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Abstract

Background

Trials in Alzheimer’s disease are increasingly focusing on prevention in asymptomatic indi-

viduals. This poses a challenge in examining treatment effects since currently available

approaches are often unable to detect cognitive and functional changes among asymptom-

atic individuals. Resultant small effect sizes require large sample sizes using biomarkers

or secondary measures for randomized controlled trials (RCTs). Better assessment

approaches and outcomes capable of capturing subtle changes during asymptomatic dis-

ease stages are needed.

Objective

We aimed to develop a new approach to track changes in functional outcomes by using

individual-specific distributions (as opposed to group-norms) of unobtrusive continuously

monitored in-home data. Our objective was to compare sample sizes required to achieve

sufficient power to detect prevention trial effects in trajectories of outcomes in two scenar-

ios: (1) annually assessed neuropsychological test scores (a conventional approach), and

(2) the likelihood of having subject-specific low performance thresholds, both modeled as a

function of time.

Methods

One hundred nineteen cognitively intact subjects were enrolled and followed over 3 years in

the Intelligent Systems for Assessing Aging Change (ISAAC) study. Using the difference in

empirically identified time slopes between those who remained cognitively intact during fol-

low-up (normal control, NC) and those who transitioned to mild cognitive impairment (MCI),
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we estimated comparative sample sizes required to achieve up to 80% statistical power

over a range of effect sizes for detecting reductions in the difference in time slopes between

NC and MCI incidence before transition.

Results

Sample size estimates indicated approximately 2000 subjects with a follow-up duration of 4

years would be needed to achieve a 30% effect size when the outcome is an annually

assessed memory test score. When the outcome is likelihood of low walking speed defined

using the individual-specific distributions of walking speed collected at baseline, 262 sub-

jects are required. Similarly for computer use, 26 subjects are required.

Conclusions

Individual-specific thresholds of low functional performance based on high-frequency in-

home monitoring data distinguish trajectories of MCI from NC and could substantially

reduce sample sizes needed in dementia prevention RCTs.

Introduction
As clinical trials progress from safety to efficacy phases the cost of development increases dra-
matically [1, 2]. This is related to a number of factors, not the least of which is the large sample
size that may be needed to show a potential effect [1–4]. The need for large samples is often
driven by the inaccuracy of estimating changes because the outcome measures have high vari-
ability, not only due to measurement errors, but also due to inherent fluctuations in individu-
als’ abilities to perform certain tasks. These measurement errors and individual fluctuations
could be offset by highly frequent assessments which lead to more accurate or precise longitu-
dinal trajectory estimates of outcomes [3, 5]. However, in most clinical trials, only a sparse
number of measurements, such as every year or every six months, are available. Although there
have been significant advances in early phase drug development to feed the pipeline of testable
compounds, there has been little progress in changing the paradigm for improving the conduct
of trials so as to speed the time needed to obtain an answer as to efficacy or to reduce the num-
ber of subjects needed to find that answer. In this paper we propose a new approach to improv-
ing the conduct of clinical trials that combines the capability of acquiring much more frequent
and objective data using ubiquitous home-based sensing and computing methodologies for
data capture. The approach generates high frequency data which can provide person-specific
distributions of outcomes within a short duration of follow-up. The distributions can then be
used to capture person-specific changes or shifts over time. We show that this approach can
provide adequate statistical power with reduced sample size requirements.

To demonstrate the potential value of this new approach, we use the example of designing a
treatment trial for the prevention of Alzheimer’s disease (AD), an area of great unmet need for
effective therapies. The need for prevention trials for Alzheimer’s disease is highlighted by the
fact that recent experimental drug trials in established AD have failed leading to the view that
in order for treatment to be effective, earlier presymptomatic intervention is needed [6, 7].
Thus, trials in AD are increasingly focusing on secondary prevention in asymptomatic individ-
uals. For example, among recently launched large clinical trials for AD are several targeted to
prevent further CNS amyloid beta protein (Aβ) accumulation in vivo during a pre-
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symptomatic stage [8] or among those destined to have Aβ aggregation and subsequent
dementia by virtue of carrying autosomal dominant genetic mutations in the presenilin 1 gene
related to amyloid processing [9, 10]. The duration from the time when Aβ begins to accumu-
late until AD symptoms appear is now estimated at about 15 years or more [11], providing an
ample window of opportunity for prevention. However, during the pre-symptomatic phase,
cognitive function and functional abilities are not often detected as declining using sparsely-
obtained conventional clinical assessment approaches. This poses a challenge in examining
treatment effects among pre-symptomatic participants [3, 4, 12, 13].

In the current study, we used Oregon Center for Aging and Technology (ORCATECH) in-
home continuous assessment approach, where activity- and health-related metrics are created
from round-the-clock data collected by an unobtrusive in-home sensor system (http://www.
orcatech.org). The approach provides sufficient data points to generate individual-specific dis-
tributions of functional outcomes, such as computer usage and walking speed and their vari-
ability within a short time period (e.g., 3 months). These in-home activity data have been
shown to differ in trajectories of change among MCI as compared to age-matched controls
[14–16]. Our objective was to compare sample sizes required to achieve sufficient power to
detect prevention trial effects in two scenarios: (1) annually assessed neuropsychological test
scores modeled as a function of time using mixed effects models (a conventional approach),
and (2) likelihood of subject-specific low performance modeled as a function of time using
mixed effects models. We first obtained the empirical effect size, which is the difference in tra-
jectories (time slopes in outcomes) between those who remained cognitively normal and those
who developed MCI during an average of 3 years of follow-up by using the two types of out-
comes above (annually assessed neuropsychological test scores and likelihood of individual-
specific low performance). Using the difference in empirically identified time slopes between
those remaining normal during the follow-up (normal control, NC) and those who developed
MCI, we estimated sample sizes required to achieve 80% statistical power for detecting 20%
30% or 40% treatment effects. (i.e., the difference in time slopes between NC and MCI would
be reduced by 20%, 30% or 40%, respectively).

Materials and Methods

Data
The data comes from a longitudinal cohort study, Intelligent Systems for Assessing Aging
Change (ISAAC). Participants were recruited from the Portland, Oregon, metropolitan area
through advertisement and presentations at local retirement communities. Details of the study
protocol for ISAAC have been published elsewhere [14]. Briefly, entry criteria for the study
included being age 70 or older, living independently (living with a companion or spouse was
allowed, but not as caregiver), not demented (Mini-Mental State Examination [17]� 24;
Clinical Dementia Rating (CDR) [18] scale score� 0.5), and in average health for age. Medical
illnesses that would limit physical participation (e.g., wheelchair bound) or likely lead to
untimely death (such as certain cancers) were exclusions. A total of 265 participants were
enrolled beginning in 2007. The participants lived in a variety of settings—from apartments in
organized retirement communities to freestanding single-family homes. One hundred nineteen
participants living alone were included in the current analysis.

In-home activity data
The ISAAC research protocol and the in-home monitored activities collected in the study have
been described previously [14]. For the current paper, we selected the following three person-
specific in-home activity variables shown to be correlated with cognitive function in our
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previous studies: Weekly mean walking speed, weekly walking speed variability and weekly
home computer usage. Briefly, daily in-home walking speed was calculated using a line of four
motion sensors positioned in a series on the ceiling. The field of view of the sensors was
restricted so they fired only when the participant passed directly underneath them. The dis-
tance between sensors was recorded to allow adequate calculation of velocity as the participant
passed through the line of sensors. Data from sensors were received by a dedicated research
laptop computer placed in the participant’s home, time-stamped and stored in an SQL data-
base. All data were automatically uploaded daily to a central database in the project data center.
A detailed description of the algorithm and its validation process are found elsewhere [19, 20].
Weekly walking speed variability was generated by calculating the Coefficient of Variation
(COV: the ratio of the weekly standard deviation to its mean multiplied by 100 (a dimension-
less number)) [15]. Weekly average daily home computer usage was measured as follows.
Computer sessions were calculated using mouse movement data. Each mouse movement of
more than five pixels generated a Windows event that was saved and time stamped. Each day
was partitioned into 5-minute periods, and for any period with more than 100 mouse events,
the computer was considered in use. The total time on the computer per day was then esti-
mated as the sum of these 5-minute in-use periods, measured in minutes. Mean daily use (in
minutes) was the sum of total time on the computer per week divided by total number of days
with use in the week. A more detailed description of the computer use metric is found else-
where [16]. We previously found that although average time spent on computer per day was
not different between groups at baseline, there was a significant decline in usage over time
among those with MCI as compared to cognitively intact participants [16].

These in-home activities are collected unobtrusively (no wearable technology was used) and
continuously, i.e., the data are generated 24/7. This data was used to examine the differences in
slope of these variables over time between those with intact cognition and those who transited
to MCI (incidence MCI cases) defined as CDR = 0.5 during the annual in-home clinical exam
described below and used for power calculations.

Annual clinical examination and neuropsychological tests
In addition to continuously obtained in-home activities, participants were also assessed clini-
cally at baseline and during annual visits in their home using a standardized battery of prevail-
ing clinical tests consisting of physical and neurological examinations. MCI incidence cases
defined as CDR [18] = 0.5 in the current study was confirmed during this annual exam. The
annual neuropsychological test results over time were used to generate empirical data to see the
difference in longitudinal trajectories (slope differences) between those with intact cognition
and those who transited to MCI, and used for power calculations. Neuropsychological tests
considered to be representative of 5 cognitive domains were administered: Logical Memory
Immediate and Delayed Recall (memory) [21], Category Fluency (executive function) [22], the
Trail Making Test Part A (psychomotor speed) and B (executive function) [23], the Wechsler
Adult Intelligence Scale-Digit Symbol (attention) [24], and the Boston Naming Test (language)
[25]. CDR [18] was determined independently from the neuropsychological test results.

Ethics Statement
Study protocol and consent forms were approved by the Oregon Health & Science University
Institutional Review Board. All participants provided written informed consent.
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Statistical Analysis

Empirical Data
Annually assessed neuropsychological tests as outcomes (conventional approach). We

first examined time slope differences on annual neuropsychological tests using mixed effects
models between those who developed MCI (defined as the incidence of CDR = 0.5 with at least
one subsequent assessment being CDR = 0.5) and those who remained cognitively intact dur-
ing the follow-up. Among the MCI incident subjects, the data points prior to transition were
included, while those after transition were excluded because our aim here is to estimate the dif-
ference in slopes during the pre-symptomatic period (before MCI designation). We estimated
the difference in slope between the two groups using a group-by-time interaction term (with
MCI as the reference group). The coefficient of the interaction variable shows how much less
decline the normal group experienced over time as compared with incident MCI subjects.

In-home monitoring derived activities as outcomes. As with the annually assessed
neuropsychological tests, we first fit mixed effects models examining the slope difference
between cognitively intact and incident MCI groups. The data points observed after MCI inci-
dence were not included. Second, we calculated each participant’s distributions of weekly mean
walking speed, weekly walking speed variability and weekly computer usage (time in minutes
spent on their home PC) using the data observed during the first 90 days (approximately 3
months). This data allowed us to generate individual-specific distributions of each activity and
several measures of their variability such as mean, median, 1 standard deviation (SD) below
mean, 1SD above mean, 10th percentile person-specific low threshold, etc. For example, Fig 1
shows walking speed data generated within the first 3 months of data accumulation from 2 dif-
ferent individuals. Using these person-specific distributions, we fit generalized linear mixed
models with outcomes being likelihood of experiencing values below the “person-specific” low-
est 10th percentile, 20th percentile, 30th percentile, 40th percentile and 50th percentile thresholds
(for walking speed and computer usage) and the values above the “person-specific” highest
70th percentile, 80th percentile and 90th percentile thresholds (for walking speed variability).
We used this approach because our prior studies suggested that variability of in-home moni-
tored activities might increase before subjects transitioned to MCI [15]. That is, mean values
could be relatively stable over time even though variability in functional outcomes increases for
each subject. Linear mixed effects models, where trajectories of marginal mean values over
time are estimated, ignore the likelihood of subjects experiencing extremely low (or high) out-
come values. We calculated sample sizes required to achieve 80% statistical power using the
results of the linear mixed effects models (differences in mean trajectories of neuropsychologi-
cal tests between the two groups) and the results of generalized mixed models (differences in
likelihood of low performance on in-home monitored activities defined using baseline person-
specific distributions of outcomes).

Sample size estimates
The percentage effect size is the proportion of reduced decline out of the expected maximum
amount of decline. For example, those who developed MCI had an annual decline of 1 unit in a
measure of our interest, while those who remained normal had 0.3 unit decline per year, the
latter considered as age-associated normative decline. The difference is 0.7 units which is the
expected maximum amount of reduction in decline attainable for any treatment since treat-
ment is conservatively assumed not to improve outcomes beyond age-associated normal
decline. If the percentage effect size is 30%, then the treatment group will have a reduction in
annual decline by 0.21 unit (0.7 X 0.30 = 0.21), that is, 0.79 (1–0.21 = 0.79) unit decline per
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year, while the placebo group would have an annual decline of 1 unit. For mixed effects models,
sample size is calculated by using a well-established formula [26]. The sample sizes required to
achieve 80% power for the generalized linear model were estimated using Monte Carlo simula-
tions: A fitted generalized linear mixed model with adjusted empirical effects (for example 50%
effect size) was used to simulate 1000 replicates of data of the given sample size (assuming
equal size for both treatment and MCI groups) and specified time points in days (for example,
four years of data had time ranges from 0 to 1456 days (4yrs x 52weeks x 7days). For each repli-
cate of simulated data, the same generalized linear mixed model was applied, and we reject the
null hypothesis if the estimated effect size (group difference on slope) is significantly different
from 0 with significance level = 0.05. Lastly, we estimated the power by calculating the rejection
rate over 1000 replicates. We assumed that drop-out rates would not be different between
methods so this was not included in the models.

Results

Baseline characteristics
Table 1 shows the baseline characteristics of subjects included in this study. Among 119 sub-
jects, 17 subjects developed MCI (CDR = 0.5) during the average follow-up of 3.8 years.
Among 17 incident MCI cases, no one returned to CDR = 0 in subsequent assessments during
the follow-up period. Those who developed MCI had lower scores on Logical Memory Imme-
diate Recall (p = 0.008) and Delayed Recall scores (p = 0.004) at baseline, but no other differ-
ences were found.

Fig 1. Examples of subject-specific distributions of walking speed. NOTE: According to the baseline (first 90 days) walking speed histograms, subject A
(id = 7621) was much slower initially than subject B (id = 11012). However, subject A was only slower than his/her subject specific baseline 10th percentile
during 11% of the later weekly follow-ups, and subject B was slower than his/her subject specific baseline 10th percentile during 79% of the weekly follow-
ups. This indicates that although subject A was slower at the beginning, his/her walking speed was stable while there was an obvious slowing trend for
subject B. The group’s 10th percentile based on the first three months of data is 39.3. Subject B was never slower than the group 10th percentile threshold
during the entire follow up period. Therefore the fact that subject B got much slower over time was not reflected by using the group specific threshold.

doi:10.1371/journal.pone.0138095.g001
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Empirical results
As shown in Table 2 (column A), no neuropsychological tests demonstrated a significant dif-
ference in trajectories between groups over the observation period. As for in-home activities,
only computer usage demonstrated a significant difference in trajectories between the two
groups (p = 0.01). The time scale in these models is in number of days. Normal subjects (those
who maintained normal cognition) had less decline over time in weekly average minutes on
computer than incident MCI subjects (i.e., positive direction in coefficient). For example, at the
end of one year, normal subjects spent 29% more time in computer usage (exp(7 days X 52
weeks X 0.0007)) compared with those who transitioned to MCI. For generalized mixed effects
models, we examined the likelihood of subjects experiencing functional outcomes from 10th

percentile- to 50th percentile- below individual specific thresholds by 10% increments (i.e., 10,
20, 30, 40 and 50) and reported the most and the second most significant results in Table 3
(column) for each activity measure. As expected from our previous studies, those destined to
develop MCI spent fewer minutes on their computer over time [16] and their walking variabil-
ity increased [15]. The table can be read as follows. For example, the likelihood of weekly aver-
age time spent on a personal computer falling below the subject-specific 40th percentile
threshold is significantly less among normal subjects; on average, compared with the incident
MCI group; the odds of a normal subject experiencing this threshold within a day is 99.8%
(exp(-0.0016) = 0.998, that is, about 0.2% lower, or 44.1% (1- exp(-0.0016 X 52 weeks X 7
days)) less at the end of one year (Fig 2). Likewise, the likelihood of weekly walking speed vari-
ability falling higher than the subject-specific 70th percentile threshold is about 27.9% less after
one year among the normal group compared with the MCI incident group. Likelihood of

Table 1. Baseline characteristics (means or percentages given with SD in parentheses).

Total (N = 119) Normal Controls
(N = 102)

MCI Incidence
(N = 17)

p-value

Age (years) 84.42(5.07) 84.16(4.86) 86.04(6.16) 0.09

% Male 15.11% 14.17% 21.05% 0.73

Years of Education 15.41(2.33) 15.53(2.38) 14.63(1.86) 0.09

Duration of Follow-up in years 3.80(1.17) 3.80(1.21) 3.84(0.93) 0.88

Duration of Follow-up in years before MCI incidence 2.24(1.33) N/A

Number of annual clinical assessments (for the MCI group, the assessment
numbers before MCI incidence)

4.15(1.36) 4.41(1.19) 2.53(1.26) N/A

In-Home Continuously Monitored Data#

Mean Walking Speed (cm/sec) 62.59(17.83) 63.02(18.19) 60.03(15.71) 0.48

Mean Daily Computer Usage (minutes)## 78.11(57.34)
(n = 97)

73.91(51.81) (n = 86) 110.94(86.08)
(n = 11)

0.19

Neuropsychological Assessments

Category Fluency (animals and vegetables) 30.98(7.19) 31.31(7.17) 28.89(7.18) 0.19

Trail Making Test A (time in seconds) 42.66(18.86) 41.80(17.10) 48.11(27.52) 0.34

Trail Making Test B (time in seconds) 124.81(60.37) 120.81(57.45) 151.50(73.46) 0.10

Digit Symbol Test 39.42(9.71) 40.08(9.18) 35.32(12.06) 0.11

Logical Memory Immediate Recall 13.40(3.93) 13.67(4.05) 11.74(2.54) 0.008**

Logical Memory Delayed Recall 12.05(4.05) 12.37(4.13) 10.05(2.84) 0.004**

Boston Naming (30 items) 25.86(3.22) 25.93(3.24) 25.42(3.15) 0.52

**: p<0.01.

#: Baseline week

##: PC usage was not assessed for all subjects.

doi:10.1371/journal.pone.0138095.t001
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walking speed falling below subject-specific low thresholds was not significantly different
between normal and MCI incident groups.

Sample sizes needed to achieve 80% power
Using the empirical results above (i.e., difference in slopes observed between MCI and normal
groups), we estimated the sample size required to achieve 80% power to detect a difference
between placebo and treatment groups assuming a follow-up period of up to 4 years. Column
B in Tables 2 and 3 show the required sample size to achieve 80% statistical power (with α =
0.05) for different desired effect sizes. Since none of the annually assessed neuropsychological
tests were significantly different in decline over time between the two groups, these tests as out-
comes require large sample sizes to obtain sufficient effect sizes. For a 30% effect size, annually
assessed neuropsychological tests require at least 1900 subjects (using delayed recall as the pri-
mary outcome). As for in-home activities, if the likelihood of having lower computer usage per
day was modeled as a primary trial outcome, a 30% effect size could be obtained with 26–34
subjects; for walking speed variability, 82–86 subjects would be needed.

Discussion
Clinical trials which shorten the time needed to prove efficacy or reach study endpoints with
reduced sample sizes are of significant public health importance because these features not
only save trial costs, but also accelerate the translational process from discovery of potential
treatments to the availability of treatments for patients [1, 2, 5, 7]. In the current study, we

Table 2. Expected outcomes and total sample size estimates: conventional approach using annual neuropsychological test results.

Empirically Derived Slope Differences Clinical Trial Sample Size Estimation (estimates based on 4
years of follow-up)

Model Outcome Difference in slope
(MCI group as a

reference)*

Standard
error

p-value Treatment
effect size 20%

**

Treatment
effect size

30%

Treatment
effect size

40%

Treatment
effect size

50%

Category Fluency
(animal
+vegetable)

0.0026 0.0033 0.43 8050 3578 2013 1288

Trail Making Test
A

-0.0074 0.0086 0.39 6800 3022 1700 1088

Trail Making Test
B

-0.0211 0.0265 0.43 7500 3334 1876 1200

Linear
mixed
effects
model

Digit Symbol 0.0012 0.0046 0.8 75900 33734 18976 12144

Logical Memory
Immediate Recall

0.0017 0.0017 0.32 4900 2178 1226 784

Logical Memory
Delayed Recall

0.0019 0.0017 0.28 4300 1912 1076 688

Boston Naming
(30 items)

0.0006 0.0014 0.66 26800 11912 6700 4288

* Empirical effect size: group effect on slope/slope for normal group (i.e., MCI groups as a reference group). Trajectory after onset of MCI is not included

in the slope estimation (i.e., only trajectory up to onset was used). Equal allocation to placebo and treatment groups is assumed.

** Effect size: when MCI incidence group is the reference group, the normal (control) group can be treated as a group with an 'improved' effect. In clinical

trial we assume that the treatment group would have 20%-50% of the improvement defined by the effect of normal group.

doi:10.1371/journal.pone.0138095.t002
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proposed a new approach for improving the conduct of clinical trials using high frequency and
objective data derived from in-home monitoring of everyday activities. The system allowed us
to capture individual-specific distributions of various in-home activities generated within a
short baseline interval. Using individual-specific thresholds for low or high levels of activities
and their variability derived from individual-specific distributions, we could substantially
reduce estimated sample sizes required to obtain adequate statistical power to show desired
effects. For this simulation, we examined two activities obtained through in-home monitoring
that have been tied to development of MCI, mobility change (walking speed) and computer use
(time on computer). A number of other everyday activity measures could also be examined
continuously such as adherence to taking daily medications using an electronic pill box [27],
socialization (e.g., time out of home [28, 29], phone usage [30], conversational interactions or
speech characteristics [31]), or sleep measures (e.g., time in bed, wake after sleep onset [32]),
These all have the intrinsic advantage of not being surrogate markers, but relevant ecologically
valid outcomes in their own right [30].

Table 3. Expected outcomes and total (placebo and treatment group combined) sample size estimates: continuous activity monitoring approach
using cutoff thresholds derived from individual specific distributions of daily activities observed during the 1st 3 months of in-homemonitoring
data.

A. Empirically Derived Slope
Differences

B. Clinical Trial Sample Size Estimation (estimates based on
4 years of follow-up)

Model Outcome group effect on
slope (Normal
vs Incidence)*

standard
error

p-value Treatment
effect size
20%**

Treatment
effect size

30%

Treatment
effect size

40%

Treatment
effect size

50%

walking speed 0.0038 0.0115 0.74 92600 41156 23150 14816

Linear Mixed
Effects Models

computer usage*** 0.0007 0.0003 0.01 1100 490 276 176

walking speed
variability

0.0021 0.0022 0.34 7550 3356 1888 1208

walking speed:
likelihood of
10thpercentile low

-0.0008 0.0005 0.1 588 262 148 94

walking speed:
likelihood of
50thpercentile low

-0.0001 0.0002 0.65 14550 6468 3638 2328

Generalized
Linear Mixed
Effects Models

computer usage:
likelihood of
30thpercentile low

-0.0014 0.0002 <.0001 76 34 20 14

(with Random
Intercept)

computer usage:
likelihood of
40thpercentile low

-0.0016 0.0002 <.0001 58 26 16 10

walking speed
variability: likelihood
of 70thpercentile high

-0.0009 0.0003 0.0009 184 82 46 30

walking speed
variability: likelihood
of 80thpercentile high

-0.0009 0.0002 0.0001 192 86 48 32

* Empirical effect size: group effect on slope/slope for normal group (i.e., MCI groups as a reference group). Trajectory after onset of MCI is not included

in the slope estimation (i.e., only trajectory up to onset was used). Equal allocation to placebo and treatment groups is assumed.

** Effect size: when MCI incidence group is the reference group, the normal (control) group can be treated as a group with an 'improved' effect. In clinical

trial we assume that the treatment group would have 20%-50% of the improvement defined by the effect of normal group.

***: Log transformed weekly mean PC usage (mean daily PC usage in minutes per week)). Equal allocation to placebo and treatment groups is assumed.

doi:10.1371/journal.pone.0138095.t003
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High-frequency in-home monitored data for RCT
In an ideal secondary prevention AD clinical trial, the goal would be to recruit individuals at
risk of developing MCI (and subsequently AD) and to show that the treatment prevents or
delays the clear onset of MCI. However, it may take a decade to complete such a study with this
endpoint. Thus, in most trials, surrogate outcomes (e.g., results of validated neuropsychological
tests or composite scores) are used and the trial is aimed to detect a reduction in their rate of
decline (change) in cognitive and/or functional outcomes among the treatment group relative
to the placebo group. The US Food and Drug Administration currently outlines this approach
for treatments targeted toward pre-symptomatic or incident AD [33]. In principle, one can
reduce the number of individuals to be followed or the time of follow-up needed, if one can (1)
more precisely estimate the true trajectory of change (increase precision) and (2) use outcomes
that detect subtle changes in underlying pathological processes. High-frequency in-home mon-
itoring data could reduce sample size needs because the data facilitates an increase in precision
as well as the ability to capture changes effectively by using person-specific distributions,
instead of applying group norms or group averages to estimate change. Modeling the likelihood
that activity measures fall below a given threshold level (or in the case of variability, go above a
threshold) using generalized mixed effects models turned out to be very effective in assessing
changes because it takes into account the increase in variability in activity measures, not just
mean values in the measures. The approach is especially advantageous in capturing changes
which occur during the early pre-symptomatic stage of the dementing disease since previous
work suggests that variability could increase during the transition from normal cognition to
MCI [15].

Sample size estimates can vary depending on the signal-to-noise ratio and variance and
covariance structures derived from the empirical data used to estimate the sample size. As

Fig 2. Likelihood (log odds) of days with low threshold computer usage over time. Example: Computer use. For each participant, we calculated the
40th percentile of the first available 90 days of daily records of computer usage level (in minutes) and defined his/her individual-specific 40th percentile low
threshold. Weekly average data based on these 90 days of daily records were then excluded from analysis, and the first week after these 90 days was
defined as the baseline week of computer usage for this participant in our analysis. Model description detail is provided in Supplemental Material.

doi:10.1371/journal.pone.0138095.g002
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shown in the results from empirical data, computer usage tended to show more significant dif-
ferences between the incident MCI and normal groups, because this outcome has a higher sig-
nal-to-noise ratio as compared to the other outcomes. Although walking speed and its
variability have been shown to be associated with cognitive function in various studies [15, 34–
37], they can also be affected by non-cognitive comorbidities. The smaller sample size required
for computer usage may due to this activity being less affected by potential physical comorbidi-
ties in general.

Given that a clinical trial would be targeted to reduce cognitive decline leading to MCI
among those with intact cognition at baseline, sample size power is generally estimated using
empirically derived trajectories (slopes) among the cognitively intact subjects (subjects who did
not develop MCI or AD at least during the study follow up, i.e., non-pathological or normal
aging) and among subjects who developed MCI during the follow-up, with the group difference
providing an upper bound on potential treatment effects. Using simulated data, Leoutsakos et.
al., [12] examined how much trial power could be improved by increasing the sample fraction
that would develop AD in the absence of intervention (i.e., increasing the fraction of true at-
risk subjects at recruitment). In the study, they found that if a biomarker is used with a positive
predictive value of 0.5 within 2 years (i.e., half of those at risk subjects enriched by the bio-
marker will develop AD in the absence of intervention within 2 years) then the power is about
0.71, but if a biomarker is used with a positive predictive value of 0.8 (80% of at risk subjects
are those who will transit to AD in the absence of intervention within 2 years), then the power
will increase to 0.95 with 200 subjects per arm (Table 2, in [12]). Donohue et al., [13] used
empirical data to estimate the minimal difference detectable given 80% power with 30% attri-
tion and a 5% α level, using Aβ positivity to enrich at-risk subjects. Their estimate showed that
with 500 subjects per group (placebo and treatment groups), the minimal detectable difference
in declines in ADCS-PACC scores (composite scores of episodic memory, timed executive
function and global cognition) is smaller than the difference empirically observed in the Aus-
tralian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing (AIBL) and ADCS studies,
confirming the feasibility of the proposed A4 study (the Anti-Amyloid Treatment in Asymp-
tomatic Alzheimer’s study [8]) with Aβ positivity as an enrichment strategy and ADCS-PACC
as the primary outcome [13]. However, this approach, requiring biomarker enrichment means
hundreds or thousands of patients need to be screened to enroll the sample needed for the trial.
As discussed in the recent summary article by Dorsey et al., [5], technologies used in the cur-
rent and other studies could play an important role in cost-effective enrichment of clinical trial
study participants in the future. Proof of concept clinical trials are required to confirm the idea
of using high frequent monitored data as a study enrichment strategy.

Annual Assessment of Neuropsychological Tests and Sample Size
Estimates
In the current study, we showed sample sizes needed using annually assessed neuropsychologi-
cal tests for a comparison with sample sizes needed using high-frequent in-home monitored
data. Our estimate showed larger required sample sizes for annually assessed neuropsychologi-
cal tests. The current results on the estimated sample size using annually assessed neuropsy-
chological tests are in line with another study where the empirical data is derived among pre-
symptomatic subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set.
Grill [4] estimated required sample sizes per arm for a 36 month trial to detect differences in
changes in cognitive and functional outcomes using ADNI baseline biomarker information.
Among those with normal cognition, even if the sample is enriched with ApoE e4 carrier status,
about 2300 subjects are required using the Clinical Dementia Rating scale (CDR) sum of boxes
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as an outcome, and 27,380, 8146 and 1237 subjects are required when the primary outcomes
are psychometric test scores, the ADAS-Cog, MMSE, and RAVLT-delayed recall, respectively.
As the authors noted, the relatively large estimated sample size is due to the fact that the control
group in the ADNI I study is heterogeneous in terms of the risk of becoming MCI or AD in the
future. If targeted study participants are MCI instead, and with ADAS-Cog as an outcome, the
required sample size to achieve a 25% effect size is reported to vary from 375 to 9500+, depend-
ing on the assumptions used in the power calculations [3]. More recent analyses [38] showed
approximately 1200 subjects (568 per arm) are required to achieve a 20% effect size, given cere-
brospinal fluid Aβ1–42 concentration positivity-enriched MCI participants with semiannual
outcome assessments for 2 years.

Cost
The cost of the technologies used in the home monitoring system can be considered small rela-
tive to potential benefits and compared to other methods being used to aid detection of change.
This is especially the case for pre-symptomatic or early MCI where biomarkers are used in part
because subtle clinical or functional changes are difficult to capture with sparsely spaced in per-
son visits. The sensors and hardware used are composed of off-the-shelf components; total
costs are in the US$1200-$2000 range. By comparison assessment methods currently used to
track pre-symptomatic change such as biomarker studies may cost this amount or considerably
more. For example, PET imaging in some markets costs $5000 in the United States for a single
scan depending on the study and the ligand. Biomarkers are not necessarily predictive of trajec-
tories of clinical outcomes with infrequent follow-up intervals [39] and could further add noise
to outcomes [40]. On the other hand, once placed in the home, the home sensing system
remains on for many months or years providing ecologically valid data on a continuous basis
that directly speaks to meaningful function (e.g. mobility, computer use, medication adher-
ence). The calculations presented in this paper estimate that required sample sizes may be
reduced, for example, ten-fold or more, potentially leading to a large reduction in trial costs.

Privacy Concerns
The home based assessment approaches used in this new methodology need to be mindful of
potential privacy concerns. However, the research platform presented here has been guided by
the principle that technologies should not be overly obtrusive or threatening to an individual’s
sense of privacy or security, so that we can use the system widely in the community. Although
systems are installed to monitor activity, they are unobtrusive and do not record any pictures
or uniquely identifying features of the subject. Interception of data during broadband transmis-
sion is prevented by data encryption and unauthorized access to the central server is prevented
by firewall protection and password-restricted access.

Study Limitations
Study limitations include: results may be affected by subject enrollment characteristics. As
noted, the cohort consisted of highly educated older adults. We did not screen for amyloid risk
(genetic mutations, CSF or imaging biomarkers). In this sense they are more likely to represent
the general population of patients. The subjects who developed MCI had greater memory
impairment on cognitive testing at baseline which is a MCI profile that has been more com-
monly associated with AD [41]. We derived prevention effects empirically using observed
trajectories of MCI incidence cases and those who maintained normal cognition. Actual pre-
vention effects change depending on the base proportion of at-risk subjects [12]. Ultimately
the results presented here must be empirically tested in a proof of concept randomized
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controlled trial design. Given the lack of effective AD treatments and the large number of
potential compounds that could be tested, expeditious application of these and other novel trial
methods is critically needed so that we may more efficiently and cost-effectively identify effi-
cacy signals for critical “go—no go” decisions in AD treatment programs. Finally the
approaches (methods and outcomes) proposed here are not limited to AD, but can be extended
to other treatment trials such as treatment studies of pain or mobility disorders.

Conclusions
High-frequency in-home monitoring data can provide individual-specific thresholds of critical
functional performance from data accumulated within a short period of time. Using this
approach may effectively reduce needed sample sizes for prevention RCTs. Additionally the
monitored activities are ecologically valid outcomes in their own right. Future studies applying
this method to various trial outcomes are warranted to validate the generalizability of this
approach in clinical trials.
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