Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 Sep 17;3(5):e00975-15. doi: 10.1128/genomeA.00975-15

Draft Genome Sequences of Anaerolinea thermolimosa IMO-1, Bellilinea caldifistulae GOMI-1, Leptolinea tardivitalis YMTK-2, Levilinea saccharolytica KIBI-1, Longilinea arvoryzae KOME-1, Previously Described as Members of the Class Anaerolineae (Chloroflexi)

Norihisa Matsuura a, Dieter M Tourlousse a, Akiko Ohashi a, Philip Hugenholtz b,c, Yuji Sekiguchi a,
PMCID: PMC4574363  PMID: 26383658

Abstract

Members of the class Anaerolineae in the bacterial phylum Chloroflexi are widespread in a range of ecosystems but remain poorly understood. We present here the draft genome sequences of the type strains of five Anaerolineae species, Anaerolinea thermolimosa IMO-1, Bellilinea caldifistulae GOMI-1, Leptolinea tardivitalis YMTK-2, Levilinea saccharolytica KIBI-1, and Longilinea arvoryzae KOME-1.

GENOME ANNOUNCEMENT

Members of the class Anaerolineae are cosmopolitan bacteria found in various ecosystems, suggesting their functional importance (1). Currently, 10 Anaerolineae species have been isolated and characterized (28). However, the genome sequence of only a single species, Anaerolinea thermophila (strain UNI-1), has been available. To further expand the knowledge on the genomic diversity of the Anaerolineae, we generated draft genomes of five previously described isolates. Two represent the type strains of thermophilic species, Anaerolinea thermolimosa (strain IMO-1) and Bellilinea caldifistulae (strain GOMI-1), isolated from thermophilic anaerobic waste/wastewater treatment systems (3, 4). The others are the type strains of mesophilic species, Leptolinea tardivitalis (strain YMTK-2), Levilinea saccharolytica (strain KIBI-1), and Longilinea arvoryzae (strain KOME-1), isolated from mesophilic anaerobic wastewater treatment systems or Japanese paddy field soil (3, 4).

Nextera XT paired-end (300 to 700 bp) and Nextera mate-pair (2 to 10 kbp) libraries were prepared from the genomic DNA of each strain. Pooled libraries were sequenced on an Illumina MiSeq (2 × 250-bp reads) at an expected coverage of >50× and >10× per genome for the paired-end and mate-pair libraries, respectively. The sequence reads were merged with SeqPrep with concurrent removal of sequencing adapters. Unmerged reads were quality trimmed and filtered using Nesoni version 0.112. SPAdes version 2.5.0 (9) was used for assembly, and further scaffolding and refinement were performed as described previously (10). Genome annotations were generated within the Integrated Microbial Genomes platform (11).

The assembly of the A. thermolimosa IMO-1 genome consists of 81 contigs in 6 scaffolds (coverage, 180×); the total size is 4,173,865 bp, and the G+C content is 53.72%. The assembly of the B. caldifistulae GOMI-1 genome consists of 43 contigs in a single scaffold (coverage, 180×); the total size is 3,698,317 bp, and the G+C content is 52.18%. The assembly of the L. tardivitalis YMTK-2 genome consists of 15 contigs in 15 scaffolds (coverage, 230×); the total size is 3,687,036 bp, and the G+C content is 46.82%. The assembly of the L. saccharolytica KIBI-1 genome consists of 196 contigs in 4 scaffolds (coverage, 200×); the total size is 4,249,622 bp, and the G+C content is 57.36%. The assembly of the L. arvoryzae KOME-1 genome consists of 25 contigs in 2 scaffolds (coverage, 60×); the total size is 4,438,311 bp, and the G+C content is 56.84%. The genomes are predicted to contain between 3,301 (L. tardivitalis YMTK-2) and 3,888 (L. arvoryzae KOME-1) protein-coding genes and between 54 (L. tardivitalis YMTK-2) and 64 (A. thermolimosa IMO-1) RNAs. The availability of these genomes will contribute to our understanding of the metabolic potential and possible ecological roles of members of the class Anaerolineae.

Nucleotide sequence accession numbers.

These whole-genome shotgun projects have been deposited at DDBJ/EMBL/GenBank under the accession numbers BBXW00000000, BBXX00000000, BBXY00000000, BBXZ00000000, and BBYA00000000 for A. thermolimosa IMO-1 JCM 12577, B. caldifistulae GOMI-1 JCM 13669, L. arvoryzae KOME-1 JCM 13670, L. saccharolytica KIBI-1 JCM 12578, and L. tardivitalis YMTK-2 JCM 12579, respectively. The versions described in this paper are versions BBXW01000000, BBXX01000000, BBXY01000000, BBXZ01000000, and BBYA01000000.

ACKNOWLEDGMENT

This research was partly supported by a grant-in-aid for JSPS Fellows from the Japan Society for the Promotion of Science (JSPS) to N.M.

Footnotes

Citation Matsuura N, Tourlousse DM, Ohashi A, Hugenholtz P, Sekiguchi Y. 2015. Draft genome sequences of Anaerolinea thermolimosa IMO-1, Bellilinea caldifistulae GOMI-1, Leptolinea tardivitalis YMTK-2, Levilinea saccharolytica KIBI-1, Longilinea arvoryzae KOME-1, previously described as members of the class Anaerolineae (Chloroflexi). Genome Announc 3(5):e00975-15. doi:10.1128/genomeA.00975-15.

REFERENCES

  • 1.Yamada T, Sekiguchi Y. 2009. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi “subphylum I” with natural and biotechnological relevance. Microbes Environ 24:205–216. doi: 10.1264/jsme2.ME09151S. [DOI] [PubMed] [Google Scholar]
  • 2.Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y. 2003. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851. doi: 10.1099/ijs.0.02699-0. [DOI] [PubMed] [Google Scholar]
  • 3.Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y. 2006. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340. doi: 10.1099/ijs.0.64169-0. [DOI] [PubMed] [Google Scholar]
  • 4.Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y. 2007. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306. doi: 10.1099/ijs.0.65098-0. [DOI] [PubMed] [Google Scholar]
  • 5.Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV. 2013. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 63:86–92. doi: 10.1099/ijs.0.041012-0. [DOI] [PubMed] [Google Scholar]
  • 6.Nunoura T, Hirai M, Miyazaki M, Kazama H, Makita H, Hirayama H, Furushima Y, Yamamoto H, Imachi H, Takai K. 2013. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ 28:228–235. doi: 10.1264/jsme2.ME12193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Grégoire P, Fardeau ML, Joseph M, Guasco S, Hamaide F, Biasutti S, Michotey V, Bonin P, Ollivier B. 2011. Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum “Chloroflexi,” isolated from a deep hot aquifer in the Aquitaine basin. Syst Appl Microbiol 34:494–497. doi: 10.1016/j.syapm.2011.02.004. [DOI] [PubMed] [Google Scholar]
  • 8.Imachi H, Sakai S, Lipp JS, Miyazaki M, Saito Y, Yamanaka Y, Hinrichs KU, Inagaki F, Takai K. 2014. Pelolinea submarina gen. nov., sp. nov., an anaerobic, filamentous bacterium of the phylum Chloroflexi isolated from subseafloor sediment. Int J Syst Evol Microbiol 64:812–818. doi: 10.1099/ijs.0.057547-0. [DOI] [PubMed] [Google Scholar]
  • 9.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Sekiguchi Y, Ohashi A, Parks DH, Yamauchi T, Tyson GW, Hugenholtz P. 2015. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking. PeerJ 3:e740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Markowitz VM, Chen IM, Chu K, Szeto E, Palaniappan K, Pillay M, Ratner A, Huang J, Pagani I, Tringe S, Huntemann M, Billis K, Varghese N, Tennessen K, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC. 2014. IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res 42:D568–D573. doi: 10.1093/nar/gkt919. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES