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Paracetamol (acetaminophen) overdose is one of the most common causes of acute liver injury in the Western world. To improve
patient care and reduce pressure on already stretched health care providers new biomarkers are needed that identify or exclude liver
injury soon after an overdose of paracetamol is ingested. This review highlights the current state of paracetamol poisoning
management and how novel biomarkers could improve patient care and save healthcare providers money. Based on the widely used
concept of defining a target product profile, a target biomarker profile is proposed that identifies desirable and acceptable key
properties for a biomarker in development to enable the improved treatment of this patient population. The current biomarker
candidates, with improved hepatic specificity and based on the fundamental mechanistic basis of paracetamol-induced liver injury, are
reviewed and their performance compared with our target profile.
Introduction

Paracetamol (acetaminophen - APAP) is used by millions of
peopleworldwide as a safe analgesic drug at therapeutic doses.
In overdose, it is well known to be toxic to the liver. Indeed, in
the Western world, paracetamol is the commonest cause of
acute liver injury (ALI) and overdose is a very common reason
for hospital attendance (around 100000 UK patients each year)
[1]. In terms of UK hospital admission, the number of patients
per year (around 50000) is comparable with other ‘giants’ of
emergency medicine such as heart failure and hip fracture.

To improve patient care and reduce pressure on already
stretched health care providers, new biomarkers are needed
that identify or exclude liver toxicity soon after the drug is
ingested. This review highlights the current state of paraceta-
mol poisoning management and how novel biomarkers could
improve patient care and save healthcare providers money.
Mechanism of paracetamol-induced
acute liver injury

Adverse drug reactions (ADRs) have been traditionally classi-
fied into six types, labelled A through F [2]. However, recent
proposals have classified ADRs as either on-target (often pre-
dictable from primary or secondary pharmacology, clear
dose–response relationship) or off-target (idiosyncratic, com-
plex dose–response relationship). Paracetamol-induced ALI is
classified as type A, being predictable and dose-dependent.
This has resulted in the pathophysiology being studied
widely, especially in rodents, for over 40 years [3]

At therapeutic doses, the major route of paracetamol
metabolism is through conjugation. Cellular injury is due
to the reactive metabolite N-acetyl-p-benzoquinone imine
(NAPQI) that is produced by the cytochrome P450 enzymes
CYP2E1, CYP1A2, CYP3A4 and CYP2D6 [4]. At therapeutic
paracetamol doses, only low concentrations of NAPQI are
formed and this metabolite is efficiently detoxified by con-
jugation with glutathione. At toxic doses, the paracetamol
conjugation reaction becomes saturated and more paracet-
amol becomes oxidized by cytochrome P450 into NAPQI.
The cellular stores of glutathione become exhausted, which
results in NAPQI covalently binding to sulfhydryl (SH-) groups
in structural proteins, forming protein adducts leading to
oxidative stress,mitochondrial injury, hepatocyte cell death by ei-
ther apoptosis (minor pathway) or necrosis (major pathway),
multi-organ failure and potentially patient death (Figure 1) [5].
Antidote treatment with acetylcysteine (NAC) restores cellular
glutathione concentrations. When administered soon after drug
acol / 80:3 / 351–362 / 351



Figure 1
At therapeutic doses conjugation is the major route for paracetamol metabolism. Oxidation of paracetamol by cytochrome P450 is a minor route at ther-
apeutic doses of paracetamol, forming N-acetyl-p-benzoquinone imine (NAPQI) that quickly reacts with glutathione. When an overdose of paracetamol
is taken, conjugation becomes saturated and more NAPQI is formed by oxidation. When the glutathione supply is exhausted, NAPQI binds to sulfhydryl
(SH-) groups in structural proteins, resulting in cell injury
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overdose (within about 8 h), NAC is highly effective in
preventing liver injury [6, 7]. However, when NAC treatment
is delayed, its efficacy is substantially reduced [6].
Current risk assessment

Serum alanine aminotransferase (ALT) activity is the cur-
rent, widely used, biomarker for hepatocyte injury after
paracetamol overdose (and in many other settings).
352 / 80:3 / Br J Clin Pharmacol
Although ALT has never been formally qualified against
liver histology as a biomarker for drug-induced liver in-
jury in humans, its utility has been qualified by decades
of clinical experience [8]. However, the majority of pa-
tients present to the emergency department soon after
overdose with only around 10% presenting later than
12 h post drug ingestion [9]. To exclude the development
of liver injury confidently, patients require an ALT mea-
surement at least 24 h after the overdose was ingested.
This limits patient stratification in emergency care settings
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and potentially increases length of hospital stay. Apart from
these time/kinetic issues, there are other important limita-
tions of using ALT as a biomarker of liver injury. Changes
in ALT activity do not only occur in paracetamol-induced
ALI, but with a wide range of acute and chronic liver pathol-
ogies such as fatty liver disease, viral hepatitis and liver can-
cer which decreases the confidence in its utility for causality
assessment of paracetamol-induced liver injury [10]. In-
creases in serum ALT activity can also be a result of myocar-
dial damage or extreme exercise [11], which may generate
false positive results. Because paracetamol-induced ALI can-
not be confidently confirmed or excluded by using serum
ALT activity as a biomarker at the hospital ‘front door’, the
decision to treat with NAC following an overdose is primarily
based on the blood paracetamol concentration [12]. To
stratify patients as being ‘at risk’ for hepatotoxicity after a
single overdose (total ingestion of paracetamol taking less
than around 1–2 h) a nomogram is used that plots blood
paracetamol concentration against time after overdose. This
nomogram can only be confidently applied 4 h after over-
dose ingestion, when absorption is believed to be complete
[13]. The utilization of the blood paracetamol nomogram af-
ter overdose depends on the correct reporting of the time
of overdose. Small errors in timing can result in an incorrect
treatment [5]. When the paracetamol overdose is ingested
over a longer time period (staggered overdose) or if the pa-
tient was exposed to a modified release or intravenous for-
mulation [14] the nomogram cannot be used and the
treatment decision is based on the reported dose of para-
cetamol and the serum ALT activity. There is an unmet clin-
ical need for new biomarkers that can guide treatment to
patients at high risk of paracetamol-induced ALI and identify
patients with low risk of liver injurywhomay require shorter,
Table 1
Desired and acceptable biomarker attributes

Attribute Desired

Specific for paracetamol overdose Exclusively elevated by paraceta

Sensitivity for ruling out injury ROC-AUC 1

Rapidly assayed At point of care

Feasibility of assay Feasible in settings where resou

(developing countries)

Invasiveness / sample preparation time Whole blood

Conserved (translational) across in vitro
models, in vivo models and humans

Fully conserved between in vitro

models and humans

Time after overdose at which it is able
to predict the onset of liver injury

4 h

Signal to noise Single measure required to diffe

healthy reference value and dise

Quantitative relationship with disease
severity

Quantitative

Distinguish benign and clinical relevant
increase in ALT

Predicts liver failure

Mediator of liver injury Has existing therapeutic interve
lower doses of NAC or even no treatment at all. To decrease
the risk of developing ALI, the MHRA altered the guidelines
associated with NAC and lowered its utility threshold. Re-
cent health economic calculations have estimated that this
change resulted in an increase of around £8M in the annual
spend by UK healthcare providers [1], which further
strengthens the case for new biomarkers that improve strat-
ification of patients with paracetamol overdose.

Target biomarker profile
In order to identify new biomarkers that could add real
value to the management of paracetamol poisoning we
propose desirable and acceptable properties, our target
biomarker profile (TBP, Table 1). This approach is widely
used in biomarker development to set criteria that will
be used to define future success. For further background
the US Food and Drug Administration have produced
guidance [15]. Our suggested biomarker properties spe-
cifically relate to the clinical management of paracetamol
overdose. What is desirable or acceptable in other set-
tings may be different. For all biomarkers their diagnostic
performance may change when they are measured on
different validated assay platforms (for example, a new
point-of-care platform in contrast with the laboratory
gold standard), so our TBP would need to be re-assessed
when new clinical assays become available and vali-
dated. It is also important to note that defined desirable
and acceptable properties can assist with the develop-
ment of prospective qualification studies in man to de-
fine the context of use for a putative biomarker [16].

A biomarker specific for paracetamol toxicity is desired, as
this test could not be misinterpreted due a signal produced
Acceptable

mol-induced injury Liver injury

AUC ≥ 0.90

<60 min turn around time

rces are sparse Feasible in standard clinical laboratories

(developed countries)

Plasma/serum

models, in vivo Conserved between rodent models and humans

8 h

rentiate between

ase

Requires measurement at two time points

Qualitative

Predicts ALT rise

ntion Potential drug target
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by other causes of liver injury. A biomarker diagnostic for
paracetamol toxicity would be valuable when the aetiology
of liver injury cannot be identified, reported to be the case
in 17% of patients with ALI [17]. However, a marker that
reports liver injury due to any cause is acceptable, since in
most cases it is known that the patient has ingested an
overdose (proven by blood paracetamol measurement).

Ideally, a new biomarker would differentiate disease
from non-disease with 100% sensitivity and specificity
(area under the receiver operator curve (ROC-AUC) of
1), but we propose an acceptable performance as a
ROC-AUC of 0.90. This is a comparable accuracy to tropo-
nin T assays when they were first introduced into clinical
medicine for acute myocardial infarction stratification
[18]. In real clinical practice the biomarker’s context of
use, derived from prognostic qualification studies in
man, may prioritize sensitivity or specificity and our
acceptable criterion is a starting point for development.

If the biomarker could be assayed rapidly at point-of-care
it could be used outside of standard hospital laboratories, for
example, in an ambulance, phase 1 clinical trial unit or in the
developing world. An acceptable level of performance would
be a turnaround time of 60min in a standard hospital labora-
tory, as per the guidance of the clinical biochemists/chemical
pathologists and clinical biochemistry services regarding the
measurement of commonly requested routine clinical bio-
chemistry and haematology tests in emergency departments
[19]. Ideally, the assay would be performed on a drop of
whole blood obtained from the fingertip, resulting in a mini-
mally invasive test with short sample preparation time.
Acceptable would be measuring the biomarker in plasma or
serum. We would desire the biomarker assay to be measur-
able in settings where resources are sparse, such as in
developing countries, but acceptable would be the ability to
perform the assay in standard hospital laboratories. Recently,
data suggest that ALT can bemeasured using a robust point-
of-care, finger stick test with a rapid turn around time [20].
Despite the drawbacks of ALT, this technologymight provide
the clinician with a signal that triggers an improved sensitive
and specific liver safety assessment. Furthermore, advances
in these technologies also point to a pathway of develop-
ment and validation of such methodologies to assess
potential biomarkers with improved characteristics at the
point-of-care.

If the biomarker can report liver injury as early as 4 h
after paracetamol ingestion, it would complement the
paracetamol blood concentration nomogram for making
treatment decisions in patients presenting early after
overdose. Acceptable would be the ability to predict liver
injury at 8 h after paracetamol ingestion, the time point
after which NAC treatment loses efficacy [6, 21].

A biomarker that is fully translational between in vitro
models, animals and humans would aid the detection of
hepatotoxic compounds in drug development. However,
a biomarker being translational between rodents and
humans would be acceptable.
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A biomarker with a high signal-to-noise ratio that only
requires a single measurement is desirable. Serial mea-
surement would be acceptable, as is the case with tropo-
nin for acute myocardial infarction [22].

Ideally, the biomarker could distinguish between a be-
nign ALT rise, the development of serious liver injury or po-
tential Hy’s Law cases and imminent liver failure. Acceptable
would be the prediction of an ALT rise. The ability of a bio-
marker to have a quantitative relationship with the severity
of the paracetamol toxicity would allow for different treat-
ment strategies in patients with different severities of liver
injury. Acceptable would be a biomarker that qualitatively
discriminates injury from non-injury.

Should a biomarker also be a mediator of liver injury
then the marker could represent a companion diagnostic
that identifies patients for a novel therapeutic. A desirable
criterion would be a marker that has a drug already
approved for human use, acceptable would be a marker
that mediates the disease process and has potential
therapeutics in development.
New biomarker candidates for
paracetamol-induced liver injury
and their performance compared
with the target biomarker profile

Currently there is huge investment into the development and
qualification of novel biomarkers to improve the prediction
andmonitoring of drug-induced liver injury in preclinical spe-
cies and inman (Figure 2). A number of public-private consor-
tia exist such as the IMI funded SAFE-T (Safer And Faster
Evidence-based Translation) project and the Critical Path in-
stitute supported PSTC (Predicative Safety Testing Consor-
tium) with these objectives as specific goals. Although the
efforts and achievements of these consortia have been previ-
ously reported, here we present the case for our TBP to im-
prove treatment and to aid the understanding of the
mechanistic basis of paracetamol overdose.

Paracetamol protein adducts
Key properties:

• Conserved between rodent models and humans.
• Exclusively selective for paracetamol overdose
• Reflective of the initial molecular initiating event (MIE)

When NAPQI is formed during paracetamol metabolism
it covalently binds with proteins forming paracetamol-
protein adducts, of which cysteine adducts are the most
common [23]. After the binding of NAPQI with cysteine,
the structure of NAPQI reverts to that of paracetamol
resulting in paracetamol-cysteine (APAP-CYS). In mouse
models of paracetamol-induced ALI, immunohistochemical
methods report that APAP-CYS is formed in the liver in a
temporally progressive, central to peripheral pattern [24].



Figure 2
Key properties of novel biomarkers for paracetamol-induced liver injury

Biomarkers for paracetamol-induced liver injury
Experiments in mice also report APAP-CYS in serum,
suggesting that injured liver cells release APAP-CYS into
the circulation. Notably, serum APAP-CYS was only detect-
able after toxic doses of paracetamol [25].

More recently, a high performance liquid chromatogra-
phy with electrochemical detection (HPLC-ECD) assay has
been developed. This assay has been used to detect
APAP-CYS in liver and serum after hepatotoxic dosing of
paracetamol to mice [26] and in both adult and paediatric
human serum samples with paracetamol-induced ALI
[27–29]. Due to the relatively long plasma half time of 1.7
± 0.3 days in adults [30] and 1.5 ± 0.3 days in children and
adolescents [31], APAP-CYS can be detected up to 7 days
after a large overdose [27]. By contrast, the plasma half-life
for paracetamol is 1.5–2.5h [32]. The longer half-life of
APAP-CYS could potentially allow risk assessment/diagnosis
in patients who present when paracetamol has been cleared
from the circulation. When the aetiology of ALI is known,
APAP-CYS has no defined advantage over ALT because ki-
netic changes in APAP-CYS track ALT activity [27]. A point-
of-care test is currently in development [33].

microRNA-122 (miR-122)
Key properties:

• Specific for liver injury
• Fully conserved (translational) across in vitro models,
in vivo models and humans

• Early marker for ALI with a ROC-AUC of >0.90
• Predicts ALT rise
MicroRNAs (miRNAs) are small (~22 nucleotides long)
non-protein coding RNA species involved in post-
transcriptional gene product regulation. miRNAs are
involved in a wide range of biological processes and
the biogenesis and function of miRNAs have been com-
prehensively reviewed elsewhere [34, 35]. Outside the
cell, miRNAs are very stable due to protection from
degradation by RNAses by microvesicles [36] and RNA
binding protein complexes [37]. Although a number of
miRNAs are widely expressed, certain miRNAs appear to
be highly organ specific [38]. Liver tissue expresses a
number of distinct miRNAs, especially miR-122, the most
abundant hepatic miRNA that has very low to no expres-
sion in other healthy tissues, which makes this marker
highly liver specific [38]. miR-122 is a multifunctional
RNA species that modulates multiple pathways involved
in stress response [39], fatty acid metabolism [40], cho-
lesterol synthesis [41] and hepatocellular carcinoma [42].

The potential of circulating miRNAs to serve as
biomarkers for ALI was first reported in mice treated with
a toxic dose of paracetamol [43]. miR-122 was the miRNA
species that had the largest fold change between control
and paracetamol treated mice [43]. Subsequently
circulating miR-122 has been reported as a marker for
ALI in rats [44], dogs [45], zebrafish [46] and pigs [47].

In patients with established ALI circulating miR-122 is
around 100-fold higher compared with healthy controls
and overdose patients without ALI [48]. Furthermore,
miR-122 has also been shown to provide utility at
reporting liver injury in paediatric populations of
Br J Clin Pharmacol / 80:3 / 355
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paracetamol overdose. At first presentation to hospital, in
a UK cohort of 129 patients from Edinburgh and
Newcastle-upon-Tyne, miR-122 was measured at a me-
dian of 8 h post-overdose in patients requiring subse-
quent NAC therapy (Edinburgh and Newcastle study)
[49]. In this first sample miR-122 correlated significantly
with peak hospital stay ALT activity and INR. miR-122
was significantly higher in those patients who developed
subsequent ALI. ROC analysis revealed that miR-122 had
an AUC value (sensitivity at 90% specificity) of 0.93 (0.83,
95% CI 0.86, 1.0, P < 0.0001) suggesting that miR-122
could accurately separate patients with and without ALI
at an early time when ALT activity was still normal.

Keratin-18
Key properties:

• Conserved between rodent models and humans.
• Mechanism-based (apoptosis vs. necrosis)
• Early marker for ALI with a ROC-AUC of >0.90
• Predicts ALT rise
• Prognostic marker

Keratins are intermediate filament proteins, expressed
by epithelial cells, that are responsible for cell structure, dif-
ferentiation, mitosis and apoptosis [50, 51]. Keratin 18 (K18)
is abundantly expressed in the liver and other digestive ep-
ithelia cells [52]. During apoptosis, phosphorylation and
cleavage of K18 results in cellular rearrangement. Full
length K18 is passively released from necrotic cells whereas
cleaved K18 fragments are released from apoptotic cells
once membrane integrity is lost [53]. Circulating cleaved
K18 (apoptosis) and full length K18 (necrosis) can be mea-
sured with ELISA to report apoptosis and necrosis [54, 55].

Cleaved K18 and full length K18 have been reported
to be circulating mechanistic biomarkers for apoptosis
and necrosis in mouse models of paracetamol-induced
ALI [56, 57]. Full length and cleaved K18 were measured
in a mixed UK and US cohort of paracetamol-induced
ALI patients. They were increased in the circulation of
paracetamol-induced ALI patients compared with para-
cetamol overdose patients without ALI and healthy
controls.

In patients with established ALI full length and cleaved
K18 were significantly higher in patients who subse-
quently reached the King’s College Criteria (KCC) for liver
transplantation. Further analysis revealed that the per-
centage of total circulating K18 derived from cleaved
K18 (from apoptotic cells) was relatively lower in patients
who reached the KCC compared with those who did not
[57]. ROC analysis confirmed that full length K18 had a
higher AUC than ALT for predicting patients who met
KCC and for the outcome of liver transplant/death [57].
Another research group has recently confirmed the abil-
ity of circulating cleaved and full length K18 to report
liver injury after paracetamol overdose [58]. In this study
356 / 80:3 / Br J Clin Pharmacol
both cleaved and full length K18 correlated with poor
outcome (death or liver transplant).

At first presentation to hospital, in the Edinburgh and
Newcastle first presentation study, cleaved and full
length K18, measured in the first sample, correlated with
peak ALT activity and INR during hospital stay. ROC anal-
ysis revealed that full length K18 had an AUC value (sen-
sitivity at 90% specificity) of 0.94 (0.9, 95% CI 0.87, 1.0, P<
0.0001) suggesting that this form of K18 could accurately
separate patients with and without ALI at an early time
when ALT activity was still normal. The performance of
the cleaved form of K18 was less accurate with regard
to reporting ALI at first presentation to hospital (AUC
0.77; sensitivity at 90% specificity 0.21) [49]. This is con-
sistent with necrosis being more prominent than apopto-
sis in the pathophysiology of paracetamol-induced acute
liver injury.

High-mobility group box-1
Key properties:

• Prognostic marker
• Mechanism-based (DAMP – inflammatory mediator)
• Early marker for ALI with a ROC-AUC of >0.90
• Predicts ALT rise
• Conserved between rodent models and humans
• Potential drug target

High-mobility group box-1 (HMGB1) is an evolution-
ary conserved chromatin-binding protein expressed in
the nucleus of virtually all cells. HMGB1 is passively re-
leased into the extracellular space by cells that are under-
going necrosis and plays a key role in alerting the
immune system to dying cells and thus works as a
damage-associated molecular pattern (DAMP) molecule
[59–61]. HMGB1 stimulates an immune response by acti-
vating toll-like receptors (TLR) and the receptor for ad-
vanced glycation end products (RAGE) [62–64]. Besides
being passively released, HMGB1 is actively released as
a cytokine in a hyper-acetylated form by various immune
cells such as monocytes and macrophages after activa-
tion by inflammatory stimuli [65]. Whether the extracellu-
lar cytokine activity of HMGB1 functions as a chemo
attractant or pro-inflammatory mediator depends on
the redox state of three key cysteine residues [64, 66].
HMGB1 can be measured in the circulation and increased
levels are related to increased disease activity in sepsis
[67], pancreatitis [68] and rheumatoid arthritis [69]. In a
mouse model of paracetamol toxicity circulating total
and acetylated forms of HMGB1 displayed temporal ki-
netics that correlated with the onset of necrosis and in-
flammation respectively, confirming the potential of
HMGB1 as an indicator of cell death processes [70].
HMGB1 is a potential mediator of paracetamol-induced
hepatotoxicity. Anti-HMGB1 antibodies and knocking
out HMGB1 in the liver reduced hepatic inflammation
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and liver injury in mouse models of paracetamol poison-
ing [59, 71, 72]. Anti-HMGB1 antibodies are in develop-
ment for the treatment of human disease.

In patients with established ALI total and acetylated
HMGB1 was increased in the circulation compared with
paracetamol overdose patients without ALI and healthy
controls [57]. Acetylated HMGB1 was significantly in-
creased in patients who reached KCC compared with pa-
tients who did not. ROC analysis demonstrated that
HMGB1 (both total and acetylated) had a higher AUC
than ALT for predicting patients who will reach KCC and
predicting liver transplant/death [57].

At first presentation to hospitalHMGB1 had an AUC value
(sensitivity at 90% specificity) of 0.97 (0.91, 95% CI 0.91, 1.0,
P< 0.0001), suggesting that HMGB1 could accurately iden-
tify patients with ALI at the time when ALT activity was still
normal [49]. Comparing ROC curves suggests that HMGB1
may be the most accurate biomarker at first presentation,
but this needs to be tested in larger studies.

Glutamate dehydrogenase
Key properties:

• Conserved between rodent models and humans.
• Predicts ALT rise

Glutamate dehydrogenase (GLDH) is a mitochondrial
enzyme that catalyzes the reversible deamination of gluta-
mate to α-ketoglutarate plus free ammonia by using NAD
or NADP as a co-factor [73]. Circulating GLDH has been sug-
gested to be a specific mechanistic marker for mitochon-
drial damage. It was reported that mice treated with
furosemide, a loop diuretic deemed to cause centrilobular
liver necrosis without affecting mitochondrial function
[74], produced a significant increase in serum ALT activity
with only a non-significant increase in serum GLDH activity
Table 2
Comparative biomarker profiles

Attribute Desired

Specific for paracetamol overdose APAP-CYS

Sensitivity for ruling out injury –

Rapidly assayed –

Feasibility of assay GLDH?

Invasiveness/sample preparation time –

Conserved (translational) across in vitro models,
in vivo models and humans

miR-122

Time after overdose at which it is able to predict
the onset of liver injury

–

Signal to noise miR-122, Keratin-1

GLDH, KIM-1

Quantitative relationship with disease severity –

Distinguish benign and clinical relevant increase in ALT Keratin-18, HMGB

Mediator of liver injury
[75]. By contrast, paracetamol treated mice had a substan-
tial increase in GLDH along with ALT suggesting that the in-
crease of circulating GLDH is indicative of paracetamol-
induced mitochondrial damage and not simply caused by
leakage of the enzyme from necrotic cells [75].

In patients with established ALI circulating GLDH is ele-
vated. At first presentation to hospital GLDH is less accu-
rate than miR-122, K18 and HMGB1 with regard to
identifying patients with subsequent ALI despite NAC
with an AUC value (sensitivity at 90% specificity) of 0.80
(0.19, 95% CI 0.68, 0.93, P = 0.0003) [49].
Mitochondrial DNA fragments

Circulating mitochondrial DNA (mtDNA) has been re-
ported to act as a DAMP molecule via TLR mediated
activation of inflammatory cells [76, 77]. Increased con-
centrations of circulating mtDNA have been associated
with the systemic inflammatory response syndrome,
multiple organ dysfunction syndrome and mortality in
patients admitted to intensive care [78, 79].

In patients with established ALI circulating mtDNA was
increased as measured by absolute quantification of
mtDNA encoding NADH dehydrogenase and cytochrome
c oxidase. The plasma concentration of mtDNA in patients
with abnormal liver function increased over time and peak
levels correlated with peak ALT [75]. As is the case with
GLDH, circulating mtDNA may be a mechanistic marker
for paracetamol-induced mitochondrial injury [75].

Kidney injury molecule-1
Key properties:

• Prognostic
• Translational between humans and rodents
Acceptable

miR-122, GLDH

miR-122, Keratin-18, HMGB1,

GLDH, KIM-1

GLDH

miR-122, Keratin-18, HMGB1, GLDH, mtDNA

Keratin-18, HMGB1, GLDH, mtDNA, KIM-1

miR-122, Keratin-18, HMGB1, GLDH

8, APAP-CYS, HMGB1, –

miR-122, HMGB1

1 miR-122, GLDH

HMGB1

Br J Clin Pharmacol / 80:3 / 357
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• Point of care tested developed with rapid turn around
• Formally qualified by regulatory authorities for the in-
vestigation of drug-induced renal injury in preclinical
drug development

Kidney injury molecule-1 (KIM-1) is a transmembrane
glycoprotein that confers phagocytic activity on the
proximal tubule cells of the kidney. During AKI, KIM-1 is
rapidly up-regulated and its ecto-domain is shed into
urine and blood where it is a sensitive and specific bio-
marker of acute kidney injury. Furthermore, KIM-1 has
been formally qualified by regulatory authorities for its
use to monitor acute kidney injury in the preclinical set-
ting [80]. In patients with paracetamol overdose, second-
ary injury to the kidney and specifically the proximal
tubule epithelia is a major determinate of mortality. In-
deed, biomarkers such as serum creatinine are often in-
corporated into prognostic algorithms. However, serum
creatinine is delayed in its onset and data from animal
models and in humans have repeatedly demonstrated
the ability of KIM-1 to increase earlier following acute kid-
ney injury [81, 82]. In patients with established ALI circulat-
ing KIM-1 has been recently reported to be elevated,
particularly in those patients who subsequently died or
required a liver transplant compared with spontaneous
survivors [83]. The fold change in KIM-1 in this poor prog-
nostic group was higher than creatinine and KIM-1
outperformed creatinine in a ROC analysis. Furthermore,
circulating KIM-1 was an independent predictor of out-
come in a logistic regression model [83].
Current biomarker performances
and future challenges

Table 2 gives an overview of the characteristics of each
marker. Each of our characteristics has at least one bio-
marker that meets the acceptable or desired specifica-
tions. However, all these biomarkers have only been
measured in relatively small numbers of patients and
large multicentre trials are required to qualify current
findings and explore and confirm further the attributes
of these biomarkers. These studies should confirm at
which time after paracetamol overdose the biomarker is
able to predict liver injury and the sensitivity for ruling
out injury. These studies should also determine the
signal-to-noise ratio of each marker, identify which
markers (if any) can distinguish between benign and clin-
ically relevant increases in ALT, and establish if there is a
quantitative relationship between biomarker level and
outcome.

There is considerable scope for improvement in the
‘rapidly assayed’ and ‘feasibility of assay’ characteristics
in our TBP. At the time of writing, only the calorimetric as-
say for GLDH has been validated with these performance
characteristics in mind. It can be automated in modern
358 / 80:3 / Br J Clin Pharmacol
clinical chemistry laboratories with a turnaround time
of less than 1 h. All other biomarkers are typically mea-
sured manually in research laboratories with time
consuming and expensive kits. There is an urgent need
for standardized and validated commercial assays that
can be used at point-of-care to stratify paracetamol over-
dose patients for entry into trials of new therapeutic
approaches.

In order to have the driver for introducing one or more
of these biomarkers into clinical practice their measure-
ment must add value to patient care [84]. In the setting of
paracetamol overdose, a normal test result might add value
by giving the treating clinician more confidence in
discharging a patient. Given the large number of patients,
this could reduce the pressure on acute hospital beds and
save the health provider money. Conversely, an abnormal
test result might trigger entry into a stratified clinical trial,
indicate need for different treatment with a new therapy
or referral for specialist care.

In conclusion, our target biomarker profile could be
useful for biomarker research and development in the
settings of drug overdose. Studies to date demonstrate
the utility of a number of mechanistic biomarkers that
should be evaluated against our TBP in prospective stud-
ies. These attributes can be used to define the strengths
and weaknesses of a new marker in development and
can help in identifying potential clinical benefit.
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