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Summary

The human amygdala is critical for social cognition from faces, as borne out by impairments in 

recognizing facial emotion following amygdala lesions [1] and differential activation of the 

amygdala by faces [2–5]. Single-unit recordings in the primate amygdala have documented 

responses selective for faces, their identity, or emotional expression [6, 7], yet how the amygdala 

represents face information remains unknown. Does it encode specific features of faces that are 

particularly critical for recognizing emotions (such as the eyes), or does it encode the whole face, 

a level of representation that might be the proximal substrate for subsequent social cognition? We 

investigated this question by recording from over 200 single neurons in the amygdalae of seven 

neurosurgical patients with implanted depth electrodes [8]. We found that approximately half of 

all neurons responded to faces or parts of faces. Approximately 20% of all neurons responded 

selectively only to the whole face. Although responding most to whole faces, these neurons 

paradoxically responded more when only a small part of the face was shown compared to when 

almost the entire face was shown. We suggest that the human amygdala plays a predominant role 

in representing global information about faces, possibly achieved through inhibition between 

individual facial features.
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Results

Behavioral Performance

We recorded single-neuron activity from microwires implanted in the human amygdala 

while neurosurgical patients performed an emotion categorization task. All patients (12 

sessions from 10 patients, 1 female) were undergoing epilepsy monitoring and had normal 

basic ability to discriminate faces (see Table S1 available online). Patients were asked to 

judge for every trial whether stimuli showing a face or parts thereof were happy or fearful 

(Figure 1) by pushing one of two buttons as quickly and accurately as possible. Each 

individual face stimulus (as well as its mirror image) was shown with both happy and fearful 

expressions, thus requiring subjects to discriminate the emotions in order to perform the task 

(also see Figure S1D). Each stimulus was preceded by a baseline image of equal luminance 

and complexity (“scramble”). We showed the entire face (whole face, WF), single regions of 

interest (eye or mouth “cutouts,” also referred to as regions of interest [ROIs]), and 

randomly selected parts of the face (“bubbles”; Figure 1A). The randomly sampled bubbles 

were used to determine which regions of the face were utilized to perform the emotion 

classification task using a reverse correlation technique [9]. The proportion of the face 

revealed in the bubble stimuli was adaptively modified to achieve an asymptotic target 

performance of 80% correct (Figure 1B; see Supplemental Experimental Procedures); the 

number of bubbles required to achieve this criterion decreased, on average, over trials 

(Figure 1B). Average task performance across all trial categories was 87.8 ± 4.8% (n = 12 

sessions, ±standard deviation [SD]; worst performer was 78% correct; see Figure S1A for 

details). The behavioral classification image derived from the accuracy and reaction time 

(RT) of the responses showed that patients utilized information revealed by both the eyes 

and the mouth region to make the emotion judgment (Figure 1C; Figure S1B). Overall, the 

behavioral performance-related metrics confirmed that patients were alert and attentive and 

had largely normal ability to discriminate emotion from faces (cf. Figure S1).

Face-Responsive Neurons

We isolated a total of 210 single units (see Supplemental Experimental Procedures for 

isolation criteria and electrode location within the amygdala) from nine recording sessions in 

seven patients (three patients contributed no well-isolated neurons in the amygdala). Of 

these, 185 units (102 in the right amygdala, 83 in the left) had an average firing rate of at 

least 0.2 Hz and were chosen for further analysis. Only correct trials were considered. To 

analyze neuronal responses, we first aligned all trials to the onset of the scramble or face 

epochs and compared the mean firing rate before and after. We found that 11.4% of all units 

showed a significant modulation of spike rate already at the onset of the scramble (Table S2; 

see Figure 2A for an example), indicating visual responsiveness [10, 11], whereas 51.4% 

responded to the onset of the face stimuli relative to the preceding baseline (Table S2). Thus, 

although only about a tenth of units responded to phase-scrambled faces relative to a blank 

screen, half responded to the facial stimuli relative to the scramble. Some units increased 

their firing rate, whereas others decreased their rate in response to stimulus onset (42% and 

36% of the responsive units increased their rate for scramble and face stimuli onset, 

respectively; Table S2; Figure S2). The large proportion of inhibitory responses may be 

indicative of the dense inhibitory network within the amygdala [12].
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Of these face-responsive neurons, 36.8% responded in bubble trials, 23.8% to whole faces, 

and 14.1% and 20.0% to eye and mouth cutouts, respectively (all relative to scramble 

baseline); some units responded to several or all categories (see Figure 2A for an example). 

To assess relative selectivity, we next compared responses among different categories of 

face stimuli (see Table S2 for comprehensive summary). We found that a substantial 

proportion of units (19.5%) responded selectively to whole faces, compared to cutouts 

(Figure 2; Figure S2). Only a small proportion of units distinguished between eye and mouth 

cutouts or between cutouts and bubbles (<10%). We found on the order of 10% of neurons 

whose responses differentiated between emotions, gender, or identity, similar to a prior 

report [6]. We thus conclude that (1) amygdala neurons responded notably more to face 

features than unidentifiable scrambled versions otherwise similar in low-level properties, (2) 

of the units responding to face stimuli, some responded regardless of which part of the face 

was shown, and (3) approximately 20% of all units, however, responded selectively only to 

whole faces and not to parts of faces, a striking selectivity to which we turn next.

Whole-Face-Selective Neurons

We next focused on the whole-face (WF)-selective units, defined in our study as those that 

responded differentially to WFs compared to the cutouts (n = 36). The majority of such units 

showed no correlation with RT of the patient’s behavioral response (only 3/36 showed a 

significant positive correlation, and 2/36 a significant negative correlation with RT in the 

bubble trials; 1/36 showed a significant positive correlation with RT in the WF trials), 

favoring a sensory over a motor-related representation. The majority of the units (32 of 36, 

89%) increased their firing rate for WFs relative to bubble trials. Focusing on these units 

that increase their rate (see below for the others), the first temporal epoch showing 

significantly differential responses to WFs and bubble trials was 250–500 ms after stimulus 

onset (Figure 3A). Note that this is an independent confirmation of the response selectivity, 

because only cutouts rather than bubble trials were used to define the WF selectivity of the 

neurons to begin with (see Supplemental Experimental Procedures).

How representative are the WF-selective neurons of the entire population of amygdala 

neurons? To quantify the differential response across all neurons to WFs compared to 

bubble stimuli, we calculated a whole-face index (WFI; see Supplemental Experimental 

Procedures) as the baseline-normalized difference in response to whole faces compared to 

bubbles. The average WFI of the entire population (n = 185) was 11% ± 3% (significantly 

different from zero, p < 0.0005), showing a mean increase in response to WFs compared to 

bubbled faces. The absolute values of the WFI for the previously identified class of WF-

selective units (n = 36) and all other units (n = 149) were significantly different (53% ± 7% 

and 18% ± 2%, respectively; p < 1e-7; Figures 3C and 3D). We conclude that a 

subpopulation of about 20% of amygdala neurons is particularly responsive to WFs.

Nonlinear Face Responses

We next systematically analyzed responses of WF-selective neurons as a function of the 

proportion of eye and mouth region that was revealed in each bubble trial (number of 

bubbles that overlap with the eye and mouth ROI) (Figure 4A). Because mean firing rates 

varied between 0.2 and 6 Hz (cf. Figure 3B), we assured equal weight from each unit by 
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normalizing (for each unit) the number of spikes relative to the number of spikes evoked by 

the WF. The resulting normalized response as a function of the proportion of the ROI that 

was revealed across the bubble trials is shown for several representative single units in 

Figure 4B. We found several classes of responses: some did not depend on the proportion of 

the face revealed (Figure 4B3), some increased as a function of the proportion revealed 

(Figures 4B6 and 4B7), and some decreased (Figures 4B1, 4B2, 4B4, and 4B5). Statistically, 

most individual units had a response function whose slope did not achieve significance (28 

of 36 units), and thus most units did not clearly increase or decrease their firing rate as a 

function of the proportion of the face revealed. However, in nearly all cases, there was a 

striking discrepancy between responses to bubbles compared to whole faces: responses to 

bubble trials were not at all predictive of responses to WFs, even when substantial portions 

of the face or its features were revealed. We next quantified this observation further.

The population average of all single-trial responses of all units that increase their rate for 

WFs (32 units) showed a highly significant negative relationship with the amount of the eye 

and mouth revealed in the bubble trials (Figure 4C). This negative relationship was 

statistically robust across all trials as well as units, as assessed by a bootstrap statistic (mean 

slope −0.18 ± 0.05; see Figure 4C for details). Although this result was based on normalized 

firing rates, an even more significant negative relationship was found when considering 

absolute firing rates (Figure S3D) or the proportion of the whole face revealed (Figure S3E). 

The slope of the curve became more negative as the partial face became more similar to the 

WF (Figure 4C). Moreover, the same pattern, but with opposite sign, was found for the 

population average of all units that decreased their spike rate to WFs (n = 4): these units 

increased their spike rate with greater proportion of the face or ROI revealed (Figure S3A). 

Thus, in both cases, the population average of neurons that were WF selective (as defined by 

the initial contrast between WF and cutouts) showed a strong and statistically significant 

relationship with the amount of the face that was shown, despite a complete failure to 

predict the response to whole faces. For neurons that were not WF selective to begin with, 

there was no systematic effect in response to the proportion of the face revealed—the slope 

was not significantly different from zero (Figure 4D). However, even for these non-WF-

selective neurons, there was still a surprising difference between full-face and bubble trials, 

indicating that some of the non-WF units remain sensitive to WFs to some degree (also see 

Figure 3C). None of the above effects could be explained by mere differences in visibility or 

contrast (quantified by the contrast threshold) between the bubble and WF trials (Figure 4E; 

Figure S3C).

Might the above effect somehow result from the fact that the majority of bubble trials only 

revealed a small proportion of the face? We tested this possibility in one patient by disabling 

the dynamic change in bubbles and showing a relatively fixed and large number of bubbles 

(~100), revealing a large proportion of the face on all trials (Figure S3F shows examples; 

typically >90% of the eyes and mouth ROI was revealed). In this patient, we found 5 out of 

21 units (24%) that were WF selective (see Figure S3H for an example), and these neurons 

showed a similar nonlinear response profile (Figure S3G). The average WFI for the WF 

units and the entire population was 130% ± 14% and 37% ± 8%, respectively. Once again, 

we found that neurons that selectively respond to WFs failed to respond to parts of the face, 

in this case even when almost all of the face was revealed.
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Could a difference in eye movements contribute to the responses we observed? This issue is 

pertinent, given that the human amygdala is critical for eye movements directed toward 

salient features of faces: lesions of the human amygdala abolish the normal fixations onto 

the eye region of faces [13]. Although we did not record eye movements in the present study 

as a result of technical constraints, we measured eye movements in a separate sample of 30 

healthy participants (see Supplemental Experimental Procedures) in the same task. The 

mean and variance of the fixation patterns along the x and y axes did not differ between 

whole and bubbled faces (p > 0.20, two-tailed paired sign test). Similarly, in a previous 

study we found that fixation times on eyes and mouth in WFs and bubbled faces did not 

differ [14].

Finally, to examine the possible effects of recording from neurons that were in seizure-

related tissue, we recalculated all analyses excluding any neurons within regions that were 

later determined to be within the epileptic focus. After excluding all units from that 

hemisphere in which seizures originated (see Table S1), a total of 179 units remained. Of 

those, 157 had the minimal required firing rate of 0.2 Hz, and 32 of those units (20%) were 

WF-selective units. Using only those units, all results remained qualitatively the same. It is 

also worth noting that, with one exception, all the patients with a temporal origin of seizures 

had their seizure foci in the hippocampus rather than the amygdala (Table S1), further 

making it unlikely that the inclusion of neurons within seizure-related tissue might have 

biased our findings.

Discussion

Recording from single neurons in the amygdalae of seven neurosurgical patients, we found 

that over half of all neurons responded to face stimuli (compared to only 10% of neurons 

responding to phase-scrambled faces), and a substantial proportion of these showed 

responses selective for whole faces as compared to pieces of faces (WF-selective). Also, 

most neurons (31 of 36) did not show any association with reaction time, arguing that the 

majority of WF-selective neurons in the amygdala are driven by the sensory properties of 

whole faces rather than decisions or actions based on them. The earliest responses to WFs 

occurred within 250–500 ms after stimulus onset (Figure 3A). WF-selective neurons showed 

a highly nonlinear response, such that their response to WFs was inversely correlated with 

their response to variable amounts of the face or its features (eyes or mouth) that were 

revealed. Neurons that decreased their response as a function of the amount of the face 

revealed increased their response to WFs (Figure 4C). In contrast, neurons that increased 

their response as a function of the amount of the face revealed decreased their response to 

WFs (Figure S3A). In both cases, neurons showed the greatest difference in response 

between WFs and pieces of faces when facial features shown were actually the most similar 

between the two types of stimulus categories. Thus, the response to partially revealed faces 

was not predictive of how the unit would respond to WFs. These findings provide strong 

support for the conclusion that amygdala neurons encode holistic information about WFs, 

rather than about their constituent features.

We identified WF-selective neurons based on comparisons with the eye and mouth cutout 

trials. Because the remainder of the analysis was based on responses of these neurons in the 
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bubble trials, the selection and subsequent analysis are statistically independent. This also 

allows later comparison of the response to the cutouts with the bubble trials (Figures 4C and 

4D), which reveals that the cutout responses (unlike the WF responses) are consistent with 

what the bubble trials predict.

Our subjects performed an emotion categorization task, but amygdala responses to faces 

have been observed also in a variety of other tasks [2, 4, 6, 7, 11]. Also, classification 

images for face identification tasks are very similar to those we obtained using our emotion 

discrimination task [15] (cf. Figure 1C). This makes it plausible that WF-selective units 

would be observed regardless of the precise nature of the task requirements. We emphasize 

the distinction between responsive and selective neurons in our study—although about 50% 

of neurons responded to facial stimuli (compared to scrambles), this does not make them 

face selective because they might also respond to a variety of nonface stimuli (which were 

not shown in our study). Thus, the WF-selective units we found were selective for WFs 

compared to face parts, but their response to nonface stimuli remains unknown.

We analyzed the responses to the bubble trials by plotting neuronal responses as a function 

of the amount of the eye and mouth features revealed in these trials (Figure 4), as well as 

plotting the proportion of the entire face revealed (Figure S3E). The two measures 

(percentage of ROI revealed, percentage of entire face revealed) were positively correlated 

across trials (on average r = 0.46, p < 0.001; Figure S1C), because bubbles were 

independently and uniformly distributed over the entire image and the average number of 

bubbles (typically converging to around 20 during a session) was sufficiently high to make 

clustering of all bubbles on one ROI unlikely. As expected, the response as a function of the 

proportion of the entire face revealed (Figure S3E) thus shows a similar relationship at the 

population level. We used percentage of ROI for our primary analysis because it offered a 

metric with greater range, due to variability in the spatial location of the bubbles.

Facial Features Represented in the Amygdala

Building on theoretical models [16] as well as findings from responses to faces in temporal 

neocortex that provides input to the amygdala [17, 18], several studies have asked what 

aspects of faces might be represented in the amygdala. Various reports have demonstrated 

that the amygdala encodes information both about the identity of an individual’s face, as 

well as about the social meaning of the face, such as its emotional expression or perceived 

trustworthiness [2, 4, 6, 7, 11]. Patients with amygdala lesions exhibit facial processing 

deficits for a variety of different facial expressions, including both fearful and happy [1, 13], 

and we found that most WF-selective units do not distinguish between fearful and happy, 

suggesting that the amygdala is concerned with a more general or abstract aspect of face 

processing than an exclusive focus on expressions of fear. At which stage of information 

processing does the amygdala participate? Because the amygdala receives highly processed 

visual information from temporal neocortex [19], one view is that it contains viewpoint-

invariant [20], holistic [21] representations of faces synthesized through its inputs. Such 

global face representations could then be associated with the valence and social meaning of 

the face [22, 23] in order to modulate emotional responses and social behavior. This 

possibility is supported by blood oxygen level-dependent (BOLD) functional magnetic 
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resonance imaging (fMRI) activations within the amygdala to a broad range of face stimuli 

(e.g., [3, 5]). An alternative possibility is motivated by the finding that the amygdala, at least 

in humans, appears to be remarkably specialized for processing a single feature within faces: 

the region around the eyes. For instance, lesions of the amygdala selectively impair 

processing information from the eye region in order to judge facial emotion [13], and 

BOLD-fMRI studies reveal amygdala activation during attention to the eyes in faces [24] 

and to isolated presentation of the eye region [25, 26]. These opposing findings suggest two 

conflicting views of the role of the amygdala during face processing. Our results generally 

support the first possibility.

Face Responses in the Primate Amygdala

The amygdala receives most of its visual inputs from visually responsive temporal neocortex 

[19, 27], and there is direct evidence from electrical microstimulation of functional 

connections between face-selective patches of temporal cortex and the lateral amygdala in 

monkeys [28]. Although there is ongoing debate regarding a possible subcortical route of 

visual input to the amygdala that might bypass visual cortices [29], both the long response 

latencies and WF selectivity of the neurons we report suggest a predominant input via 

cortical processing. This then raises a core question: What is the transformation of face 

representations in the amygdala, relative to its cortical inputs?

The regions of temporal cortex that likely convey visual information about faces to the 

amygdala themselves show remarkable selectivity to faces [30–32] and to particular 

identities [33, 34] and emotions [17, 35] of faces. Regions providing likely input to the 

amygdala [28] are known to contain a high proportion (>80%) of face-selective cells and 

have highly viewpoint-invariant responses to specific face identities [20]. In humans, studies 

using BOLD-fMRI have demonstrated between 3 and 5 regions of cortex in the occipital, 

temporal, and frontal lobes that show selective activation to faces and that appear to range in 

encoding parts of faces, identities of faces, or changeable aspects of faces such as emotional 

expressions [18, 36]. Intracranial recordings in humans have observed electrophysiological 

responses selective for faces in the anterior temporal cortex [37, 38]. However, although 

there is thus overwhelming evidence for neurons that respond to faces rather than to other 

stimulus categories, many temporal regions also respond to specific parts or features of faces 

to some extent [32, 39, 40]. In contrast, the highly nonlinear face responses we observed in 

the amygdala have not been reported.

Single-unit responses in the monkey amygdala have described responses selective for faces 

[41], with cells showing selectivity for specific face identities and facial expressions of 

emotion [7, 42, 43] as well as head and gaze direction [44]. Interestingly, the proportion of 

face-responsive cells in the monkey amygdala has been reported to be approximately 50% 

[7, 42], similar to what we found in our patients. Similarly, cells recorded in the human 

anteromedial temporal lobe including the amygdala have been reported to exhibit highly 

specific and viewpoint-invariant responses to familiar faces [11, 45], as well as selectivity 

for both the identity and emotional expression of faces [6]. The present findings are 

consistent with the idea that there is a convergence of tuning to facial features toward more 

anterior sectors of the temporal lobe, culminating in neurons with responses highly selective 
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to WFs as we found in the amygdala. The nonlinear face responses we describe here may 

indicate an architecture involving both summation and inhibition in order to synthesize 

highly selective face representations. The need to do so in the amygdala likely reflects this 

structure’s known role in social behavior and associative emotional memory: in order to 

track exactly which people are friend or foe, the associations between value and face identity 

must be extremely selective in order to avoid confusions between different people.

It remains an important question to understand how the face representations in the amygdala 

are used by other brain regions receiving amygdala input. It is possible that aspects of 

temporal cortical face responses depend on recurrent inputs from the amygdala, because the 

face selectivity of neurons in temporal regions that are functionally connected with the 

amygdala (such as the anterior medial face patch) evolves over time and peaks with a long 

latency of >300 ms [20], and because temporal cortex can signal information about 

emotional expression at later points in time than face categorization as such [35]. Similarly, 

visually responsive human amygdala neurons respond with a long latency of on average 

around 400 ms [46]. Such a role for amygdala modulation of temporal visual cortex is also 

supported by BOLD-fMRI studies in humans that have compared signals to faces in patients 

with lesions to the amygdala [47].

In conclusion, our findings demonstrate that the human amygdala contains a high proportion 

of face-responsive neurons. Most of those that show some kind of selectivity are selective 

for presentations of the entire face and show surprising sensitivity to the deletion of even 

small components of the face. Responses selective for whole faces are more prevalent than 

responses selective for face features, and responses to whole faces cannot be predicted from 

parametric variations in the features. Taken together, these observations argue that the face 

representations in the human amygdala encode socially relevant information, such as 

identity of a person based on the entire face, rather than information about specific features 

such as the eyes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Stimuli and Behavior
(A) Timeline of stimulus presentation (top). Immediately preceding the target image, a 

scrambled version was presented for a variable time between 0.8 and 1.2 s. Next, the target 

image was presented for 500 ms and showed either a fearful (50%) or happy (50%) 

expression. Subjects indicated whether the presented face was happy or fearful by a button 

press. The target presentation was followed by a variable delay. Target images and 

associated color code used to identify trial types in later figures are shown (bottom).

(B and C) Behavioral performances from the patients.

(B) Learning curve (top) and reaction time (bottom) (n = 11 and 12 sessions, respectively, 

mean ± standard error of the mean [SEM]). The inset shows example stimuli for 20, 30, and 

40 bubbles revealed. Patients completed on average a total of 421 bubble trials, and the 

average number of bubbles required ranged from 100 at the beginning to 19.4 ± 7.9 on the 

last trial (n = 11 sessions, ±standard deviation [SD]; one session omitted here because the 

learning algorithm was disabled as a control, see results). The average reaction time was 

fastest for whole faces and significantly faster for whole faces than bubble trials (897 ± 32 

ms versus 1,072 ± 67 ms, p < 0.05, n = 12 sessions, relative to stimulus onset).

(C) Behavioral classification image (n = 12 sessions). Color code is the z scored correlation 

between the presence or absence of a particular region of the face and behavioral 

performance: the eye and mouth regions conveyed the most information, as described 

previously [9]. See Figure S1 for further analyses of behavioral performance.
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Figure 2. Single Unit Responses in the Amygdala
(A–D) Examples of responses from four different neurons. Some responded to all trials 

containing facial features (A), whereas others increased their firing rates only to whole faces 

(B–D). Each of the units is from a different recording session, and for each the raster (top) 

and the poststimulus time histogram (bottom) are shown with color coding as indicated. 

Trials are aligned to scramble onset (light gray, on average 1 s, variable duration) and face 

stimulus onset (dark gray, fixed 500 ms duration). Trials within each stimulus category are 

sorted according to reaction time (magenta line).

(E) Waveforms for each unit shown in (A)–(D). Figure S2 shows the rasters for the units 

shown in (C) and (D).
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Figure 3. Whole-Face-Selective Neurons
(A) Mean response of all whole-face (WF)-selective units that increased their spike rate for 

WFs compared to bubble trials (n = 32 units, ±SEM, normalized to average response to WFs 

for each unit separately). Asterisk indicates a significant difference between the response to 

WFs and bubble trials (p < 0.05, two-tailed t test, Bonferroni-corrected for 14 comparisons). 

The response to eye and mouth regions of interest (ROIs) that was used for selecting the 

units is shown but not used for statistics.

(B) Histogram of firing rates before and after scramble onset as well as for WFs (n = 32 

units). Mean rates were 1.4 ± 0.24 Hz, 1.7 ± 0.3 Hz, and 2.2 ± 0.4 Hz, respectively.

(C) Histogram of the whole-face index (WFI) for all recorded units (n = 185), according to 

whether the unit was classified as a non-WF-selective (top) or WF-selective (bottom) unit. 

The WFI was calculated as the baseline-normalized difference in response to whole faces 

compared to bubbles (which was independent of how we classified units as WF selective or 

non-WF selective).

(D) Distributions (plotted as cumulative distributions) of the WFI across the entire 

population for both WF- and non-WF-selective units (n = 36 and n = 149, respectively), 

calculated for both ROI trials (bold lines) and bubble trials (dashed lines). The two WFI 

populations for bubble trials were significantly different (p < 1e-9, two-tailed Kolmogorov-

Smirnov test). Note the similarity of the distributions for cutouts (bold lines) and bubble 

trials (dashed), indicating that the response to both is very similar.
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Figure 4. Response Profiles of Whole-Face-Selective Neurons
The response to partially revealed faces did not predict the response to whole faces.

(A) Example stimuli for 60% and 80% of the ROIs revealed.

(B1–B7) Example neurons. Normalized response as a function of how much of the eye and 

mouth ROIs were revealed (B1–B6 increase rate for WFs, B7 decreases) is shown. Only 

data points to which at least ten trials contributed are shown (bin width is 15%, steps of 5%). 

Most neurons showed a nonlinear response profile when comparing bubbles and WFs: those 

that decreased their response with more bubbles increased it to WFs and conversely. The 

slope of the regression of percentage of ROI on spike rate was significant for units B1, B5, 

and B6. Different portions of the x axis are plotted for different neurons, because the 

patients were shown different densities of bubbles contingent on their different performance 

accuracies (unit B4 is from the patient who was shown a very high density of bubbles for 

comparison; cf. Figure S3 for further details).

(C) Population responses of all WF-selective neurons that increase their response to WFs (n 

= 32 units, 5,686 trials). The slope was −0.18 and significantly negative (linear regression, p 

< 1e-11) and the last and first data points are significantly different (two-sided t test, p < 

1e-5). We verified the statistical significance of the slope across the units that contributed to 

this population response using a bootstrap statistic over trials and units (right side, average 

slope −0.18 ± 0.05 and −0.17 ± 0.13, respectively; red line indicates observed value). For 

the first half (5%–40%) the slope was −0.07 (p = 0.27, not significant [NS]), and for the 

second half (45%–90%) it was −0.44 (p < 1e-8).

(D) Population response for non-WF-selective units (n = 149, 15,922 trials). The slope was 

not significantly different from zero for the curve shown (p = 0.62) and across the 

population over trials and units (bootstrap statistic; right side, average slope 0.01 ±0.04 and 

0.01 ±0.07, respectively). The last and first data points were not significantly different.

(E) Response for WF-selective (red) and non-WF-selective units (blue) is not a function of 

contrast threshold (the contrast threshold is a model-derived index of the visibility of the 

stimuli). The response of the control trials for eye and mouth cutouts used for selecting the 

units are shown in (C) and (D) for comparison. Errors are ±SEM over trials. See also Figure 

S3.
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