding curves for the NURBS surface patches 

that define the valve leaflet geometry. The resulting multi-patch NURBS geometry is then 

re-parameterized to create a single T-spline surface geometry. Following this workflow, new 

analysis-suitable geometries can be easily and efficiently generated using different sets of 

input design parameters.

Remark 1: Note that the stent can be generated using the same parametric geometry 

modeling approach. It is not included in Figs. 2 and 3 for the sake of clarity and simplicity 

of presentation.

2.2 Shell structural formulation

The leaflet structure is modeled as a hyperelastic thin shell with isogeometric discretization 

as presented in Kiendl et al. [22]. Due to the Kirchhoff–Love hypothesis of normal cross 

sections, a point x in the shell continuum can be described by a point r on the midsurface 

and a normal vector a3 to the midsurface as

(1)

where ξ1, ξ2 are the surface coordinates, ξ3 ∈ [−hth/2, hth/2] is the thickness coordinate, and 

hth is the shell thickness. Covariant base vectors and metric coefficients are defined by gi = 

xi and gi j = gi · gj, respectively, where the notation (·)i = ∂(·)/∂ξi is used for partial 

derivatives. Furthermore, we adopt the convention that Latin indices take on values {1, 2, 3} 

while Greek indices take on values {1, 2}. Contravariant base vectors gi are defined by the 

Kronecker delta property  and contravariant metric coefficients can be obtained by 

the inverse matrix [gi j] = [gi j]−1.

For the shell model, only in-plane components of gi j are considered and terms that appear 

quadratic in ξ3 are neglected, such that

(2)

In the above, aαβ and bαβ are the first and second fundamental form of the midsurface, 

respectively, obtained as aαβ = aα · aβ and bαβ = aα,β · a3, where

1Maximum in-plane principal Green-Lagrange strain, the largest eigenvalue of E.
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(3)

(4)

are the tangent base vectors and unit normal vector of the midsurface, respectively.

The above equations are valid for both deformed and un-deformed configurations, where 

variables of the latter will be indicated by a symbol (·˚), for example, x˚, g˚i, g˚i j, etc. The 

Jacobian determinant of the mapping from the undeformed to the deformed configuration is 

given by

(5)

Furthermore, we introduce the in-plane Jacobian determinant Jo as

(6)

The weak form of the shell structural formulation is stated as follows:

(7)

where y is the displacement of the shell midsurface, ∂(·)/∂t|X is the time derivative holding 

the material coordinates X fixed, ρ is the density, S is the second Piola–Kirchhoff stress, δE 
is the variation of the Green–Lagrange strain corresponding to a displacement variation w, f 
is a prescribed body force, hnet = h(ξ3 = −hth/2) + h(ξ3 = hth/2) is the total traction 

contribution from the two sides of the shell, and Γ0 and Γt are the shell midsurface in the 

reference and deformed configurations, respectively. The Green–Lagrange strain is defined 

as

(8)

where C is the left Cauchy–Green deformation tensor and I the identity tensor. Only in-

plane strains are computed, which are obtained as

(9)

The second Piola–Kirchhoff stress is obtained from a hyper-elastic strain-energy density 

function ψ as
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(10)

Linearizing Eq. (10), we obtain the tangent material tensor

(11)

In this paper, we assume an incompressible material, where the elastic strain energy function 

ψel is classically augmented by a constraint term enforcing incompressibility, i.e., J = 1, via 

a Lagrange multiplier p, which can be identified as the hydrostatic pressure [33]:

(12)

For shell analysis, we can use the plane stress condition, S33 = 0, in order to analytically 

determine and eliminate the Lagrangian multiplier p. Furthermore, we eliminate the 

transverse normal strains E33 from the equations by static condensation of the tangent 

material tensor. The detailed derivations can be found in [22]. Eventually, we obtain the 

following equations for the shell’s stress and material tangent tensors:

(13)

(14)

With Eqs. (13) and (14), arbitrary 3D constitutive models can be used for shell analysis 

directly. Given the first and second derivatives of the elastic strain energy function, the 

incompressibility and plane stress constraints, as well as static condensation of the thickness 

stretch, are all included by the additional terms in Eqs. (13) and (14). Recalling Eq. (2), it 

can be seen that the whole formulation can be completely described in terms of the first and 

second fundamental forms of the shell midsurface, and using only displacement degrees of 

freedom.

To discretize the shell equations we use IGA based on T-splines, which have the necessary 

continuity properties. The details of constructing smooth T-spline basis functions can be 

hidden from the analysis code through the use of Bézier extraction [34]. The extraction 

operators specifying the relationship between the T-spline basis functions and Bernstein 

polynomial basis on each Bézier element can be generated automatically by the Autodesk T-

Splines Plug-in for Rhino [24, 26]. The mesh of Bézier elements for our T-spline BHV 

model is shown in Fig. 4.
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2.3 Immersogeometric FSI

In this section we summarize the main constituents of our framework for immersogeometric 

FSI, as it applies to the simulation of BHVs. For mathematical and implementation details 

the reader is referred to [11, 12, 35]. Our immersogeometric approach to BHV FSI analysis 

combines the following computational technologies into a single framework:

• The blood flow in a deforming artery is governed by the Navier–Stokes equations 

of incompressible flows posed on a moving domain. The domain motion is handled 

using the Arbitrary Lagrangian–Eulerian (ALE) formulation [36, 37], which is a 

widely used approach for vascular blood flow applications [38–44]. For an 

overview of the ALE method in cardiovascular fluid mechanics, see [45, 46]. These 

two references also include an overview of the space–time approach to moving 

domains [47–51], which has also been applied to a good number of cardiovascular 

fluid mechanics computations, with the most recent ones reported in [52–55].

• The blood flow domain follows the motion of the deformable artery wall, which is 

governed by equations of large-deformation elastodynamics written in the 

Lagrangian frame [56]. In the present work, the discretization between blood flow 

and artery wall is assumed to be conforming, and is handled using a monolithic FSI 

formulation described in detail in [57].

• The discretization of the Navier–Stokes equations makes use of a combination of 

NURBS-based IGA and ALE–VMS [58–60]. The ALE–VMS formulation may be 

interpreted both as a stabilized method [47, 61, 62] and as a large-eddy simulation 

(LES) turbulence model [47, 61–67]. The discretization of the solid arterial wall 

also makes use of trivariate NURBS-based IGA.

• BHV leaflets are modeled as rotation-free hyperelastic Kirchhoff–Love shell 

structures (see [22] and the previous section) and discretized using T-splines. In the 

FSI framework, they are immersed into a moving blood-flow domain. The 

immersed FSI problem is formulated using an augmented Lagrangian approach for 

FSI, which was originally proposed in [68] to handle boundary-fitted mesh 

computations with nonmatching fluid–structure interface discretizations. It was 

found in [11] that the augmented Lagrangian framework naturally extends to non-

boundary- fitted (i.e., immersed) FSI problems, but with the following 

modifications. The tangential component of the Lagrange multiplier λ is formally 

eliminated from the formulation, resulting in weak enforcement of noslip 

conditions at the fluid–structure interface [68]. The normal component of the 

Lagrange multiplier λ = λ · n is retained in the formulation in order to achieve 

better satisfaction of no-penetration boundary conditions at the fluid–structure 

interface.

• The Lagrange multiplier field is discretized by collocating the normal-direction 

kinematic constraint at quadrature points of the fluid–structure interface and 

involves adding a scalar unknown at each one of these quadrature points. In the 

evaluations of integrals involved in the augmented Lagrangian formulation these 

multiplier unknowns are treated as point values of a function defined at the fluid–
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structure interface. In the computations, λ is treated in a semi-implicit fashion. 

Namely, the penalty terms in the augmented Lagrangian formulation are treated 

implicitly, while the resulting penalty force is used to update λ explicitly in each 

time step.

• Contact between BHV leaflets is an essential feature of a functioning heart valve. 

During the closing stage, the BHV leaflets contact one another to prevent leakage 

of blood back into the left ventricle. In the context of immersed FSI approaches, 

pre-existing contact methods and algorithms (see, e.g., [69, 70]) may be 

incorporated directly into the framework without any modification or concern for 

fluid-mechanics mesh quality. In the present work, we adopt a penalty-based 

approach for sliding contact and impose contact conditions at quadrature points of 

the shell structure. The use of smooth basis functions improves the performance of 

contact between valve leaflets (see, e.g., [71]).

• BHV simulations involve flow reversal at outflow boundaries, which, unless 

handled appropriately, often leads to divergence in the simulations. In order to 

preclude this backflow divergence, an outflow stabilization method originally 

proposed in [72] and further studied in [73] is incorporated into the FSI framework.

• We use a novel semi-implicit time integration procedure:

1. Solve implicitly for the fluid, solid structure, mesh displacement, and shell 

structure unknowns, holding the Lagrange multiplier λ fixed at its current 

value. Note that the fluid and shell structure are coupled in this subproblem 

due to the presence of penalty terms in the augmented Lagrangian 

framework. The implicit system is formulated based on the Generalized-α 

technique [57, 74, 75].

2. Update the Lagrange multiplier λ by adding the normal component of 

penalty forces coming from the fluid and structure solutions from Stage 1. In 

this work, we stabilize this update following reference [35], scaling the 

updated multiplier by 1/(1+r), where r is a nonnegative, dimensionless 

constant. As detailed in [11], the above semi-implicit solution procedure is 

algorithmically equivalent to fully implicit integration of a “stiff” 

differential-equation system approximating the constrained differential–

algebraic system. The stiffness increases as the time step shrinks, but the 

conditioning of Stage 1 remains unaffected. A recent reference [35] showed 

that a stiff differential equation system is energetically stable in a simplified 

model problem, even when r = 0. To solve the nonlinear coupled problem in 

Stage 1, a combination of the quasi-direct and block-iterative FSI coupling 

strategies is adopted (see [76–79]). The complete algorithm is given in [12].

Remark 2: Our framework falls under the umbrella of the Fluid–Solid Interface-Tracking/

Interface-Capturing Technique (FSITICT) [80]. The FSITICT targets FSI problems where 

interfaces that are possible to track are tracked, and those too challenging to track are 

captured. The FSITICT was introduced as an FSI version of the Mixed Interface-Tracking/

Interface-Capturing Technique (MITICT) [81]. The MITICT was successfully tested in 2D 

Hsu et al. Page 9

Comput Mech. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computations with solid circles and free surfaces [82, 83], and in 3D computation of ship 

hydrodynamics [84]. The FSITICT was recently employed in [85] to compute several 2D 

FSI benchmark problems.

Remark 3: On the fluid mechanics domain interior, the mesh motion is obtained by solving 

a sequence of linear elastostatic problems subject to the displacement boundary conditions 

coming from the artery wall. In the formulation of the elastostatics problems, the Jacobian 

stiffening technique is employed to protect the boundary-layer mesh quality [86–89].

Remark 4: It was shown in [90–93] that imposing Dirichlet boundary conditions weakly 

allows the flow to slip on the solid surface, which, in turn, relaxes the boundary-layer 

resolution requirements to achieve the desired solution accuracy. In the non-boundary-fitted 

FSI, the fluid mesh is arbitrarily cut by the structural boundary, leaving a boundary-layer 

discretization of inferior quality compared to the boundary-fitted case. As a result, weakly 

enforced no-slip conditions, which naturally arise in the augmented Lagrangian framework, 

simultaneously lead to imposition of the physical kinematic constraints at the fluid–structure 

interface, and, as an added benefit, enhance the accuracy of the fluid mechanics solution 

near the interface.

Remark 5: During the closing stage, the BHV leaflets contact one another to block reversed 

flow to the left ventricle. As a result, the contact formulation employed must be such that no 

gap is allowed between the leaflets. This, in turn, leads to a topology change in the problem, 

and presents one of the main reasons in the literature for developing non-boundary-fitted FSI 

techniques for the present application. Reference [53] recently demonstrated how space–

time FEM, in combination with appropriately defined master–slave relationships between 

the mesh nodes in the fluid mechanics domain, can deliver solutions for cases with topology 

change without resorting to immersed techniques. The space–time with topology change 

(ST-TC) technique was successfully applied in the CFD simulation of an artificial heart 

valve with prescribed leaflet motion in [55].

3 BHV simulations

We compute pressure-driven structural dynamics and FSI of the BHV shown in Fig. 4. In 

particular, we consider a BHV replacing an aortic heart valve, which regulates flow between 

the left ventricle of the heart and the aorta. During systole, when the heart contracts, the 

valve permits ejection of oxygenated blood from the left ventricle into the aorta, and, during 

diastole, as the heart relaxes, a correctly functioning aortic valve prohibits regurgitation of 

blood back into the expanding ventricle. Sections 3.1 and 3.2 describe the modeling of the 

BHV and the surrounding artery and lumen, while Section 3.3 focuses on the comparison of 

the structural dynamics and FSI simulation results.

3.1 BHV constitutive model and boundary conditions

Biological tissues are favored in the construction of BHVs due to their unique mechanical 

properties. The most important of these is that they remain compliant at low strains but 

stiffen dramatically when stretched, allowing for ease of motion without sacrificing 

durability. The underlying structural mechanism is the presence of collagen fibers which are 

Hsu et al. Page 10

Comput Mech. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highly undulated in unloaded tissue. These fibers provide only small bending stiffnesses in 

unloaded tissue, but their relatively larger tensile stiffness can be recruited when they are 

straightened under strain. One of the earliest and most widely used models uses an 

exponential function of strain to describe the stiffening of tissues under tensile loading [94–

96]. It is widely referred to as Fung models. For smaller bending strains, such as those in an 

open aortic BHV during systole, the dominant contribution to material stiffness is the 

extracellular matrix (ECM), which supports the network of collagen fibers. Reference [97] 

advocates modeling ECM as an incompressible neo-Hookean contribution to the strain-

energy density functional. In this work, we combine an isotropic Fung model of collagen 

fiber stiffness with a neo-Hookean model of cross-linked ground matrix stiffness to obtain 

the following strain-energy density functional:

(15)

where c0, c1, and c2 are material parameters. This model is combined with the 

incompressibility constraint as in Eq. (12). Note that while Eq. (15) is a simplified isotropic 

approximation to true anisotropic leaflet behaviors, it captures the important exponential 

nature of the BHV soft tissue behavior.

The mass density of the leaflets is set to 1.0 g/cm3. The material parameters are set to c0 = 

1.0 × 106 dyn/cm2, c1 = 2.0 × 105 dyn/cm2, and c2 = 100. The values of c1 and c2 provide 

tensile stiffnesses that are generally comparable to those of the more complicated pericardial 

BHV leaflet model considered in [8]. The ECM modulus c0 is selected to provide a small-

strain bending stiffness similar to that of glutaraldehyde-treated bovine pericardium, as 

measured by the three-point bending tests reported in [98]. The hyperelastic thin shell 

analysis framework of Section 2.2 requires the following derivatives of the strain energy 

functional in Eqs. (13) and (14):

(16)

(17)

The BHV model employs the T-spline geometry constructed in Section 2.1. The T-spline 

mesh comprises 484 and 882 Bézier elements for each leaflet and the stent, respectively, and 

a total of 2,301 T-spline control points. The stent is assumed rigid, and leaflet control points 

highlighted in Fig. 4 are restrained from moving. This clamps the attached edges of the 

leaflets to the rigid stent. (The stent is, for all practical purposes, rigid since it is supported 

by a metal frame, which is orders of magnitude stiffer than the soft tissue of the BHV 

leaflets.) The leaflet thickness is set to a uniform value of 0.0386 cm.

Remark 6: The use of pinned rather than clamped boundary conditions is common in the 

structural analysis of BHVs reported previously [9, 31, 99–101]. However, the leaflets are, 
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in fact, physically clamped at the attachment edge in most stented BHVs (see, e.g., [102, 

103]). As shown later in the paper, using clamped boundary conditions, the computed fully-

open configuration of the leaflets is closer to the experimental measurements of pericardial 

BHV deformations [104–106] than results computed using pinned boundary conditions in 

[11, 12].

To elucidate the physical significance of the Fung-type material model given by Eq. (15) in 

the context of BHV design, we compare its behavior to that of the classical St. Venant–

Kirchhoff material, which assumes a linear stress–strain relationship and can not capture the 

exponential stiffening behavior of soft tissues. Fig. 5 compares MIPE1 in pressure-loaded, 

fully-closed configurations of a valve modeled using the Fung-type material described above 

and a valve of the same geometry modeled using an isotropic St. Venant–Kirchhoff material 

with Young’s modulus E = 1.1 × 107 dyn/cm2 and Poisson’s ratio ν = 0.495. The value of E 

is chosen such that the overall deformations are visually similar. The results show that the 

peak strain in the St. Venant–Kirchhoff material is much larger. The exponential term in the 

Fung-type energy functional ensures that regions of concentrated strain are energetically 

unfavorable, which has the effect of distributing strains more evenly through the leaflets.

3.2 Model of the artery and lumen

We model the artery as a 16 cm long elastic cylindrical tube with a three-lobed dilation near 

the BHV, as shown in Fig. 6. This dilation corresponds to the aortic sinus, which is known 

to play an important role in heart valve dynamics [107]. The cylindrical portion of the artery 

has an inside diameter of 2.6 cm and a wall thickness of 0.15 cm. The outflow boundary is 

11 cm downstream of the valve, located at the right end of the channel, based on the 

orientation of Fig. 6. The inflow is located 5 cm upstream, at the left end of the channel. The 

designations of inflow and outflow are based on the prevailing flow direction during systole. 

In general, fluid may move in both directions and there is typically some regurgitation 

during diastole.

The arterial geometry is constructed using trivariate quadratic NURBS, allowing us to 

represent the circular portions exactly. We use a multi-patch design to avoid having a 

singularity at the center of the cylindrical sections (see Fig. 7). Basis functions are made C0-

continuous by repeated knot insertion at the fluid–solid interface, to capture the continuous 

but non-smooth velocity field across this jump in material type. The solid subdomain 

corresponds to the elastic aortic wall, while the fluid subdomain is the enclosed lumen. The 

mesh of the lumen and aortic wall consists of 102,960 and 12,480 elements, respectively. 

Mesh refinement is focused near the valve and sinus, as shown in Fig. 6. Fig. 7 shows that 

the mesh is clustered toward the wall to better capture the boundary layer solution in those 

regions.

The arterial wall is modeled as a neo-Hookean material with dilatational penalty (see, e.g. 

[57, 108]), where the shear and bulk modulii of the model are selected to produce a Young’s 

modulus of 1.0×107 dyn/cm2 and Poisson’s ratio of 0.45 in the small-strain limit. The 

density of the arterial wall is 1.0 g/cm3. Mass-proportional damping is added to model the 

interaction of the artery with surrounding tissue and interstitial fluid, with the damping 

coefficient set to 1.0 × 104 s−1. The fluid density and viscosity in the lumen are set to ρ1 = 
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1.0 g/cm3 and μ = 3.0 × 10−2 g/(cm s), respectively, which model the physical properties of 

human blood [109, 110].

The inlet and outlet of the artery are free to slide in their cut planes, but constrained not to 

move in the orthogonal direction (see [42] for details). The outer wall of the artery has a 

zero-traction boundary condition. The BHV stent is surgically sutured to the aortic annulus 

at the suture ring. Since the stent is assumed not to move in this work, we apply 

homogeneous Dirichlet conditions to any control point of the solid portion of the artery 

mesh whose corresponding basis function’s support intersects the stationary stent. Fig. 8 

shows geometrically how the base ring intersects with the solid wall. The size of the ring can 

influence the potential space for blood flow and thus is important to be included in the FSI 

simulation. The stent also properly seals the gap in the fluid domain between the attached 

edges of the leaflets and the aortic wall.

3.3 Computations and results

This section sets up and compares the results of simulations of BHV function that are based 

on standalone structural dynamics and FSI.

3.3.1 Details of the structural dynamics simulation—In the structural dynamics 

computation, we model the transvalvular pressure (i.e., pressure difference between left 

ventricle and aorta) with the traction −P(t)n, where P(t) is the pressure difference at time t 

shown in Fig. 9, and n is the surface normal pointing from the aortic to the ventricular side 

of each leaflet. The transvalvular pressure signal is periodic with a period 0.86 s. As in the 

computations of [11,31], we use damping to model the viscous and inertial resistance of the 

surrounding fluid. We apply this damping as a traction −cdu, where u is the velocity of the 

shell midsurface and cd = 80 g/(cm2 s). This value of cd ensures that the valve opens at a 

physiologically reasonable time scale when the given pressure is applied. The time step size 

for the dynamic simulation is Δt = 1.0 × 10−4 s.

3.3.2 Details of the FSI simulation—In the FSI simulation, we apply the 

physiologically-realistic left ventricular pressure time history from [111] (also plotted in Fig. 

10) as a traction boundary condition at the inflow. The applied pressure signal is periodic 

with a period 0.86 s. The traction −(p0 + RQ)n is applied at the outflow, where p0 is a 

constant physiological pressure level, n is the outward-facing normal of the fluid domain, R 

> 0 is a resistance constant, and Q is the volumetric flow rate through the outflow. In the 

present computation, we set p0 = 80 mmHg and R = 70 (dyn s)/cm5. These values ensure a 

realistic transvalvular pressure difference of 80 mmHg across a closed valve, when Q = 0, 

while permitting a reasonable flow rate during systole. We use backflow stabilization from 

[73], with β = 0.5, at both inlet and outlet surfaces. The normal and tangential velocity 

penalization parameters used in our FSI formulation are  and 

. As in our earlier studies [11,12], we set the τM scaling factor to 

sshell = 106 to obtain acceptable mass conservation near the immersed structure. As in the 

structural dynamics simulation, the time step size is Δt = 1.0 × 10−4 s. The stabilization 

parameter of the semiimplicit time integration scheme is r = 10−5. This follows our 

recommendation from [35] to select r ≪ 1.
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Remark 7: As r → 0, the semi-implicit time integration of the Lagrange multiplier field 

may be interpreted as a fully-implicit fluid–structure displacement penalization (cf. [11, 

Section 4.2.1]), with stiffness . We may roughly estimate the physical 

significance of the time step splitting error incurred through semi-implicit integration by 

considering the fluid displacement through the valve in static equilibrium. The fluid would 

penetrate through the closed valve by a distance of only ΔP/(τNOR/Δt) = 0.005 cm for 

diastolic pressure differences on the order of ΔP = 105 dyn/cm2. This is effectively within 

modeling error, considering that the penetration is nearly an order of magnitude smaller than 

the thickness of the leaflets.

3.3.3 Results and discussion—Fig. 11 illustrates the deformations and strain 

distributions of the BHV model throughout a period of the prescribed pressure loading. Fig. 

12 shows the deformations and strains from a period of the FSI simulation, while Fig. 13 

depicts the corresponding flow fields in the artery lumen. The volumetric flow rate through 

the top of the artery throughout the cardiac cycle is shown in Fig. 14.

Several important qualitative differences between the valve deformations in the dynamic and 

FSI computations are observed. Firstly, the opening process is very different. We can see 

from the snapshots at t = 0.02 s from Figs. 11 and 12 that the follower load in the dynamic 

computation drives the free edges of the leaflets apart immediately, while, in the FSI 

computation, the opening deformation initiates near the attached edge, then spreads toward 

the free edge. The opening of the leaflets in the FSI computation closely resembles the 

sequence of pericardial BHV leaflet deformations measured in vitro in [106], while the 

dynamic simulation exhibits unrealistic features. It is clear from the deformation cross-

sections in Fig. 15 that a portion of the leaflet near the free edge ends up with the top (aortic) 

side of the leaflet facing downward. The follower load then pushes the free edge downward, 

exaggerating this feature. A similar artifact is apparent in the earlier dynamic computations 

of [31,101].

During the closing phase, the coaptation of the free edges of the leaflets is significantly 

delayed in the FSI computation; the free edges lean outward throughout the closing process, 

as is clear in Fig. 15. The follower load of the dynamic simulation drives the leaflets closed 

in a more uniform manner. This delayed closing of the free edge occurs in some pericardial 

bioprosthetic valve leaflets, and is evident in the photographic images taken and reported in 

[104]. This deformation is not observed in all valve leaflets, though (cf. [106]), and we 

therefore suspect that it is highly sensitive to valve geometry, leaflet material properties, and 

flow conditions. It seems unlikely that a uniform pressure follower load would cause this 

closing behavior, and it is not seen in any of the earlier structural dynamics computations of 

[9, 31, 101].

For the fully-closed configuration, the structural dynamics and FSI simulation results are 

quite similar, as can be seen in Fig. 15. Fig. 13 shows that at this configuration, the flow is 

nearly hydrostatic. The BHV in the FSI computation is under hydrostatic pressure, which is 

at a similar level to the prescribed pressure load applied in the structural dynamics 

simulation. This result shows the applicability of the common modeling practice of 

approximating the influence of the fluid on the fully-closed valve as a pressure follower 
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load, even though at other phases clear discrepancies were observed between dynamic and 

FSI computations.

4 Conclusions and further work

In this work we combine the geometry modeling and parametric design platform introduced 

in [19], thin shell constitutive modeling framework developed in [22], and 

immersogeometric FSI methodology proposed in [11, 12] to perform high-fidelity BHV FSI 

with a greater level of automation, robustness and realism than achieved previously. We 

demonstrate the performance of our methods by applying them to a challenging problem of 

FSI analysis of BHVs at full scale and with full physiological realism. We illustrate the 

added value of including realistic material models of leaflet tissue and FSI coupling by 

comparing our results with those that omit material nonlinearity, or approximate the 

influence of the blood flow on the structure by means of applying prescribed uniform 

pressure loads and damping forces. The present effort represents the first step toward 

automated optimization of the leaflet design, to increase the useful life of BHVs.
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Fig. 1. 
The trileaflet T-spline BHV model in Rhino. The T-spline surfaces were generated using the 

in-house parametric modeling platform (see Fig. 2) and the Autodesk T-Splines Plug-in for 

Rhino [24].
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Fig. 2. 
The Grasshopper program for parametric BHV leaflet geometry modeling. (This figure is 

intended for zoomed viewing.) The major geometry construction steps are shown in Fig. 3.
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Fig. 3. 
Parametric BHV leaflet geometry modeling flowchart.
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Fig. 4. 
The Bézier elements defining the T-spline surface used in the shell analysis. The clamped 

boundary condition is applied to the leaflet attachment edge by fixing two rows of T-spline 

control points highlighted in the figure. (The points in the second row away from the edge 

are also called tangency handles.)
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Fig. 5. 
Comparison between different isotropic material models. The valve is loaded with a 

spatially-uniform pressure of 100 mmHg. The maximum values of MIPE are 0.490 and 

0.319 for St. Venant–Kirchhoff and Fung-type cases, respectively.
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Fig. 6. 
A view of the arterial wall and lumen into which the valve is immersed.
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Fig. 7. 
Cross-sections of the fluid and solid meshes, taken from the cylindrical portion and the 

sinus.
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Fig. 8. 
The sinus, magnified and shown in relation to the valve leaflets and rigid stent. The suture 

ring of the stent intersects with the arterial wall.
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Fig. 9. 
Transvalvular pressure applied to the leaflets as a function of time. The profile is reproduced 

based on that reported in Kim et al. [31]. The original data has a cardiac cycle of 0.76 s. It is 

scaled to 0.86 s in our study to match the single cardiac cycle duration of our FSI simulation.
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Fig. 10. 
Physiological left ventricular (LV) pressure profile applied at the inlet of the fluid domain. 

The duration of a single cardiac cycle is 0.86 s. The data is obtained from Yap et al. [111].
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Fig. 11. 
Deformations of the valve from the structural dynamics computation, colored by the MIPE 

evaluated on the aortic side of the leaflet. Note the different scale for each time. The time t is 

synchronized with Fig. 9 for the current cycle.
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Fig. 12. 
Deformations of the valve from the FSI computation, colored by the MIPE evaluated on the 

aortic side of the leaflet. Note the different scale for each time. The time t is synchronized 

with Fig. 10 for the current cycle.
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Fig. 13. 
Volume rendering of the velocity field at several points during a cardiac cycle. The time t is 

synchronized with Fig. 10 for the current cycle.
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Fig. 14. 
Computed volumetric flow rate through the top of the fluid domain, during a full cardiac 

cycle of 0.86 s.
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Fig. 15. 
Cross-sections of the time-dependent leaflet profile.

Hsu et al. Page 35

Comput Mech. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


