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Abstract: Microscale quantification of cilia-driven fluid flow is an emerg-
ing area in medical physiology, including pulmonary and central nervous
system physiology. Cilia-driven fluid flow is most completely described by a
three-dimensional, three-component (3D3C) vector field. Here, we generate
3D3C velocimetry measurements by synthesizing higher dimensional data
from lower dimensional measurements obtained using two separate optical
coherence tomography (OCT)-based approaches: digital particle image
velocimetry (DPIV) and dynamic light scattering (DLS)-OCT. Building
on previous work, we first demonstrate directional DLS-OCT for 1D2C
velocimetry measurements in the sub-1 mm/s regime (sub-2.5 inch/minute
regime) of cilia-driven fluid flow in Xenopus epithelium, an important
animal model of the ciliated respiratory tract. We then extend our analysis
toward 3D3C measurements in Xenopus using both DLS-OCT and DPIV.
We demonstrate the use of DPIV-based approaches towards flow imaging
of Xenopus cerebrospinal fluid and mouse trachea, two other important
ciliary systems. Both of these flows typically fall in the sub-100 µm/s
regime (sub-0.25 inch/minute regime). Lastly, we develop a framework for
optimizing the signal-to-noise ratio of 3D3C flow velocity measurements
synthesized from 2D2C measures in non-orthogonal planes. In all, 3D3C
OCT-based velocimetry has the potential to comprehensively characterize
the flow performance of biological ciliated surfaces.

© 2015 Optical Society of America
OCIS codes: (110.4500) Optical coherence tomography; (120.7250) Velocimetry; (170.3340)
Laser Doppler velocimetry; (170.6480) Spectroscopy, speckle.
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1. Introduction

Cilia driven-fluid flow is an important physiological process in numerous organ systems. Ciliary
flow is responsible for clearance of mucus from the respiratory tract, movement of cerebrospinal
fluid (CSF) in the ventricles of the brain, determination of left-right patterning in the embry-
onic node, and movement of ova in the Fallopian tubes [1]. Because ciliary flow results from
the shearing action of many cilia along a complex geometrical surface, ciliary flow lacks certain
symmetries, such as unidirectionality and axisymmetry [2–4]. While these symmetries can sim-
plify the quantification and analysis of other types of flow, such as Poiseuille flow in arteries,
they are typically not applicable in the context of cilia-driven fluid flow. As such, the most com-
plete description of the flow generated by cilia is a three-dimensional, three-component (3D3C)
vector field v(r). v(r) describes the velocity field v(r) = (vx(r),vy(r),vz(r)) at every point in
space r = (x,y,z). That is, for a steady-state flow field described in three spatial dimensions,
the fluid motion at each location in three-dimensional space is described by a three-component
vector.

A number of optical techniques have shown utility in imaging microfluidic ciliary flow [1].
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These techniques include brightfield, epifluorescence, confocal fluorescent microscopy, and op-
tical coherence tomography (OCT). In particular, OCT has shown great promise for visualizing
and quantifying ciliary physiology due to its combination of intrinsic contrast from scattering,
relatively high resolution (∼1-10 µm), and inherent parallelization of axial scanning without
mechanical movement of samples [4–6].

Additionally, within OCT, multiple velocimetry techniques have been implemented using
OCT-based data, including Doppler [7], particle tracking velocimetry [4], digital particle image
velocimetry (DPIV) [5, 8], and dynamic light scattering (DLS)-based approaches [9]. Tradi-
tional Doppler velocimetry is perhaps the most common type of flow measurement in OCT but
inherently only recovers a single component of velocity (axial or vz). We previously demon-
strated the implementation of particle tracking to quantify ciliary flow [4] as well as investi-
gate ciliary physiology and pathophysiology [10]. Particle tracking, however, requires sparse
seeding of particles, a condition that typically leads to relatively sparse measurements of the
velocity flow field. More recent work has demonstrated measurements of total speed from the
OCT signal in addition to the Doppler signal [9]. In particular, these newer techniques employ
either the autocorrelation or cross-correlation of the OCT signal, and in some cases can be
extended to generate directional velocity measurements. In this manuscript, we will focus on
an autocorrelation-based technique we previously demonstrated, directional DLS-OCT [11], as
well as a related cross-correlation based technique, DPIV.

DPIV refers to an image processing method in which regions of an image are tracked from
frame to frame in order to estimate velocity (Fig. 1(a,b)) [12]. In DPIV, images are divided
into smaller regions of interest (ROIs), and ROIs of adjacent image frames are cross-correlated
against one another. By calculating a correlation function g(x0,z0;δx,δ z,τ) between regions
from frame to frame and estimating the spatial location that maximizes the cross correlation
(Fig. 1(b)), features can in effect be tracked in order to estimate a displacement, and thus a
velocity.

If performed on two-dimensional imaging data, DPIV yields 2D2C velocity data. In prin-
ciple, DPIV can also be performed on serial volumetric data to yield 3D3C velocity esti-
mates [13,14]. However, if serial volume acquisition is not sufficiently fast, ensembles of parti-
cles may decorrelate due to non-translational motion including diffusion, shearing, and rotation.
These non-translational motions then lead to a degradation of signal-to-noise ratio (SNR) [15].
Additionally, many imaging acquisition protocols and image processing algorithms are already
available and optimized for two-dimensional data [16], and we wished to leverage these pre-
existing algorithms.

In order to circumvent the needs for repeated volume measurements, multiple measurements
of lower dimensional quantities can be combined to synthesize higher dimensional data. In the
simplest example, multiple one-component velocity measurements made at different angles can
be combined into a single two- or three-component measurement [17]. Stereoscopic PIV, for
example, uses two cameras angled with respect to one another to compute 2D3C data from
2D2C data [18]. Stereoscopic PIV as implemented with a brightfield microscope is not truly
cross-sectional, however, as velocity measurements may arise from the movement of defocused
particles. In contrast, OCT offers truly cross-sectional data, and thus the ability to localize
velocimetry measurements in three-dimensional space. As such, OCT offers the possibility of
generating 3D3C data from cross-sectional 2D2C data. We describe this process in further detail
in the methods section.

An alternative approach to feature tracking methods such as DPIV is to quantify the decorre-
lation rate of a time varying signal to estimate speed [9,11,19,20]. In dynamic light scattering-
based OCT (DLS-OCT), the temporal decorrelation of a light-scattering signal is fit to a model
autocorrelation function in order to recover the axial velocity and total speed of the underlying
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Fig. 1. In this study, we use two distinct correlation-based approaches to directional
OCT velocimetry: DPIV (a,b) and DLS (c,d). (a) In DPIV, two frames of intensity in-
formation I(x0,z0), acquired with an interframe time of δ t, are compared against each.
Each image is segmented into smaller regions of interest (ROI) Iroi(x,y), centered around
the point (x0,y0), and cross-correlation is calculated in the spatial domain (δx,δ z). The
process is then repeated for multiple ROIs. (b) The corresponding correlation function
g(x0,z0;δx,δ z,τ) for each region exhibits a peak where δx = vxδ t and δ z = vzδ t. Esti-
mation of this peak location yields the velocity estimate for (vx,vz) (c) In DLS-OCT, the
temporal signal at a single point (x0,z0) is correlated with itself, except now the complex
field signal E(x0,z0, t), instead of the intensity, is used, and the correlation is calculated in
the time domain. Additionally, scatterers are seeded significantly more densely such that
speckle formation occurs. (d) The correlation function g(x0,y0;τ) exhibits a peak at τ = 0,
but the rate of decorrelation (γ), i.e. the inverse of the width of the Gaussian, is proportional
to the difference in velocity of the scanner and fluid flow. By modulating the scan speed
vscan

x , we can minimize the decorrelation rate γ and estimate v f low
x as the minimum of that

curve. The process is then repeated at multiple spatial locations (x0,z0).
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fluid (Fig. 1 (c,d)). DLS is typically implemented in highly scattering media. In this highly scat-
tering regime, each focal volume is occupied on average by multiple particles such that pixel
intensities are random quantities governed by speckle statistics, and the decorrelation of these
speckle patterns gives an estimate of total flow speed (Fig. 1(d)).

We previously showed that by imparting a variable scan bias to our measurements, we could
extend DLS-OCT to yield directional velocimetry measurements [11], a technique we term
directional DLS-OCT. In our previous demonstration, the velocity component data was only
two-component, and the measurements were only made along a single axial line (1D). However,
by (a) scanning along an additional orthogonal plane to get 3C measurements, and (b) repeating
these measurements at multiple spatial locations to get 3D measurements, 3D3C data can in
principle be synthesized from lower dimensional measurements.

Here, we demonstrate two OCT-based, correlation-based methods of generating 3D3C vector
flow fields without serial volume acquisition. First, we utilize existing DPIV implementations
in order to measure 2D2C data, and we extend the measurements to synthesize 3D3C data using
multiple 2D2C planes at two different angles. In the process, we investigate the signal-to-noise
ratio (SNR) properties of this process to optimize those two angles. Secondly, building on our
previous work in DLS-OCT, we show 1D2C DLS-OCT measurements in vivo in the Xenopus
laevis model of epithelial ciliary flow. We then extend these measurements by implementing an
orthogonal scan plane (yielding 3C measurements) at multiple spatial locations (yielding 3D
measurements) in order to generate 3D3C data. We validate DPIV-OCT and DLS-OCT in a
calibrated flow phantom and then demonstrate both techniques to quantify Xenopus epithelial
flow. Finally, we show the possibility of measuring 3D3C flow in two additional ciliated systems
using DPIV. We measure CSF flow in Xenopus tropicalis using endogenous particulate matter
in the ventricles of the developing brain, and we measure ex vivo ciliary flow in mouse trachea
using exogenous particle tracers.

2. Methods

2.1. OCT Data acquisition and processing

All OCT measurements were made using a spectral domain OCT system (Thorlabs Telesto)
with 1325 nm center wavelength. Images were acquired at a 28 kHz linerate with an estimated
sensitivity of 96 dB. The optical power incident on the sample was measured at 1 mW.

2.2. Animal measurements

All Xenopus and mouse procedures were reviewed and approved by Yale’s Institutional Animal
Care and Use Committee, which is Association for Assessment and Accreditation of Labora-
tory Animal Care-accredited. For epithelial flow measurements, Nieuwkoop-Faber (NF) [21]
Stage 32 Xenopus laevis tadpoles were immobilized with benzocaine and imaged in a 6 mm
diameter, 1 mm deep cylindrical well [22] as previously described [10]. Polystyrene micro-
spheres (Bangs Labs, density 1.05 g/cm3) of various sizes were used as a contrast agent. For
DPIV measurements, 5 µm microspheres were diluted 1:100 in 1/9x Modified Ringer’s (MR)
solution. For DLS-OCT measurements, 500 nm microspheres were diluted 1:100 in 1/9x MR
with 0.1% Tween added to prevent bead aggregation. Additionally, for DLS tadpole epithelial
measurements, a liquid immersion adapter was used to minimize common path signal due to
reflection off the fluid surface. For CSF measurements, stage 46 Xenopus tropicalis embryos
were immobilized with benzocaine, but no exogenous scattering agents were added.

For tracheal flow measurements, the trachea from a one-month old mouse pup was prepared
as in [23]. The pup was euthanized using intraperitoneal urethane. The trachea was removed by
making two cross-sectional cuts: a cranial cut near the larynx, and a caudal cut above the level
of the carina. The lumen of the excised trachea was then flushed with phosphate buffered saline
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(PBS) and filled with 5 µm microspheres diluted 1:100 in PBS. Temperature was maintained
at 36-38◦ C using a heat-controlled stage.

2.3. 2D2C DPIV

DPIV processing of log-scale intensity image data was performed using PIVlab [16]. Contrast
limited adaptive histogram equalization was employed as an image preprocessing method for
CSF flow images. Window sizes ranged between 32-128 pixels, and were chosen such that
each window had ∼5 particles on average. A two-pass algorithm was employed to use half the
original window size on a second-pass attempt at peak identification.

DPIV can lead to false matches especially in areas of low back-scattered intensity. Specif-
ically, in our CSF and mouse trachea flow measurements, particles were significantly sparser
than in epithelial flow measurements. Because we typically correlated over 20 frames and thus
had n = 19 measurements at each spatial location, we were also able to calculate a standard
deviation σ and mean µ of our velocity measurements at every spatial location. Thus, for the
CSF and tracheal measurements, velocity measurements were discarded at locations where the
standard deviation was greater than 100 µm/s and 20 µm/s, respectively.

2.4. Synthesis of 3D3C data from 2D2C DPIV

After generating 2D2C data using DPIV, we synthesized 3D3C data using the following
method. An OCT B-scan is in a plane that is located in a global xyz coordinate system (Fig.
2(a)). The angular orientation of any given image plane in that global volume can be described
by the angle θ that the image plane forms with the global xz-plane (Fig. 2(b), top left). In prin-
ciple, one could measure DPIV data in two orthogonal planes that correspond to the global xz-
and yz-planes (θ1 = 0◦ and θ2 = 90◦, respectively). In this framework, the global vx component
corresponds to the transverse velocity component (the component orthogonal to the optical
axis) measured at θ1 = 0◦. Likewise, the global vy component corresponds to the transverse
velocity component measured at θ2 = 90◦. Lastly, the global vz component is the average of
the axial components measured at each θ . In practice, however, DPIV becomes less reliable
when there is a significant out of plane flow in a given image plane (see Appendix for details
on SNR tradeoff) [15]. Thus, we chose to measure flow in two non-orthogonal planes that were
still primarily directed along the expected direction of flow θ f .

In order to generate 3C data from two non-orthogonal measurements (Fig. 2(b), top left), we
first define each plane with respect to the global x-axis as θ1 and θ2. We define the unit vector
associated with these axes as e1 and e2. When we generate a DPIV measurement in plane 1,
we estimate an axial (vz) and lateral (v1) velocity (Fig. 2(b), bottom). Similarly, in plane 2 we
generate an axial (vz) and lateral (v2) measurement. The key step is to note that the lateral flow
measurements v1 and v2 in each plane are just the projections of the global velocity vector
(vx,vy) onto the image plane axes e1 and e2. More explicitly:

v1 = vx cosθ1 + vy sinθ1 (1)
v2 = vx cosθ2 + vy sinθ2 (2)

Solving for vx and vy yields:

vx =
v2 sinθ1− v1 sinθ2

sin(θ1−θ2)
(3)

vy =
v1 cosθ2− v2 cosθ1

sin(θ1−θ2)
(4)
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Fig. 2. Scan setup for DPIV and DLS-OCT. (a) Three-dimensional coordinate system, with
optical axis defined along z, and en-face plane defined as xy-plane. A particle with velocity
v = (vx,vy,vz) can be decomposed into three components based on this Cartesian system.
(b) DPIV scan setup, showing (top left) two non-orthogonal plane measurements. The angle
of each scan plane, θ1 and θ2, as well as the angle of flow in the en face plane θ f , are all
defined with respect to the global x-axis. The velocity as measured by DPIV in each plane
is the vector component of the velocity v on the unit vector tangent to the plane, either e1 or
e2 (bottom left / right). The vector projections of velocity in these two planes are denoted as
v1 and v2. From v1 and v2, vx and vy can be calculated along the line of intersection at these
planes. Acquiring multiple scan plans (top right) allows for calculation of v at multiple
points (x0,y0), to reconstruct an entire 3D volume. (c) DLS-OCT scan protocol showing
series of scan bias acquisitions. Each line measurement along z-axis at location (x0,y0) in
the en face plane consists of a set of scans along axes oriented around ±45◦. Much like the
DPIV measurements, the directional DLS-OCT protocol yields two velocity measurements
v1 and v2. vx and vy can then be recovered along a single axial line using Eqs. (3) and (4).
These scans are then repeated at various (x0,y0) points.
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Equations (3) and (4) are valid for the points that two planes intersect. For two imaging
planes, there is only one (x0,y0) line of data intersection (Fig. 2(b), bottom). In order to in-
crease the number of intersecting sampling points, we acquired parallel imaging planes with
an offset in the xy-plane, typically approximately 10 for each angle, leading to a grid of 100×
A-scan depths (Fig. 2(b), top right). As described above, the global vz estimate was calculated
by averaging the measurements of the local vz measurement from each plane.

2.5. Directional DLS velocimetry

The methodology for recovering the lateral flow velocity by directional DLS-OCT is described
in depth in [11]. Given the time-varying complex-valued interferometric signal E(x0,y0, t) at
a single spatial location (x0,y0) (Figs. 1(c) and 2(c)), we can compute the autocorrelation
g(x0,y0;τ), where τ is the correlation time lag. The decorrelation rate γ of the signal can be
estimated by fitting the autocorrelation to the function |g(τ)|= exp[−(γτ)2]. γ is a measure of
the total decorrelation time of the signal, which is proportional to the speed of particles flowing
through a focal volume. By additionally imparting a scan bias vscan

x either in the direction of or
opposite flow, we increase or decrease the effective decorrelation rate γ as measured by our sys-
tem (Fig. 1(d)). By measuring γ over a range of scan velocities, we recover a curve that follows
the form: γ = [A(B− vscan

x )+C]1/2. We can then fit this decay-rate scan bias curve γ(vscan
x ) to

solve for the parameter B. The B parameter corresponds to the scan bias speed that best matches
the flow rate along the scan axis, and thus is equal to vx. A typical set of scan biases was, for
example, ± 0.24, 0.42, 0.56, 0.84, 1.05, and 1.4 mm/s, with 5 repeats at each scan bias.

The effect of the directional DLS-OCT procedure is to give us the projection of the lateral
velocity along the plane of our scan bias. By scanning along the perpendicular axis with the
same scheme, we can additionally estimate the perpendicular velocity component vy. Similar
to DPIV, we can in principle set up our two scan axes to coincide with the global x and y axes.
Also similar to DPIV, however, SNR considerations [24], combined with prior knowledge that
flow is primarily directed along the global x-axis, led us to rotate our scan axes by 45◦ (Fig.
2(c), red X). We measure v1 and v2 and similarly reconstruct the global vx and vy measurements
using Eqs. (3) and (4).

In each of our measurements, we can estimate the Doppler signal simultaneously, giving an
estimate of vz. Overall, then, each set of scans yields v = (vx,vy,vz) along an A-scan. Repeating
this procedure at multiple locations (Fig. 2(c), gray X’s) then yields a 3D3C velocity field
estimate.

2.6. Three-dimensional volume rendering

In order to optimally display and visualize three-dimensional data, we used two subroutines
downloaded from the MATLAB Central File Exchange. The first subroutine was a 3D Canny
edge-detection algorithm to perform volumetric image segmentation [25]. Edge detection was
performed after simple intensity-based thresholding and allowed us to identify the structural
features of the tadpole, ventricle, and tracheal morphology. The second subroutine enabled
vector field visualization using a 3D quiver plot [26].

3. Results

3.1. Validation of 3D3C OCT velocimetry using calibrated flow phantoms

We validated 3D3C DPIV-OCT and DLS-OCT by measuring velocity fields in a flow phan-
tom. Using a syringe pump running at a bulk rate of 100 µL/min, we pumped a bead solution
through a 0.5 mm (z-direction) x 5 mm (y-direction) rectangular cross-section capillary tube
(Fig. 3(a)). A rectangular tube was chosen to avoid any refraction artifacts due to scanning
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laterally (y-direction) over the curved surface of a cylindrical tube. Because the phantom cross-
section has a large aspect ratio, flow was expected to approximate Poiseuille flow between two
planes, characterized by flow directed along the x-direction (vx) with a parabolic profile vary-
ing along the z-axis. We predicted a maximum speed of approximately 0.9 mm/s. The tube was
additionally tilted to impart a small z-velocity component.

For DPIV measurements, we acquired a series of 20 B-scans (representative B-scan shown
in Fig. 3(b)) at 11 different planes. Each B-scan was 3 mm in length, with 1024 A-scans. The
entire acquisition was 450,000 A-scans taken over 16 s. Particles were seeded sparsely enough
such that the average number of particles per focal volume was much less than 1. Log-intensity
images were cross-correlated in order to yield 2D2C images as described in Section 2.3 and
reconstructed into 3D3C measurements as described in Section 2.4. For our DPIV protocol,
we had to choose angles θ1 and θ2 for our scan plane acquisition. Based on the considerations
of our SNR analysis in the Appendix, we chose our imaging planes to be ±15◦ oblique to the
direction of flow along the x-axis.

For DLS-OCT, particle density seeding was increased such that there were multiple particles
per focal volume. A representative M-mode image in Fig. 3(c) shows the intensity trace over
time, although we used the complex signal for correlation calculations. For our scan protocol,
we scanned at 6 different scan biases from 0.23-2.0 mm/s, with 5 repeats each in a 3x3 grid of
xy points, leading to a total of 2,556,000 A-scans over 90 s of acquisition. Note that although
both measurements employ correlation analysis, DLS-OCT data was correlated along the tem-
poral axis, while DPIV data was correlated in the spatial domain at a single, fixed time delay
corresponding to one inter-frame period (Fig. 1).

As shown in Fig. 3(d) and Visualization 1, the 3D3C reconstruction using DPIV yielded
the expected flow profile oriented in the direction of the length of the capillary tube. From the
side, oblique, and superior views of the flow field, one can see that the flow resembles planar
Poiseuille flow, with the geometric tilt of the tube also apparent. Flow speeds reach approx-
imately 1 mm/s, in good agreement with the expected 0.9 mm/s peak flow. In Fig. 3(e) and
Visualization 2 is a 3D3C reconstruction using DLS-OCT with similar views. The recovered
velocity field again shows a parabolic flow profile resembling planar Poiseuille flow with a peak
of approximately 1 mm/s.

The possible sources of error in this validation measurement include an element of pulsatility
(i.e. non-stationarity) in flow due to motor stepping or capacitance in the tube system, small
imperfections in the geometry of the rectangular tube leading to non-idealized Poiseuille flow,
and a small settling velocity of the beads along the z-axis (estimated <10 µm/s).

3.2. Demonstration of directional DLS-OCT in vivo

Because we previously used our directional DLS-OCT protocol to measure flow only in a cal-
ibrated phantom profile, we first wanted to confirm that we could extend the measurements
towards in vivo flow using our basic 1D2C protocol before moving towards 3D3C acquisition.
As such, we tested our methodology by making measurements of vx and vz on epithelial ciliary
flow in Xenopus laevis tadpoles.

Measurements were made by allowing the epithelial cilia in Xenopus to drive fluid flow
of a physiological solution seeded with polystyrene microspheres (Fig. 4, right). After initial
testing, we had to make two changes to our experimental setup in comparison to our origi-
nal phantom measurements. First, it was qualitatively noted that 100 nm beads, which we had
used in our previous studies, seemed to abrogate ciliary flow. In contrast, 500 nm beads did
not appear to diminish flow. As such, we selected a 500 nm bead solution, with 0.1% Tween
added to prevent bead aggregation. Secondly, it was noted that common path reflections caused
a non-overlapping ghost image to appear. We reasoned that the ghost image would also be er-
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Fig. 3. Flow phantom demonstration of 3D3C velocimetry using DPIV and DLS-OCT.
(a) Global orientation of planar flow phantom, which is very wide in the y-dimension as
compared with z-dimension, yielding a planar Poiseuille flow in region of interrogation far
from the lateral walls. (b,c) Log-scale intensity images representing raw data acquisition in
flow phantom channel. (b) DPIV single frame of 5 µm polystyrene microspheres in a flow
phantom, in a single plane, where e1 emphasizes that the plane is oblique to the x-axis. (c)
DLS-OCT single M-mode image of densely seeded 500 nm polystyrene microspheres in
the same flow phantom, at single scan bias. (d,e; Visualization 1, Visualization 2) 3D3C
flow phantom reconstruction using (d) DPIV and (e) DLS-OCT, from a side, oblique, and
superior view. Both methods show expected Poiseuille-like flow in between two parallel
plates. Flow is consistent with the geometric orientation of the flow phantom, and flow
speed peaks near the expected 0.9 mm/s.
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roneously incorporated in our autocorrelation computations. Thus, we used a liquid immersion
focal spacer with a tilted air-glass interface in order to avoid a direct reflection (Thorlabs Focal
Spacer SD-OCT probe) and to eliminate the ghost image.

After making these two changes to our experimental protocol, we then measured epithelial
ciliary flow. Figure 4 shows a B-scan of the embryo corresponding to a coronal cross-section
of the embryo (see Fig. 5(a) for global orientation). Here, our scan protocol consisted of 5
scan biases between 0.35 - 1.4 mm/s, with 5 repeats each. We acquired a total of 230,000 A-
scans over 8.2 s. Our reconstructed flow profile along a single line highlighted in red in Fig.
4, is shown on the left. The flow exhibited multiple characteristics consistent with previous
measurements of epithelial flow. Flow was directed from head to tail, reaching a peak speed of
∼500 µm/s. Flow was primarily transverse (vx) in nature, with axial flow (vz) approximately
an order of magnitude lower. Moreover, the measured flow speed was minimal near the glass-
liquid interface (Fig. 4, blue line), consistent with a no slip boundary from the focal spacer. As
we measured deeper into the fluid, the flow speed increased to a maximum near the surface of
the embryo, dropping back to zero in the body of the animal itself (Fig. 4, green line).

We found that when using our procedure to obtain velocimetry measurements, in a certain
subset of animals, the resulting flow was unphysical in that it did not conform to the qualitative
criteria above, such as head-to-tail flow, and maximal speed near the surface. Indeed, DLS-
OCT techniques have previously been described to fail in vivo when the model correlation
function does not properly fit the data [9]. Additionally, the technique suffers from high error
measurement when decorrelation due to diffusivity approaches decorrelation due to advective
flow [24]. In our case, we found that measurements failed subjectively in 4/9 animals.

Head
Tail

Ciliated Surface
of Embryo

Bead Solution

Range of Scanning

150 μm

Flow

5 μm

R

L

CrCa

Fig. 4. In vivo demonstration of directional DLS-OCT protocol in X. laevis epithelial ciliary
flow. (right) B-scan of single embryo showing head to tail flow of a bead solution along the
ciliated surface of an embryo, with scanning EM micrograph of ciliary patch on surface
of animal (inset). The B-scan plane corresponds to the coronal section in Fig. 5. The red
bar indicates location of depth-scan where velocimetry data is acquired, where width of
bar represents the lateral spatial extent of scanning. (left) Velocimetry profile of vx, as
determined by directional DLS-OCT, and vz, as determined by Doppler, along the depth
scan highlighted in red. The colored lines indicate the location of the glass-liquid interface
(blue) and the embryo surface (green). Flow is zero at the glass-liquid interface, increases
to >500 µm/s near the embryo surface, and diminished back to zero at the body of the
embryo itself. Axes labels: L-Left, R-right, Cr-cranial, Ca-caudal

3.3. Measurement of epithelial cilia-driven fluid flow

We next measured the 3D3C flow field produced by the epithelium of Xenopus laeivs tadpoles
using both DPIV and directional DLS-OCT. For our DPIV protocol, we again had to choose
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angles θ1 and θ2 for our scan plane acquisition. As previously noted, flow is primarily head-to-
tail in nature. Thus, we chose our angles θ1 and θ2 to be±15◦ with respect to the cranial-caudal
axis of the animal (Fig. 5(a)). For each angle we acquired 11 planes, with 20 repeats per plane.
Each B-scan was 6 mm in length, with 1024 A-scans per B-scan, for a total of 450,560 A-scans
taken over 16 s. For DLS-OCT, we performed 1D3C measurements over a 3x5 grid along the
length of the animal. At each point, we acquired 6 scan biases from 0.24-1.4 mm/s, with 5
repeats each, for a total of 1,692,000 A-scans taken over 60 s.

Figure 5(b) and Visualization 3 show the results of our DPIV velocimetry measurements. The
3D3C vector field again shows many of the same qualitative features we previously measured in
Xenopus epithelial flow. Flow near the surface is primarily directed head to tail. Flow is nearly
zero far from the surface of the embryo and reaches a maximum near the surface, consistent
with shear-driven fluid flow. Peak flow speeds reach ∼500 µm/s.

Figure 5(c) and Visualization 4 show the results of DLS-OCT 3D3C velocimetry. Once again,
the epithelial flow exhibits qualitatively similar behavior, with flow primarily directed head to
tail and with highest magnitude near the surface of the embryo. Maximal flow speeds in this
particular embryo reach nearly 1 mm/s. Of note, as we observed when acquiring 1D2C DLS-
OCT measurements, certain data sets resulting from our DLS-OCT protocol did not exhibit the
expected features of flow.

3.4. Measurement of CSF flow

We next measured cerebrospinal fluid (CSF) flow in NF Stage 46 Xenopus tropicalis tadpoles
using DPIV. During development, cerebrospinal fluid circulates through the ventricular system
of the brain. OCT-based volumetric measurements (Fig. 6(a)) provide an intensity-based con-
trast that can be used to delineate the boundaries of these ventricles within the embryo (Fig.
6(b)) based on morphological appearance [27]. As previously described in NF Stage 47-49
X. laevis embryos, CSF circulates amongst the various chambers of the ventricles (Fig. 6(c)),
from the fourth ventricle and midbrain ventricle, through the cerebral aqueduct, to the third
and lateral ventricles [28]. While previous studies of CSF flow were all performed by injecting
exogenous contrast agents [29, 30], we observed that endogenous particulate matter provided
a native scattering contrast agent in OCT that can be used to perform DPIV (Fig. 6(e) and
Visualization 5).

Using this native contrast, we quantified 3D3C CSF flow in the ventricular system of Stage
46 tadpoles. Noting that flow was primarily oriented along the rostral-caudal axis, we used two
non-orthogonal planes oriented at ±15◦ from the rostral-caudal axis. We acquired 13 planes
with 20 repeats each. Each B-scan was 1.2 mm in length and contained 1024 A-scans, for a
total of 532,480 A-scans acquired over 20 s.

From the video and subsequent DPIV processing of a single oblique cross-section (Fig. 6(e)
and Visualization 5), one can see that there is recirculatory flow in the ventricles. Our 3D3C
reconstruction is shown in Fig. 6(d) and Visualization 6. As previously described [28], flow was
directed primarily along the length of the ventricular system, exhibiting a complex recircula-
tory pattern. In order to better visualize the recirculation, we computationally reconstructed the
native axial and sagittal planes of the embryo from our 3D3C data set. The axial cross section
shows non-zero vorticity in its plane of motion. Overall, speeds were significantly slower here
than epithelial ciliary flow, approximately∼20-80 µm/s. Notably, due to a sparsity in sampling
flow in the third and lateral ventricles, we were unable to reconstruct flow in those chambers.

3.5. Measurement of tracheal cilia-driven fluid flow in ex vivo mouse trachea

Using our DPIV protocol, we estimated the 3D3C flow field generated by the ciliated epithe-
lium in an ex vivo trachea from an adolescent mouse. In adolescent mice, the tracheal wall

#242835 Received 16 Jun 2015; revised 2 Aug 2015; accepted 7 Aug 2015; published 24 Aug 2015 
(C) 2015 OSA 1 Sep 2015 | Vol. 6, No. 9 | DOI:10.1364/BOE.6.003515 | BIOMEDICAL OPTICS EXPRESS 3527 

https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-6-9-3515-3
https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-6-9-3515-4
https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-6-9-3515-5
https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-6-9-3515-5
https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-6-9-3515-6


a
V

D
CaCr

Head Tail

DLSc

Eye

b DPIV

0.4

0 

Speed [mm/s]

1

0 

Speed [mm/s]

Coronal

Flow

Fig. 5. Measurement of 3D3C epithelial cilia-driven fluid in X. laevis. (a) Global orien-
tion of embryo, showing rendering of surface (green) and flow directed primarily along
the head-tail axis. Red line shows orientation of coronal planes. (b, Visualization 3) Tad-
pole rendering with 3D quiver plot showing 3D3C velocimetry data, as reconstructed using
DPIV from several perspectives. (c, Visualization 4) Similar rendering, now with veloc-
ity field estimated using directional DLS-OCT. A portion of the embryo surface on the
head is missing due to difficulties in automated segmentation. Note the difference in scale
bar between the (b) and (c). Axes labels: L-left, R-right, Cr-cranial, Ca-caudal, D-dorsal,
V-ventral
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Fig. 6. Measurement of cilia-driven cerebrospinal fluid flow in X. tropicalis ventricle us-
ing DPIV. (a) 3D intensity-based rendering of the head region of X. tropicalis, with (b)
ventricular space segmented out, and highlighted in red. (c) Rendering of segmented ven-
tricular space as viewed from above (top) and from the side (bottom), showing location of
individual ventricles as well as orientation of sagittal and axial planes. IV-fourth ventricle.
M-Midbrain ventricle. CA-cerebral aqueduct. L-lateral ventricles. III-third ventricle. (d,
Visualization 6) 3D3C vector flow field in ventricular system. (e, Visualization 5) Example
of raw acquisition of single cross-sectional movie showing endogenous cellular material
circulating in ventricle (with e1 emphasizing that plane is oblique to rostrocaudal axis by
15◦). The resulting DPIV 2D2C quantification shows recirculation. (f,g) Axial and sagittal
planar reconstructions of velocity data from 3D3C data. Note the different scale bar in (f,g),
referring to the magnitude of only the projected velocity component onto each given plane.
Axes labels: L-left, R-right, Ro-rostral, C-caudal, D-dorsal, V-ventral
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is sufficiently thin to enable cross-sectional flow imaging of the lumen through the wall itself
(Fig. 7(a,b)). As described in [23], the flow in the excised trachea can be quantified by the
imaging the movement of beads in a physiological solution filling the lumen of the trachea
(Fig. 7(c) and Visualization 7). Because flow is primarily oriented along the length of the tra-
chea, in a caudal-cranial (tail-head) orientation, we imaged in non-orthogonal planes at ±15◦

to the cranial-caudal axis. We acquired 13 planes with 20 repeats each. Each B-scan was 6 mm
in length and contained 2048 A-scans for a total of 1,064,960 A-scans acquired over 50 s.

As can be seen in Visualization 7, flow very near to the edges is tail-to-head in nature, but
recirculation occurs in the middle of the trachea. We have previously observed that recirculation
occurs due to geometric effects. As the ciliated surface moves fluid from head to tail, if the outlet
of the trachea is unobstructed, flow remains uniderctional. The presence of an air-fluid meniscus
at the cranial aspect of the trachea, however, may effectively block outflow, thus causing fluid
to recirculate back down the center of the trachea. As a result, the portions of the flow may
appear to be in the opposite (head-to-tail) direction. We typically minimize recirculation in the
context of diagnostic tests by ensuring the trachea remains patent. In the context of general flow
imaging, however, it may be advantageous to be able to quantify such recirculatory patterns.

The 3D3C reconstruction is shown in Fig. 7(d) and Visualization 8. From the top view, the
3D3C reconstruction again shows flow in a tail-to-head direction near the ciliated surface, and
recirculatory in the center of the trachea. Consistent with previous reports, [23], the average
flow speed is ∼20 µm/s, with maximum speeds reaching ∼50 µm/s. The primary tail-to-head
flow pattern is not as evident on the side view. This lack of easily visualizable head-to-tail flow
is possibly due to the fact that head-to-tail flow is localized to a relatively small region near
the tracheal surface, as reported previously [23]. DPIV effectively performs spatially averaging
when the images are subdivided into smaller regions of interest. Thus the technique may not be
as ammenable to highly spatially-localized flow patterns.

4. Discussion

4.1. OCT-based approaches are useful for quantifying 3D3C flow in ciliated systems

Measurement of cilia-driven fluid flow is important for studying multiple organ systems. Cilia
are important for clearance of mucus in the bronchi, circulation of fluid in the ventricles of
the brain, establishment of the right-left axis in the embryonic node, and for movement of ova
in the Fallopian tubes. Each of these ciliated organ systems has a unique geometry, ranging
from tubular (bronchi, Fallopian tubes) to ellipsoid (node) to irregularly shaped (ventricles).
Because the direction of flow cannot be inferred from the shape of the enclosing structure, full
characterization of cilia-driven fluid flow requires 3D3C velocity estimation.

Here we showed that two OCT-based techniques, DPIV-OCT and DLS-OCT, are capable of
quantifying 3D3C flow. Both techniques performed well on a pressure-driven flow phantom,
correctly obtaining the direction of flow, and yielding a parabolic profile consistent with planar
Poiseuille flow. Additionally, we found that both techniques are capable of measuring biological
cilia-driven fluid flow in the Xenopus animal model system. Consistent with previous results
from particle tracking velocimetry, we found that flow was primarily directed in a head-tail
direction, with highest speeds of 500-1000 µm/s near the epithelial surface and decreasing
farther from it.

We also showed that DPIV can be used to quantitatively characterize CSF flow patterns
in the brain. Cilia-dependent CSF flow has been characterized previously, and several genes
are known to disrupt proper development of flow in the ventricles due to their effects on
cilia [30–32]. In particular, Xenopus provides an important animal model system for studying
CSF flow because the ventricles can be imaged without dissection of the brain [27], and many
tools exist that allow rapid and facile genetic manipulation [33]. Our results are in line with
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Fig. 7. Quantification of cilia-driven tracheal fluid flow in adolescent mouse using DPIV.
(a) 3D intensity-based rendering of trachea, with sagittal plane orientation shown (b) Seg-
mented region of trachea within blue box of (a) showing spatial location where fluid flow
was quantified. (c, Visualization 7) Raw acquisition of 5 µm polystyrene microspheres be-
ing driven by ciliary fluid flow, and subsequent 2D2C flow field quantification with DPIV.
The acqusition is oblique to the sagittal plane by 15◦ (d, Visualization 8) 3D3C flow field
rendering from top view (consistent with view in (a)), oblique superior view, and side view.
Large arrows denoting the location and direction of primary tail-head flow as well as re-
circulatory head-tail flow. Axes labels: L-left, R-right, Cr-cranial, Ca-caudal, D-dorsal, V-
ventral
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previously described flow patterns in the ventricular system of Xenopus embryos showing re-
circulatory flow directed primarily along the rostral-caudal axis [28]. Previous imaging studies
of Xenopus CSF, however required injection of exogenous contrast agents, typically visualized
with epifluorescence or brightfield microscopy. In contrast, endogenous particulate matter in
the CSF is sufficient to perform OCT-based DPIV and quantify fluid flow. We are currently
uncertain of the nature of the scattering material in the developing embryo brain, although 600
nm extracellular membrane particles have been reported in rat embryonic ventricular fluid [34].
The material was present in approximately 50% of the embryos we imaged at NF Stage 46.
Further investigation may determine the exact nature of this light-scattering material.

We lastly showed that the use DPIV to quantify the 3D3C flow field in mouse trachea. In the
trachea, the airway surface liquid (ASL), which consists of the mucus layer and the periciliary
layer, is known to be cleared in a tail-to-head fashion [35]. Because of the typically thin layer
size (7 µm periciliary layer and 8-80 µm mucus layer) [1], imaging the ASL directly can be
challenging. µOCT, a variant of OCT with higher spatial resolution, has recently been used to
quantify ciliary dynamics and tracheal mucus velocity in swine trachea [36]. In other studies,
however, the mucus layer is either chemically lysed or washed away prior to quantifying ciliary
flow dynamics [37, 38], and we previously used a similar protocol [23]. Here, we showed that
DPIV-OCT can be used to quantify the vectorial flow field in mouse trachea. Although in typical
experiments we ensure that the trachea is patent and flow is unidirectional, here we were able to
observe the primary tail-head flow direction of flow in addition to more complex recirculatory
flow patterns arising secondary to outflow blockage. Overall, we believe that this type of assay
will be useful for quantifying the effects of physical, chemical, and genetic changes to tracheal
ciliary flow. Such studies may include the deleterious effects of hyperoxia in a neonatal setting
as well as the ability of pharmacological agents to improve ciliary function [23].

4.2. Comparison of DPIV versus DLS-OCT

Based on the underlying physics of signal formation, DPIV and DLS-OCT are both suited for
different imaging regimes. DPIV is better suited for slower, less densely scattering fluids, and
DLS-OCT for faster, more densely scattering fluids. DPIV relies on image cross-correlation,
which in turn is dependent on the same pattern being identified in subsequent frames. In DPIV,
pattern decorrelation diminishes SNR (see Appendix for additional details). As a result, fast
flows can cause patterns to move through the plane of motion, leading to a decrease in SNR.
Additionally, for implementation of DPIV in a coherent imaging modality such as OCT, it is
helpful, though not strictly necessary, to use a scattering solution with less than one particle
per focal volume on average. In more densely scattering regimes, decorrelation can occur more
rapidly due to speckle formation [40], imposing a requirement for higher imaging speed.

In contrast, the decorrelation time of speckle patterns, a limiting factor in DPIV, is actu-
ally utilized in DLS-OCT to provide an estimate of speed. DLS-OCT is typically restricted
to regimes where there are many particles per focal volume. Additionally, DLS-OCT requires
many independent speckle decorrelation events, and thus is optimal at faster flow speeds that
lead to more rapid decorrelation. In this sense, the two techniques are optimized for different
flow regimes, but DPIV is capable of operating in a wider range of scattering conditions. For
these reasons, although both techniques were suitable for relatively fast (∼500 µm/s) epithelial
ciliary flow, DPIV was better suited for the sparsely scattering CSF, and the slower tracheal
flow speeds.

Both techniques as implemented here have an implicit assumption of temporal stationarity.
In both of our techniques, we reconstructed a 3D3C fluid flow field from lower dimensional
data. Because the underlying data is not acquired simultaneously, the ability to reconstruct the
fluid flow field requires that the fluid is undergoing steady state flow. That is, although the
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individual ensembles of particles may change, the vectorial flow field must be invariant in time,
with dv/dt = 0. In the case of cilia-driven flow, this stationarity condition is typically met [4].

Both techniques also make use of the spatiotemporal correlation function g(x0,z0;δx,δ z,τ).
In the case of DPIV, the spatial correlation function at a fixed time lag δ t is calculated, while
in DLS-OCT, the temporal correlation function is calculated at a fixed δx = δ z = 0 (i.e. auto-
correlation). In both cases, in order to empirically calculate the correlation function, statistical
averaging over some domain needs to be performed. In the case of DPIV, averages are calcu-
lated over spatial data (i.e. local regional binning), while in DLS-OCT, averages are calculated
over temporal data. As a result, DPIV implicitly assumes local spatial stationarity, while DLS-
OCT assumes local temporal stationarity.

One consideration regarding the assumption of stationarity is whether the addition of tracer
particles affects either the stationarity of flow or the flow field itself. Specifically, we observed
that 100 nm beads appeared to affect ciliary flow. Beads have the potential to affect the flow
pattern either by interacting with the ciliated surface or by changing the rheological properties
of the surrounding fluid. As to the second point, our beads occupied less than 0.1% of the
volume, leading to an estimated <0.25% change in viscosity [39]. Regarding the overall effect
of particles, we qualitatively observed that the flow pattern was unchanged upon addition of
beads of any size ≥500 nm over a period of ∼1-2 min. This observation guided us to use 500
nm beads for our DLS-OCT acquisitions, and 5 µm beads for our DPIV acquisitions. As such,
we believe that the addition of tracer particles in our experiments was unlikely to affect the
actual flow field or the assumption of stationarity.

Additionally, although both techniques are acquired by the same OCT system with equiva-
lent spatial resolution and sampling, because DPIV uses spatial averaging, with typical window
sizes of 32-128, the final spatial resolution of velocity measurements is lower. Analogously,
because DLS-OCT uses temporal averaging, the temporal resolution of the technique is some-
what lower than DPIV. In practice, DLS-OCT requires longer data acquisitions to reliably make
velocity estimates, approximately 400,000 data points at a single location or 2 seconds of signal
integration per scan bias. Thus, we found it impractical to acquire data at more than 15 or so
(x0,y0) points given our current data processing framework. Because of this overall constraint,
our final reconstructed 3D3C data was significantly coarser in spatial sampling than DPIV.

Lastly, as mentioned previously, in a certain subset of data sets acquired using DLS-OCT,
the expected dynamics of the autocorrelation function do not appear to be well-modeled us-
ing the traditional DLS-OCT autocorrelation function. This phenomenon has been previously
reported [9]. As a result, in large subset of data sets, we observe non-physical vectorial field
reconstructions, including predictions of no flow where flow is clearly visible from OCT video
acquisition. Possible reasons may include violations of temporal stationarity (i.e. the flow field
changes over time), a non-Gaussian focus, scanner noise, and propagation of noise (i.e. shot
noise) of the original signal.

A summary of some of the comparisons between DPIV-OCT and DLS-OCT is included in
Table 1:

5. Conclusion

We demonstrated that complex three-dimensional, three-component (3D3C) microfluidic cilia-
driven fluid flow can be quantified using OCT-based, correlation-based velocimetry methods.
We showed that both DLS-OCT and DPIV-based approaches yield reasonable estimates in a
flow phantom. Additionally, both techniques can characterize the flow field of epithelial-driven
ciliary flow in Xenopus, although DLS-based methods seem to have a high rate of artifact. DPIV
can additionally take advantage of endogenous scattering material to quantify fluid flow in the
ventricles of the brain, and can also be used for slower tracheal ciliary flow. Overall, we believe
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Table 1. Comparison of DPIV and Scanning DLS-OCT. A comparison of the benefits and
limitations of each technique is shown. Sample values as demonstrated in our experiments
are given, although these values do not necessarily reflect the theoretical limits of the tech-
niques. ROI = region of intersest. SNR = signal-to-noise ratio. CSF = cerebrospinal fluid.

DPIV Scanning DLS-OCT

Scattering Regime
Optimized for sparsely scattering
media (<1 particle / focal volume),
but possible to be used in speckled
regime

Optimized for densely scattering
media (�1 particle / focal volume)

Speed of Flow
Slow (<100 µm/s) or faster flow
possible, but SNR decreased by fast
out-of-plane flow (Trachea 20-50
µm/s, CSF 20-100 µm/s, Epithe-
lium 100-1000 µm/s)

Optimized for faster flows (Epithe-
lium 100-1000 µm/s)

Assumption of
Stationarity

Spatial stationarity in xz plane over
ROI (CSF 20x20 µm2, Trachea
50x50 µm2, Epithelium 120x120
µm2), temporal stationarity over
the aquisition of two separate veloc-
ity measurements at a single loca-
tion (15 - 50 s acquisition time)

Temporal stationarity for duration
of scanning at a single point (6 -
10 s) or entire sample (60 - 90 s),
spatial stationarity over lateral ex-
tent of scan (30 - 50 µm)

Temporal Resolution
Dictated by interframe time for
2D2C∼50 ms, or by duration of to-
tal acquisition in 3D3C (15 - 50 s)

Dictated by temporal duration of
scan for 1D3C (6 - 10 s), or entire
acquisition time for 3D3C (60 - 90
s)

Spatial Resolution
Axial and lateral spatial resolu-
tion dictated by ROI in processing
(20x20 µm2 - 120x120 µm2)

Axial spatial resolution equivalent
to imaging system (∼7 µm), lateral
resolution limited by extent of lat-
eral scanning (30-50 µm)

that OCT-based approaches have great promise for elucidating important ciliary physiology.

6. Appendix

6.1. SNR Optimization in DPIV

Prior to implementing our DPIV protocol, we investigated the signal-to-noise ratio (SNR) prop-
erties of our method to optimize acquisition. SNR in DPIV typically depends on many factors
including shot noise of the original acquired images, diffusive motion, and the number of in-
dependent measurements averaged [15]. In the context of this work, we focused specifically
on the effects of measurement angles θ1 and θ2 relative to the flow direction θ f (Fig. 2(b)).
As described in Eqs. (3) and (4), two measurements v1 and v2 are required to reconstruct two
orthogonal flow components vx and vy. The SNR of this reconstruction in turn depends on (1)
the SNR of each of the two independent measurements v1 and v2, and (2) the degree of linear
independence of the two measurements. As outlined in Fig. 8(a), we will show how both of
these quantities depend on the measurement angles, first by calculating the dependence of the
error of v1 and v2 on measurement angle, and then by propagating that error through equations
(3) and (4).
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Fig. 8. Optimization of signal-to-noise ratio (SNR) in DPIV measurements with respect to
measurement angle. (a) Overall flow of SNR predictions. Two components of velocity vx
and vy are synthesized from two non-orthogonal measurements v1 and v2. The error of the
final measurements δvx and δvy, and thus the SNR, depend on error propagation from v1
and v2, as well as on the initial error δv1 and δv2. δv1 and δv2 in turn depend on multiple
factors, including the flow angle θ f relative to the angles of measurement, θ1 and θ2. (b)
Predicted SNR of v1 (and equivalently v2) as a function of angle of measurement θ1, based
on relative height of main correlation peak. θ f here set to be 90◦, and maximum SNR
defined to be unity. (gray) low speed flow, (black) high speed flow. (c) Measured SNR of
v1 as a function of measurement angle θ1 where θ f set at 90◦. (d) Predicted SNR of final
measurement vxy, defined as SNRvxy = 1/(δv2

x + δv2
y)

1/2, as a function of measurement
angles θ1 and θ2. (left) low speed, (right) high speed. (e) Predicted optimal relative angle of
measurement θ1−θ2 (black), and subsequent optimal SNRvxy (gray hatched) as a function
of flow speed.
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In DPIV, two adjacent frames are used to calculated the spatiotemporal cross-correlation
function g(x0,y0;δx,δ z,τ = δ t) at a variety of spatial lags δx and δ z for a fixed temporal lag
δ t, equal to the interframe time (Fig. 1(a)). The location of the peak of this function gives the
displacement (∆x,∆z) between the two frames, which is then used to calculate the velocity. It
has been previously described that the SNR of velocity measurements in DPIV is proportional
to the height of this correlation peak relative to the height of the second highest peak [15]. At
low particle concentrations (<1 particle per focal volume on average), OCT-based correlation
methods reduce to that of incoherent image formation [41]. Additionally, from image corre-
lation spectroscopy, it is known that the spatiotemporal correlation function of an incoherent
image takes the form [42]:

g(x0,z0;δx,δ z,δ t) =

diffusion︷ ︸︸ ︷
1

N
√

1+ 4Dδ t
w2

z
(1+ 4Dδ t

w2
xy
)

out-of-plane motion︷ ︸︸ ︷
e
− (vyδ t)2/w2

xy
1+4Dδ t/w2xy

in-plane motion︷ ︸︸ ︷
e
− (vxδ t−δx)2/w2

xy
1+4Dδ t/w2xy e

− (vzδ t−δ z)2/w2
z

1+4Dδ t/w2z

(5)
where wxy and wz are the beam waist of the Gaussian focus in the xy-plane and z-axis, respec-
tively; D is the diffusivity of the sample; N is the number of particles per focal volume; and
v = (vx,vy,vz) is the flow velocity of the sample. Equation (5) gives the height of the correlation
peak. The physical interpretation of Eq. (5) is as follows. There is perfect correlation when an
image is compared to itself with zero temporal and spatial lag, i.e. g(δx = 0,δ z= 0,δ t = 0) = 1
because we are multiplying the signal with a duplicate of itself. A maximum in correlation is
found between two adjacent frames (δ t 6= 0) when δx = vxδ t and δ z = vzδ t, as these terms
correspond to in-plane translation. In this case, however, the correlation may no longer be unity
because of particle diffusion and out-of-plane (vy) motion. In other words, diffusion and out-of-
plane motion cause image patterns to be lost instead of translated purely in-plane, thus leading
to a decrease in the magnitude of the correlation.

We know that the SNR is proportional to the height of this correlation (assuming that the
noise floor is constant) but also depends on other factors including signal intensity. We introduce
a pre-factor α to encapsulate other non-angle dependent factors. Additionally, we neglect the
diffusive contribution 1/(1+ 4Dτ/w2

xy) and 1/(1+ 4Dτ/w2
z ) in the exponentials, noting that

based on the diffusivity of 5 µm beads and an interframe time of 80 ms, this term is 0.999,
or approximately 1. Lastly, based on the angle of flow θ f , the angle of the plane of imaging
θi (i = 1,2), and the total speed v = (v2

x + v2
y + v2

z )
1/2, we define vy = vsin(θi− θ f ). These

definitions leave us with an expression for SNR:

SNR(θi,θ f ) = α exp

[
−
(

vsin(θi−θ f )δ t
wxy

)2
]

(6)

Equation (6) now relates how SNR in 2D2C DPIV depends on the relative flow angle. Plotted
in Fig. 8(b) is Eq. (6) for two values of flow as a function of scan angle, with the flow angle
arbitrarily set to be 90◦. The SNR has a peak both where θ1 = θ f and θ1 = θ f +180◦. These two
cases occur when flow has only in-plane components. Equation (6) reaches a minimum where
the imaging plane is 90◦ (perpendicular) to flow. The degree to which SNR is decreases from
out-of-plane flow depends on the quantity vδ t/wxy, or the magnitude of out-of-plane motion.

To confirm these predictions, we performed DPIV on our parabolic flow phantom and varied
the angle of the imaging plane with respect to the flow angle, defined to be 90◦. We calculated an
empirical SNR as follows. We recorded 20 frames, leading to n= 19 independent measurements
of vx at each location. SNR was calculated at a point by point basis in the channel as µvx/σvx ,

#242835 Received 16 Jun 2015; revised 2 Aug 2015; accepted 7 Aug 2015; published 24 Aug 2015 
(C) 2015 OSA 1 Sep 2015 | Vol. 6, No. 9 | DOI:10.1364/BOE.6.003515 | BIOMEDICAL OPTICS EXPRESS 3536 



where µvx and σvx were the mean and standard deviation, respectively, of the 19 measurements
at a single location. The SNR was averaged over all points in the channel to come up with
a single 〈SNR〉. Shown in Fig. 8(c) is the SNR(θ ) curve, which shows the same qualitative
behavior as predicted by Eq. (6), reaching a peak near 0◦ where flow is nearly coincident with
the imaging plane, and dropping sharply, and increasing again at 180◦. Notably, the SNR points
on Fig. 8(c) have been scaled to reach a maximum of unity in order to better compare with Fig.
8(b).

Once we know the SNR of each individual measurement, the next step is to predict how that
error due to our measurements of v1 and v2, which we denote as δv1 and δv2, propagates to
our estimation of vx and vy. We denote the errors of our global velocity measurements as δvx
and δvy. Assuming relatively small error, this step can be predicted based on standard error
propagation formulas:

δv2
x =

(
∂vx

∂v1

)2

δv2
1 +

(
∂vx

∂v2

)2

δv2
2 (7)

δv2
y =

(
∂vy

∂v1

)2

δv2
1 +

(
∂vy

∂v2

)2

δv2
2 (8)

Applying Eq. (6) to Eqs. (7) and (8), we derive the formula:

δv2
x =

(
sinθ2

sin(θ1−θ2)

)2

δv1(θ1,θ f )
2 +

(
sinθ1

sin(θ1−θ2)

)2

δv2(θ2,θ f )
2 (9)

δv2
y =

(
cosθ2

sin(θ1−θ2)

)2

δv1(θ1,θ f )
2 +

(
cosθ1

sin(θ1−θ2)

)2

δv2(θ2,θ f )
2 (10)

where θ1 and θ2 are the angles of the imaging planes. The dependence of δv1 and δv2 on
flow angle and plane angle has been highlighted by writing them as a function of θ f and θi.
Importantly, the error in each of these terms diverges when θ1 = θ2. This large increase in error
is a statement of the fact that in order to measure two orthogonal velocity components, two
linearly independent measurements must be made. Measurements that are linearly independent
but non-orthogonal will give a unique answer, but the degree of error propagation depends on
how orthogonal the two angles are.

In order to optimize our acquisition, we optimize not δvx or δvy alone, but rather the sum of
the two. Shown in Fig. 8(d) are contour plots of the relative SNR vxy, defined as 1/(δv2

x +δv2
y)

as a function θ1, θ2 for low and high speed, with θ f now set to be 0◦. SNR is very low when
θ1 = θ2 or θ1 = θ2 + 180◦ due to the linear dependence of the two measurements. For low
flow speeds, maximal SNR occurs near θ1 =±45◦, θ2 =−θ1. (θi and θi +180◦ are equivalent,
because the imaging plane is coincident with flow, and thus there are 8 total equivalent solutions
that maximize SNR.) At higher flow speeds, because SNR of v1 and v2 drops significantly when
θ1 and θ2 are not coincident with θ f , it becomes more advantageous to align each independent
plane closer with the direction of flow, even if the two planes are no longer orthogonal. In the
case of high flow, then, SNR is still maximized when θ1 =−θ2, but now at some angle that is
less than 45◦.

The maximum at each of these contour plots can be calculated numerically, and the location
of the maxima can be plotted as a function of flow speed. Figure 8(e) shows these results. As the
magnitude of speed approaches zero, the optimal imaging angle approaches ±45◦, while when
magnitude of speed is high, the optimal imaging angle moves closer towards being coincident
with the direction of flow.
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The interpretation of Fig. 8(e) is as follows. At low flow speeds, the absolute error δv1 and
δv2 are relatively low, so these two measurements should be orthogonal in order to minimize
error propagation from v1 and v2 to vx and vy. As such, the planes are placed optimally at ±45◦

oblique to the direction of flow. Even at these slow speeds, however, the SNR is less than unity
because both imaging planes cannot be placed coincident with flow simultaneously. As the flow
speed is increased the absolute value of δv1 and δv2 begins to increase. As that error increases,
the gains from having two orthogonal measurements starts to be outweighed by the fact that
the absolute error in v1 and v2 can be reduced by bringing both planes closer to coincident with
the angle of flow. In the most extreme scenario, when flow is very fast, both planes must be
nearly coincident to it to get any reasonable value of v1 and v2. As v1 and v2 begin to become
more collinear, however, small errors propagate more strongly. Thus, at higher flow speeds,
even though we optimize SNR by bringing the two imaging planes coincident with flow, the
total SNR of the process is still much worse than when we can make completely orthogonal
measurements in the low flow speed regime.
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