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Abstract: A fast time-lens-based line-scan single-pixel camera with multi-
wavelength source is proposed and experimentally demonstrated in this 
paper. A multi-wavelength laser instead of a mode-locked laser is used as 
the optical source. With a diffraction grating and dispersion compensating 
fibers, the spatial information of an object is converted into temporal 
waveforms which are then randomly encoded, temporally compressed and 
captured by a single-pixel photodetector. Two algorithms (the dictionary 
learning algorithm and the discrete cosine transform-based algorithm) for 
image reconstruction are employed, respectively. Results show that the 
dictionary learning algorithm has greater capability to reduce the number of 
compressive measurements than the DCT-based algorithm. The effective 
imaging frame rate increases from 200 kHz to 1 MHz, which shows a 
significant improvement in imaging speed over conventional single-pixel 
cameras. 
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1. Introduction 

Compressive sampling (CS) has attracted considerable attention as a new framework for 
signal acquisition because it enables sampling sparse signals far below the Nyquist rate yet 
reconstructing them faithfully [1–4]. As natural images are sparse or compressible with 
respect to some orthogonal basis, such as the discrete cosine transform (DCT) or the wavelet 
transform, CS has a notable impact on imaging, particularly biomedical imaging [5–7]. A 
single-pixel camera with a digital micromirror device (DMD) was proposed by Rice 
University in 2006 [7]. It has a much simpler architecture and can operate over a significantly 
broader spectral range than conventional silicon-based cameras. However, considering the 
time required for compressive measurements acquisition and the refresh rate of DMD, the 
actual frame rate of a single-pixel camera may be tens of frames per second, which would 
seriously limit its applications in fast real-time imaging. Recently, an ultrafast imaging 
technology known as serial time-encoded amplified microscopy (STEAM) has been proposed 
by Goda [8–11] for real-time observation of fast dynamic phenomena, having achieved a 
frame rate of 6.1 MHz and a shutter speed of 440 ps. By integrating the STEAM technology 
into single-pixel imaging, a high-speed single-pixel camera can be achieved. Compared with a 
STEAM camera, its revolutionary data compression capability is quite noticeable and 
especially promising for biomedical applications. Currently multiple groups have shown great 
interest in such a high-speed compressive imaging system [12–14]. It was firstly reported by 
Hongwei Chen and Bryan T. Bosworth in 2014 [12, 13], and then its capability of enabling 
high-speed flow microscopy has been experimentally demonstrated in [14]. A mode-locked 
laser (MLL) is usually used as the optical source in these imaging systems and the frame rate 
is mainly determined by the repetition rate of the MLL and the number of measurements. On 
one hand, the bandwidth of the MLL is not tunable, so the field of view (FOV) of the 
compressive imaging system cannot be widened easily. On the other hand, it is difficult to 
enable high-speed imaging with a tunable frame rate applied for different imaging scenarios 
by using the MLL. In addition, it has been verified that a learned over-complete dictionary 
can represent images even more sparsely than the conventional DCT or wavelet transform 
[15, 16]. In [15], a novel algorithm named K-SVD is proposed to learn an over-complete 
dictionary from a set of training images with a strict sparsity constraint. Via dictionary 
learning, the number of compressive measurements can be further reduced, which contributes 
to an increase in imaging speed. 

In this paper, a fast time-lens-based line-scan single-pixel camera employing a multi-
wavelength source is presented and the introduced dictionary learning approach has been 
demonstrated to be effective for increasing the imaging speed. An optical frequency comb is 
generated by using a multi-wavelength laser, two optical phase modulators (OPMs) and an 
optical time delay (OTD). And then it is modulated by a square-wave signal whose period and 
duty cycle are both tunable to produce an optical pulse train. By using a diffraction grating 
and dispersion compensating fibers (DCF), we can realize space-wavelength-time mapping 
that converts the spatial information of an object into temporal waveforms which would be 
randomly encoded, temporally compressed and continuously digitized. The random 
measurement is accomplished by using a high-speed optical intensity modulator instead of the 
DMD and the number of compressive measurements can be further reduced with the 
dictionary learning algorithm. Consequently the proposed compressive imaging system can 
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even operate at a few MHz, which is several thousand times faster than conventional single-
pixel cameras. 

2. Principle 

Most natural signals have sparse representations in some basis. Suppose that x  is an 
unknown signal of dimension N. It is called K-sparse if it has at most K ( K N ) nonzero 
coefficients in a certain basis ψ . 

 =x ψθ  (1) 

where θ  is a vector with at most K nonzero entries. According to the CS theory [2], x  is 
randomly sampled by a measurement matrix Φ , which can be expressed as follows: 

 y = Φx + e  (2) 

where y  is a vector with M observation samples and Φ  is a pseudorandom matrix of size 

M N×  ( M N< ), whose entries follow a Gaussian or Bernoulli distribution. Here e  is a 

noise vector and bounded by a known amount 
2

σ≤e . It is proved that x  can be exactly 

recovered with only ( )M O KlogN=   measurements if the restricted isometry property (RIP) 

is well satisfied [2] and signal reconstruction is to approximate the solution to the problem 
posed in Eq. (3). 

 
2

min subject to σ≤1θ
θ y -ΦΨθ                (3) 

In image restoration, the representation matrix ψ  is generally the DCT or wavelet 

transform. However, the conventional DCT-based or wavelet-based image representation 
cannot always be the sparsest one when dealing with different types of images. These pre-
constructed dictionaries are restricted to images of a certain type, and cannot be used for a 
new family of images of interest. In addition, the proposed compressive imaging system is a 
line-scan camera, and a 2D image can be obtained by reconstructing every line-scan image 
with a certain number of compressive measurements. If the DCT is used as the representation 
matrix, the sparsity distribution of these line-scan images may fluctuate dramatically. To 
illustrate this problem, a simulation has been performed. The inset in Fig. 1 shows a 256 × 
256 image. Every row of this image is sparsely represented in the DCT domain and the DCT 
coefficients more than one-tenth of the maximum are considered as the nonzero elements of 
the sparse vector. Figure 1 shows the sparsity levels of 256 DCT-coded images, and a 
dramatic fluctuation is clearly presented. On this account, the PSNRs of the recovered line-
scan images in the experiment may vary significantly with the same number of measurements, 
which would badly affect the total PSNR of the 2D image. To overcome these limitations, 
dictionary learning which aims to learn an over-complete dictionary from a set of training 
images is proposed [15]. The training database of image instances should be similar to those 
anticipated in the application. For example, the samples to be imaged are biological cells, so 
the training set should cover as many cell types as possible. Moreover, the number of image 
patches taken from the training set should be large enough for feature extraction. The 
dictionary learning process is discussed in detail as follows. An N P×  matrix 1[ , , ]p=X x x  

composed of P training square patches of length N is used to train an over-complete 
dictionary Ψ  of size N K× , with P K  and K N> . A new algorithm named K-SVD is 
proposed to solve the following problem at a given sparsity level S. 

 
2

0
min subject to , iF

i S∀ ≤
ΨΘ

X -ΨΘ θ                (4) 
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where 1[ , , ]p=Θ θ θ , and iθ  is the sparse representation of the ith patch in terms of the 

columns of the dictionary 1[ , , ]K=Ψ ψ ψ . The K-SVD algorithm initializes an arbitrary 

dictionary 0Ψ  and progressively improves it to optimize the Eq. (4). The specific iteration 

procedure consists of two basic steps: sparse-coding the signals in X  given the current 
estimated dictionary and updating the dictionary atoms given the sparse representation in Θ . 

0 50 100 150 200 250
0

5

10

15

20

25

1D Image

S
pa

rs
ity

 L
ev

el

 

Fig. 1. The sparsity levels of 256 DCT-coded images. Inset: the tested 2D image. 

As the dictionary learning approach presets a sparsity constraint and then designs an over-
complete dictionary with this constraint, the fluctuation on the sparsity level will be smaller 
than that of DCT-coded images, which guarantees a more uniform recovery accuracy. 
Therefore, the learned dictionary is a more appropriate basis than the DCT, and with the same 
number of measurements, the dictionary learning approach can enable higher recovery 
accuracy. 

3. Experimental setup 

The experimental architecture of the proposed fast line-scan single-pixel camera is shown in 
Fig. 2. The optical source is a 40-wavelength laser array and the spacing between adjacent 
wavelengths is 0.8 nm. The multi-wavelength laser is used to generate 7 spectral lines 
spanning from 1550.12 nm to 1559.79 nm with a wavelength spacing of 1.6 nm as shown in 
Fig. 3(a). Then two optical phase modulators (OPMs) both driven by a 10-GHz microwave 
signal and an optical time delay (OTD) are employed to produce an optical frequency comb 
with a bandwidth of 11 nm as shown in Fig. 3(b). By choosing the proper wavelength 
channels, we can make the bandwidth of the frequency comb tunable. Thus the FOV of the 
proposed compressive imaging system can be widened if we increase the bandwidth. After the 
cascade modulation, a square-wave signal with a 20-MHz repetition rate and a 1/50 duty cycle 
provided by a programmable pulse pattern generator (PPG) is used to modulate the optical 
frequency comb via a Mach-Zehnder modulator (MZM) to generate an optical pulse train with 
an average power of 1.5 dBm. Then a high-power Erbium-doped fiber amplifier (EDFA) is 
used to amplify the signal power to 19 dBm. After amplification, the optical pulses enter the 
imaging system through a circulator. 
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Fig. 2. Experimental setup of the proposed compressive imaging system. PPG: pulse pattern 
generator, OPM: optical phase modulator, OTD: optical time delay, MZM: Mach-Zehnder 
modulator, EDFA: Erbium-doped fiber amplifier, Cir: circulator, DCF: dispersion 
compensating fiber, SMF: single mode fiber, PD: photodetector, ADC: analog-to-digital 
converter, DSP: digital signal processor. 
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Fig. 3. The optical spectra (a) before the cascade modulation and (b) after the cascade 
modulation. 

The imaging system is composed of a diffraction grating, an objective lens and a target 
board (1951 USAF resolution test chart) which is controlled by a stepper motor. The 
diffraction grating is used to convert the spectrum of an optical pulse into a one-dimensional 
(1D) rainbow beam, achieving space-to-wavelength mapping. The spatially dispersed pulses 
are focused with an objective lens and then illuminate a moving target board. The average 
optical power at the object is about 7 dBm. When the optical pulses reflect off the target 
board, the spatial information of this board is encoded into the spectrum of the consecutive 
pulses. A two-dimensional (2D) image can be obtained by moving the target board in the 
direction normal to the line-scan direction. After the spectrally-encoded beams re-enter the 
diffraction grating, they are recombined. The circulator then directs the optical pulses into an 
EDFA whose output power is about 10 dBm. A section of dispersion compensating fiber 
(DCF) ( 2 2736 /z ps nmβ = ) with a linear group delay response is located after the amplifier 

to perform wavelength-to-time mapping. Another MZM driven by a 1-GHz microwave signal 
is used to spectrally encode the optical pulses with different pseudo-random binary sequence 
(PRBS) patterns. After random modulation, the optical power of the pulses is decreased to 1.8 
dBm. To compress the optical pulses temporally, two sections of 80-km single mode fiber 
(SMF) ( 2 2720 /z ps nmβ = − ) are used. Another two EDFAs are needed to compensate for the 

power loss as shown in Fig. 2. After going through the second section of SMF, the 
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compressed optical pulses with an average power of about −7 dBm are detected by a 1-GHz 
photodetector and then sampled by an analog-to-digital converter (ADC) synchronized with a 
20-MHz clock provided by the PPG. When M serial measurements are accomplished, an 
observation vector [ ] , mm =  y x φ  can be obtained, where x  represents the target image and 

mφ  refers to the m-th PRBS pattern. Let repf  denotes the laser pulse repetition rate. The 

frame rate of the proposed compressive imaging system is /repf M . Thus higher frame rates 

can be achieved by increasing the repetition rate of the square-wave signal. 

4. Experimental results 

Figure 4 shows the temporal waveforms and the spectrum of optical pulses before random 
modulation (left) and after compression (right). A periodic sequence of spectrally-encoded 
optical pulses is shown in Fig. 4(a) and the temporal waveform of a single pulse is described 
in Fig. 4(b). It can be observed that the pulse duration is stretched to about 32 ns after 
dispersion and the pulse profile carries the spatial information of the target board. Figure 4(c) 
gives the optical spectrum of a dispersed pulse whose envelope is consistent with the pulse 
temporal profile. After going through a section of SMF, the stretched optical pulses are 
temporally compressed to nearly 1 ns as shown in Fig. 4(d) and 4(e). The optical spectrum of 
the compressed pulse is depicted in Fig. 4(f), showing no change in shape. 
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Fig. 4. The temporal waveforms and the spectrum of optical pulses before random modulation 
(left) and after compression (right). (a) A 20-MHz optical pulse train whose spectrum is 
encoded with a spatial image (b) The temporal waveform of an optical pulse after dispersion. 
(c) The optical spectrum of one dispersed pulse. (d) The optical pulses after compression. (e) 
The temporal profile of one compressed pulse. (f) The optical spectrum of a pulse after 
compression. 

Image reconstruction is firstly performed with the DCT-based algorithm and the 
corresponding results with different number of compressive measurements are shown in Fig. 
5. In the experiment, the width of a scan line is about 5 mm and the step distance of the 
stepper motor is set at 10 μm. Each line-scan image can be reconstructed with a certain 
number of measurements. With the stepper motor moving in the direction normal to the line-
scan direction (about 200 steps), a 2D image of size 5mm 2mm×  can be obtained. The 
horizontal pixel resolution of this 2D image is proportional to the ratio between the bandwidth 
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of the optical frequency comb and the spatial resolution of the imaging system. In the 
experiment, the fiber dispersion (2.736 ns/nm) determines that the spatial resolution of the 
imaging system is governed by the grating dispersion [17]. According to the experimental 
parameters, the horizontal pixel resolution of the 2D image is approximately 250. In addition, 
the maximum number of horizontal pixels for a line-scan image is expressed as follows: 

 PRBSN D Rλ= Δ ⋅ ⋅  (5) 

where D is the total fiber dispersion, λΔ  is the total multi-wavelength source bandwidth and 

PRBSR  is the pattern rate. In the experiment, to reduce the bitrate requirements of the PPG, a 1-

ns PRBS bit is considered as six 167-ps PRBS bits so that the equivalent bitrate of the PRBS 
signal is increased by six times, resulting in a line-scan image composed of 250 pixels. Figure 
5(a)-5(d) gives a part of the recovered images with a compression ratio of 32%, 40%, 60%, 
80%, respectively. It is obvious that the recovery accuracy is proportional to the number of 
compressive measurements. However, the imaging speed of the proposed system will slow 
down with the number of measurements increasing. A trade-off between the frame rate and 
the recovery accuracy should be taken into consideration. In the experiment, the repetition 
rate of the optical pulses is 20 MHz and 100 measurements are used for image reconstruction 
so that a single-pixel camera with a frame rate of 200 kframes/s is achieved. 

 

Fig. 5. Image reconstruction with different number of compressive measurements. (a) 80 
measurements. (b) 100 measurements. (c) 150 measurements. (d) 200 measurements. 

A further increase in imaging speed can be achieved by employing the dictionary learning 
approach. In the experiment, 10000 image patches are extracted from an arbitrary set of 
natural images shown in Fig. 6(a). Different types of USAF-1951 resolution targets (including 
USAF-1951 Standard Resolution Target (T-20), Low Contrast USAF-1951 Resolution Target 
(T-20-LC), USAF-1951 Direct Read Resolution Target (T-21) and USAF-1951 Linear Direct 
Read Resolution Target (T-22)) are used as the main training images. As the features 
extracted from patches in these training samples are relatively simple, to get more features, 
some complicated images are also incorporated into the training set. In the experiment, the 
bandwidth of the optical frequency comb is changed to 8 nm, so the number of the resolved 
pixels for a line-scan image is about 200. Correspondingly, the patch size is set at 200 1×  as 
shown in Fig. 6(b). The overlap size between adjacent image patches is 150 1×  and the 
sparsity level of the representation over the learned dictionary for an image patch is set at 10. 
With this sparsity constraint, an over-complete dictionary of size 200 400×  for sparse coding 
can be learned with the K-SVD algorithm. 

To validate the effectiveness of the learned dictionary, a performance comparison of the 
dictionary learning algorithm and the DCT-based algorithm is conducted. Figure 6(c) shows 
the recovery results using a learned dictionary and a DCT basis at different compression 
ratios. In the experiment, the number of the resolved pixels for a line-scan image is about 200 
and 20, 40, 80, 100 and 120 compressive measurements are tested to recover images, 
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respectively. The compression ratio and the PSNR of each recovered image are both indicated 
in Fig. 6(c). By increasing the number of measurements, the accuracy of the recovered image 
will be improved, and vice versa. The results in Fig. 6(c) illustrate that better recovery 
performance could be achieved by using the dictionary learning algorithm than the DCT-
based algorithm at the same compression ratio and more obvious superiority can be observed 
at lower compression ratios. With the dictionary learning algorithm, fewer measurements will 
be needed which contributes to improving the frame rate of the proposed line-scan single-
pixel camera. In Fig. 6(c), it can be also observed that the recovered image via dictionary 
learning at a compression ratio of 10% can be well recognized while at the same compression 
ratio the DCT-based image recovery is not satisfying. According to this result, a line-scan 
single-pixel camera with a 1-MHz frame rate can be achieved by employing the dictionary 
learning approach. 

 

Fig. 6. Image reconstruction with the over-complete dictionary and the DCT basis at different 
compression ratios. (a) Sample images used for training the dictionary. (b) The patches taken 
from the tested images. (c) Image reconstruction with the over-complete dictionary and the 
DCT basis at different compression ratios (10%, 20%, 40%, 50%, 60%). 

5. Conclusion 

A fast time-lens-based line-scan single-pixel camera with multi-wavelength source is 
proposed in this paper, having achieved a frame rate of 1 MHz, which shows a significant 
improvement in imaging speed over conventional single-pixel cameras. By using a multi-
wavelength laser instead of a MLL, the frame rate of the proposed compressive imaging 
system can be tuned conveniently. In addition, the learned dictionary from a set of training 
images for sparse representation has been demonstrated to be a more appropriate basis than 
the DCT and with the dictionary learning algorithm, the imaging speed can be further 
increased. This kind of high-speed single-pixel camera has the potential applications on 
biomedical imaging and surface inspection. 
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