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Summary

Neurons in prefrontal cortex (PFC) encode rules, goals and other abstract information thought to 

underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain 

area traditionally thought to mediate emotions, also encodes abstract information that could 

underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies 

varied between two sets of associations, each defining a context. Reinforcement prediction 

required identifying a stimulus and knowing the current context. Behavioral evidence indicated 

that monkeys utilized this information to perform inference and adjust their behavior. Neural 

representations in both amygdala and PFC reflected the linked sets of associations implicitly 

defining each context, a process requiring a level of abstraction characteristic of cognitive 

operations. Surprisingly, when errors were made, the context signal weakened substantially in the 

amygdala. These data emphasize the importance of maintaining abstract cognitive information in 

the amygdala to support flexible behavior.

Introduction

Sensory stimuli can elicit cognitive, physiological and behavioral responses that reflect a 

subject’s emotional state. This capacity can be acquired through conditioning procedures in 

which a subject learns that a particular sensory cue predicts a rewarding or aversive event 

(LeDoux, 2000; Schultz, 2006). Subjects can later learn to inhibit responses to the same 

stimulus through extinction (Milad and Quirk, 2012), or to alter responses to the stimulus if 
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its associated reinforcement changes in value (Pickens and Holland, 2004). However, 

subjects can also regulate emotional responses to stimuli flexibly by using cognitive 

operations. Consider the game of Blackjack. Here, being dealt the same card, such as a king, 

can cause joy in one hand, if a player makes ‘21’, and distress in another hand because the 

player goes bust. Players apply the rules of the game to regulate their emotional responses 

instantaneously upon seeing the king. Re-learning of stimulus-outcome associations need 

not occur to adjust responses. This flexible behavior exemplifies the cognitive control of 

emotion (Ochsner and Gross, 2005).

In this study, we investigated mechanisms relevant to the cognitive control of emotion by 

training monkeys to perform a task in which a cognitive strategy can be used to predict 

reinforcement more efficiently. Monkeys performed a serial reversal trace-conditioning task. 

In every block of trials, one conditioned stimulus (CS) predicted reward (unconditioned 

stimulus, US), and another CS did not. Both CSs switched reinforcement contingencies 

simultaneously upon block changes, and the two types of blocks reversed many times in 

every experiment.

We defined a context in each experiment as the block of trials in which a particular set of 

stimulus-outcome contingencies is in effect. Context thereby parallels ‘task set’ (Sakai, 

2008), i.e. the set of associations characterizing a block of trials. On 40% of trials, the 

context was signaled by a contextual cue, but on the other 60% of trials, context information 

was not explicitly presented and instead had to be represented internally as a cognitive 

variable.

In principle, monkeys could perform this task by learning each CS-US contingency 

independently after every block switch, a strategy that does not rely on information about 

context. However, monkeys’ behavioral performance indicated that they abstracted a 

representation of context to perform the task more efficiently. After a block switch, upon 

experiencing one CS as having switched its contingency, monkeys adjusted their behavior 

on the first trial of the other CS even when it was not accompanied by a contextual cue and 

even though the new contingency for that CS had yet to be experienced. This indicates that 

monkeys use a representation of context to infer what reinforcement to expect. Since the 

context is un-cued when monkeys display inference, we refer to it as a “cognitive context”.

Many studies have established that the amygdala participates in learning and representing 

the relationship between sensory stimuli and upcoming reinforcement to direct behavioral 

and physiological expressions of emotional state (Ambroggi et al., 2008; Baxter and Murray, 

2002; Carelli et al., 2003; Everitt et al., 2003; LeDoux, 2000; Paton et al., 2006; Quirk et al., 

1995; Salzman and Fusi, 2010; Schoenbaum et al., 1998; Shabel and Janak, 2009; Tye et al., 

2008). These studies indicate that the amygdala coordinates emotional responses, but the 

critical cognitive processing thought to underlie emotional flexibility is conventionally 

predicated to lie in the pre-frontal cortex (PFC). The PFC has been shown to encode rules 

and other abstract information (Buckley et al., 2009; Durstewitz et al., 2010; Salzman and 

Fusi, 2010; Stokes et al., 2013; Wallis et al., 2001). Furthermore, it has been proposed that a 

component of the PFC – orbitofrontal cortex – represents “cognitive maps” of task space, a 
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type of representation that could be important for the implementation of reinforcement 

learning algorithms and flexible decision-making (Wilson et al., 2014).

The demonstration that monkeys utilize knowledge of a cognitive context to infer upcoming 

reinforcement afforded us the opportunity to study the neurophysiological processes that 

could mediate this flexible behavior. While monkeys performed the task, we recorded the 

activity of single neurons in the amygdala and the two parts of the PFC most densely 

interconnected with the amygdala, the anterior cingulate and orbitofrontal cortices (ACC 

and OFC) (Ghashghaei et al., 2007; Stefanacci and Amaral, 2000). Neural activity in the 

amygdala encoded abstract information about context even when it was not cued by sensory 

stimuli. This signal reflected the linked sets of CS-US associations defining each context, a 

process requiring the cognitive abstraction and internalization of an unobservable variable. 

Activity in OFC and ACC also represented cognitive (i.e. un-cued) context. In all 3 brain 

areas, the context signal was present when monkeys utilized inference. Notably, when 

monkeys’ behavioral responses did not anticipate reward accurately, the context 

representation weakened substantially in the amygdala. The maintenance of abstract 

cognitive information in the amygdala may therefore be a signature of successful flexible 

behavior on this task.

Results

Two rhesus monkeys performed a trace-conditioning task in which the reinforcement 

predicted by two conditioned stimuli reversed many times within an experiment (Fig. 1A). 

The two CSs were computer-generated fractal patterns novel to the monkey in each session. 

On every trial, monkeys fixated and viewed one CS or the other. In the initial block of trials, 

CS1 predicted delivery of a liquid reward US after a trace interval; no reinforcement 

followed CS2. The reinforcement contingencies of CS1 and CS2 switched simultaneously 

and without warning multiple times in every experiment. This created two types of blocks of 

trials, one where CS1 was rewarded, and the other where CS2 was rewarded. We defined 

context as the block of trials in which a particular set of stimulus-outcome contingencies is 

in effect. Context was explicitly signaled by a visual cue on the first trial of a block switch 

and in a random subset of trials within the blocks; overall, this cue appeared throughout the 

experiment on 40% of trials.

We assessed monkeys’ reward expectation by measuring anticipatory licking in the last 500 

ms of the trace interval. Monkeys consistently showed higher levels of anticipatory licking 

on rewarded trials than on non-rewarded ones (Fig. 1B). Neither the presence of the 

contextual cue, nor how recently a contextual cue appeared, had a significant impact on the 

monkey’s propensity to anticipate reinforcement correctly (Fig. S1).

Behavioral evidence of an abstract internal representation of context

Behavioral evidence indicates that monkeys inferred the reinforcement expected from a CS 

viewed for the first time after a context switch, so long as they had first viewed the other 

switched CS. Figure 2A shows the average licking rate on the first trial in which CSB 

appears after a block switch as a function of the number of CSA trials experienced since the 

block switch (where CSA is the first CS shown in the new context and CSB is the other CS). 
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Anticipatory licking after viewing CSB changed significantly after experiencing one or more 

instances of CSA, regardless of whether in the new block CSB predicted reward or not. 

Crucially, this analysis excluded CSB trials in which the contextual cue appeared, so the 

monkeys had to rely on an internal representation of the context to adjust licking. These 

results were observed for both monkeys, and results were similar on trials containing the 

contextual cue.

The monkeys’ performance on this task did not derive from their having extensive 

experience viewing the two CSs in each context. The CSs were novel in each experiment, 

and restricting the analysis to the first block transition of each experiment showed that on 

average monkeys utilize inference on the very first context switch (p<0.05, Wilcoxon rank-

sum test). Monkeys were therefore able to generalize their knowledge of task structure 

immediately to CS-US combinations never experienced previously. This knowledge was 

utilized to infer expected reinforcement.

The capacity to employ inference indicates that monkeys possess an abstract understanding 

of the nature of the contexts in this task. Consistent with this, once monkeys changed their 

licking rates upon viewing a CS after a block change, they did so in a switch-like fashion. 

Figure 2B shows the mean licking rate around a block switch for the CS that becomes 

rewarded (left) and for the CS that becomes non-rewarded (right) aligned to the first trial 

where licking rate switched. This event marks a sharp transition between, roughly, the two 

asymptotic levels of licking. On average, for the newly rewarded CS the switch in licking 

rate occurred on the very first trial, but for a newly unrewarded CS, the switch in behavior 

appeared after a variable number of trials.

On one or more trials immediately after a block switch, monkeys thus licked regardless of 

the contingencies. We label such trials immediately after the block switch as “exploration” 

trials. On average 3.3 exploration trials occurred after block switches (Fig. 2C). Both 

monkeys exited the exploration phase abruptly, often only having experienced one of the 

CSs. They then switched to the behavioral mode corresponding to the current context in 

which licking reflected the reinforcement contingencies of both CSs. Exploration has been 

described previously as resulting from switches in the rule linking cues and rewards 

(Quilodran et al., 2008) or cues and operant responses (Fusi et al., 2007).

Single neurons in the prefrontal cortex and amygdala encode all task-relevant variables

We recorded the activity of 527 individual neurons in the prefrontal cortex and amygdala in 

two monkeys while they performed our task (Fig. 3). Of these, 187 cells (97 and 90 in each 

monkey) were recorded in OFC, 160 cells (84 and 76) were recorded in ACC and 180 cells 

(77 and 103) were recorded in the amygdala. The inference demonstrated by monkeys relies 

on their knowing CS identity and the current context to compute expected reinforcement, 

suggesting that the brain must represent this information. Many PFC neurons encoded 

context, CS identity, and reinforcement expectation (Fig. 4A–F). All three of these variables, 

including the parameter ‘context’, were also encoded in the amygdala (Fig. 4G–I). For 

example, the amygdala neuron in Fig. 4G showed increased activity during context 1 

relative to context 2 even though only trials that lacked a contextual cue were used to plot 

these data.
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We used a linear regression model to determine whether each neuron recorded encoded CS 

identity, context, or reinforcement expectation (see Experimental Procedures). 

Approximately 20% of neurons in each brain area encoded context (p < 0.05, Fig. 4J). CS 

identity was also encoded in all 3 brain areas, though the amygdala contained significantly 

more neurons selective for this parameter (p < 0.01, z-test, Fig. 4K). Reinforcement 

expectation was the most frequently encoded variable in neurons from each of the 3 brain 

areas (Fig. 4L).

Population-level decoding of task-relevant variables

Single cells often had different types of selectivity in different time windows, such as, for 

example, context selectivity during the fixation interval and reinforcement expectation 

selectivity during the trace interval (Fig. 4A, D). The population of cells encoding a 

particular trial feature was therefore not necessarily identical at two different time points 

within a trial. Given this, we examined the encoding of task-relevant signals as a function of 

time by considering populations of neurons collectively (see e.g. (Rigotti et al., 2013)). A 

linear decoder was trained to read out trial features from the spike counts of the populations 

of neurons recorded in each brain area. This approach combines information from the entire 

population of neurons, including neurons that demonstrate mixed selectivity, defined as 

selectivity to specific combinations of trial features (e.g. CS1 in context 1 only) (Rigotti et 

al., 2013). The decoder accuracy provides a single summary statistic that quantifies how 

accurately the whole neuronal population represents information about any particular 

variable. This decoding accuracy reflects the mean difference in population spike counts 

between two conditions, relative to the variance of population spike counts. These spike 

counts are first averaged over the population by weighting each neuron according to the 

weight parameters found by training the decoder to discriminate maximally between two 

conditions (see Methods). Fig. S3 shows the relation between the weight assigned to each 

neuron by the decoding algorithm and the coefficients found by fitting our linear regression 

model to each neuron.

We used the decoder to compare and contrast the encoding of task-relevant variables within 

and between brain areas. The decoder was trained and tested on the same number of cells for 

each area (see Experimental Procedures). In our task, CS identity and context may be 

conceptualized as “inputs” needed to compute expected reinforcement, which is the “output” 

signal needed to direct behavior. Figure 5A plots cross-validated decoding accuracy for 

context and CS identity as a function of time on trials in which monkeys’ behavior 

anticipated the reinforcement correctly (“Correct trials”). The observed context selectivity 

was not based upon neural responses to visual contextual cues, as this analysis excluded 

trials in which a contextual cue appeared. Moreover, if the decoder was trained on a subset 

of trials that did not contain a contextual cue and then tested on held-out trials that did or did 

not contain a contextual cue, the decoding of context was almost the same regardless of 

whether a contextual cue appeared (Fig. S4). The context encoding therefore is not stimulus-

driven but instead reflects the monkeys’ internal representation of context, an internal 

cognitive variable which was present in the amygdala as well as in PFC. Reinforcement 

expectation, the presumed output of the neural computation mediating task performance, 

also was encoded by neural representations in all 3 brain areas (Fig. 5B), consistent with 
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prior observations (Cai and Padoa-Schioppa, 2012; Kennerley et al., 2011; Morrison et al., 

2011; Niki and Watanabe, 1979; Padoa-Schioppa and Assad, 2006; Paton et al., 2006).

Neural representations of CS identity and context should become apparent at latencies as 

short or shorter than representations of reinforcement expectation to support the computation 

underlying task performance. Decoding performance for context was significantly above the 

50% chance level (95% confidence intervals, bootstrap) in amygdala, OFC and ACC 

commencing shortly after fixation point onset, long before reinforcement expectation was 

encoded. We determined whether CS identity signals also emerged fast enough to account 

for the computation of reinforcement expectation. Two linear decoders were trained to read 

out CS identity and reinforcement expectation with greater temporal precision during the 

500-ms time window starting 100 ms after CS onset in which decoding performance for 

reinforcement expectation transitioned from chance level to nearly 100% (shaded area, Fig. 

5A–B). In the amygdala, the CS identity signal appeared significantly earlier than the 

reinforcement expectation signal (p<0.05, bootstrap; Fig. 5C). In OFC and ACC, the CS 

identity signal became significantly greater than chance levels at about the same time as the 

reinforcement expectation signal (p>0.05, bootstrap; Fig. 5C). The CS identity signal 

appears in the amygdala significantly earlier than it does in OFC and ACC (p<10−3 for both, 

bootstrap). Overall, CS identity and context information were present as early as or earlier 

than information about reinforcement expectation in all 3 brain areas, a requirement if these 

signals are being utilized to perform the task.

We next determined whether context and CS identity were encoded on trials where monkeys 

demonstrated inference unequivocally (i.e., in the first non-rewarded CSB trial after a block 

switch, Fig. 2A). Neural activity was analyzed during the 500-ms period where the 

reinforcement expectation signal emerges (100–600 ms after CS onset, shading in Fig. 5A, 

B). The amygdala, OFC, and ACC all encoded context and CS identity (Fig. 6A), indicating 

that the required signals were present when monkeys demonstrated inference. All 3 brain 

areas also signaled expected reinforcement accurately on these trials (Fig. 6B).

Neural signals encoding context reflect cognitive abstraction

The utilization of inference indicates that monkeys knew the sets of CS-US associations that 

defined the two contexts. We therefore hypothesized that the observed neural 

representations of context reflect the process of abstraction that links together the pairs of 

CS-US associations within each context. In this case, the representation of context should be 

similar following both types of CS-US pairs (i.e. both trial types) that appear within a 

context. Alternatively, neurons might merely represent a memory of the CS-US pairing from 

the previous trial. In this case, decoding performance for context could be above chance 

since each CS-US pair appears only in one of the two contexts. However, in this scenario, 

the signal on trials following different CS-US pairs would not necessarily be similar.

We performed an analysis to determine whether the observed neural representations reflect 

the linked sets of CS-US associations defining each context, or instead the memory trace of 

the CS-US pair that appeared on the previous trial. The linear decoder was trained to decode 

context on trials preceded by two CS-US pairs belonging to different contexts (CS1 and CS2 

when they were rewarded). We then tested whether one could decode context on trials 
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preceded by the other two CS-US pairings (non-rewarded CS1 and CS2). If context can be 

correctly decoded, then the neural representations observed in the two types of trials of the 

same context must have something in common, which would indicate that CS1-Reward and 

CS2-NoReward trial types, defining context 1, are linked together in the neural 

representation. Analogously, CS1-NoReward and CS2-Reward trials, which define context 

2, would also be linked together.

Context was decoded significantly at above chance levels in all 3 brain areas during the 500-

ms epoch immediately before responses to CSs begin (Fig. 6C). The analysis was performed 

on trials that did not contain a contextual cue, so decoding could not have been based on a 

response to the contextual cue on the current trial. Moreover, the decoding of context was 

not related to the outcome of the preceding trials, since the decoder was tested on trials that 

followed two trial types with the same reinforcement outcome. Finally, the decoding of 

context was not due to the CS identity of the preceding trials, since CS1 was categorized as 

context 1 during training and context 2 during testing. Decoding context based on the CS 

identity of the previous trial would therefore produce an incorrect categorization. This 

analysis rules out the possibility that the decoding of context can merely be attributed to 

signals that reflect a memory trace of the CS-US association of the previous trial. The data 

indicate that the context signal instead reflects the linked sets of CS-US associations within 

each context.

The neural representation of context during exploration and error trials

If neural encoding in OFC, ACC and/or the amygdala underlies the behavior that reflects the 

animal’s reward expectation, an alteration in encoding should be apparent when licking 

behavior does not predict reinforcement accurately. We therefore examined the relationship 

between neural representations and performance by separating trials into three types: 

exploration, error, and correct trials (Table S1). We trained the decoder to read out CS 

identity and context in a subset of correct trials, and we asked if using the decoder 

weightings established on correct trials would demonstrate reduced decoding accuracy on 

exploration and error trials. Training and testing were done in the time window where the 

reinforcement expectation signal emerges on correct trials (100–600 ms after CS onset). 

Both context and CS identity could be decoded with maximum accuracy within this time 

epoch on correct trials (Fig. 5A).

The encoding of CS identity remained strong during exploration phase and error trials in all 

3 brain areas (Fig. 7A). Exploration phase and error trial behavior therefore appear unlikely 

to arise from an incorrect representation of CS identity. In contrast, a weakened 

representation of context could be responsible for exploration phase behavior: decoding 

accuracy of context was near chance levels and significantly reduced in all 3 brain areas 

(p<0.05, bootstrap, Fig. 7B). On error trials, only the decoding of context in the amygdala 

decreased significantly to chance level (p<0.01, bootstrap, Fig. 7B). The decoding 

performance for context information in OFC and ACC on error trials was not statistically 

different from correct trials (p>0.05, bootstrap). The amygdala exhibited a larger difference 

in decoding accuracy on correct vs. error trials than either OFC or ACC (p<0.01, Wilcoxon 

rank-sum test, Fig. 7C). The decreased decoding performance for context in the amygdala 
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appeared to be due to a failure to maintain this representation during the CS interval. 

Decoding accuracy for context during the time epoch preceding responses to the CS was 

significantly above chance in all 3 brain areas (Fig. S5).

We next sought to understand whether the observed decreased decoding performance for 

context was due to decreased signal, increased noise, or both. As described above, training 

the decoder to discriminate between contexts during correct trials furnishes a weight for 

each neuron. These weights are used to compute a weighted sum of the activity of the 

neurons within a given population (see Experimental Procedures and Supplemental 

Experimental Procedures sections entitled “Definition and quantification of encoding 

signal”), which then determines the decision of the decoder. We computed this weighted 

sum within the same time interval as in Fig. 7B (0.1–0.6 ms after CS presentation). The 

mean difference between the weighted sum of spike counts in context 1 and context 2 trials 

provides a measure of context selectivity, which we label as the “context encoding signal” 

(Fig. 8A). Analogously, the variance of the weighted average sum of spike counts (the 

“context encoding variance”) was computed during the same time epoch on correct, 

exploration, and error trials (Fig. 8B).

The decreased decoding of context during exploration trials in all 3 brain areas, and during 

error trials in the amygdala, reflected a diminished strength of the context encoding signal 

within the neuronal populations rather than an increase in the variance (Fig. 8). On 

exploration trials, the context encoding signal decreased significantly as compared to correct 

trials in all 3 brain areas (p <0.01, bootstrap, Fig. 8A). On error trials, the context signal 

decreased significantly compared to correct trials only in the amygdala (p < 0.01, bootstrap, 

Fig. 8A), where the signal was not significantly above chance levels. By contrast, the 

variance of the context signal - a measure of noise due to neural variability - did not exhibit 

a significant change between correct, exploration and error trials in any brain area (Fig. 8B).

The neural representation of reinforcement expectation during exploration and error trials

The inconsistent licking behavior observed during exploration and error trials also correlated 

with a reduced encoding of reinforcement expectation during the trace interval. In the 1-sec 

time window preceding the US, performance of the population decoder during both the 

exploration phase and error trials decreased relative to correct trials in all 3 neural 

populations (p<0.01, bootstrap, Fig. 9). Although reduced, decoding accuracy for 

reinforcement expectation remained significantly above chance (or, for OFC during 

exploration trials, significantly below chance level, suggesting a persistence of the CS-US 

associations from the previous block). This result was qualitatively identical when 

performing this analysis in the same 500-ms window used for the CS identity and context 

signals. We do not know why monkeys fail to exploit the weakened, though still present, 

representation of reinforcement expectation in order to not make errors in anticipatory 

behavior. It is possible that neural activity in brain regions downstream from the amygdala, 

OFC and ACC exhibits a total lack of reinforcement expectation encoding on error trials.
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Discussion

Emotions often arise upon seeing a stimulus associated with looming reinforcement. 

Adaptive emotional behavior requires brain mechanisms that regulate such emotions using 

cognitive operations. Here monkeys performed a trace-conditioning task in which the sets of 

CS-US associations reversed many times for two CSs, creating two task sets, or contexts. 

Monkeys used an internal representation of context to infer that the reinforcement 

contingencies of one CS had switched if it had first experienced the other CS-US pair after a 

reversal (Fig. 2A). This inference led to an abrupt and persistent behavioral transition, 

reflected by anticipatory licking switching in one trial to asymptotic levels (Fig. 2B). 

Behavioral adjustment in this task therefore appeared to be supported by a rapid switch-like 

activation of the internal representation of the current context (Rigotti et al., 2010). 

Remarkably, this even occurred on the first block switch of each session, before monkeys 

had experienced each CS in both contexts.

Neurophysiological recordings in the amygdala, OFC, and ACC revealed that all 3 brain 

areas provide a neural representation of cognitive context, or task set. This signal was 

present on trials that lacked contextual sensory cues (Figs. 4, 5) and in which monkeys used 

inference to adjust their anticipatory behavior (Fig. 6A). The context signal reflected a 

process of abstraction that linked the set of CS-US associations defining each context (Fig. 

6C). The PFC has traditionally been proposed to provide a cognitive map of task space 

(O’Reilly, 2010; Wilson et al., 2014), a signal related to what we observed. The amygdala 

has not traditionally been described as playing this role in mediating behavior. The 

representation of cognitive context in the amygdala was strongly coupled to accurate 

reinforcement prediction (Fig. 7B and Fig. 8A). These data suggest that during cognitive 

regulation, the amygdala actively participates in the maintenance of cognitively relevant 

information.

Neural correlates of exploration

Immediately after a block switch, which was always signaled by a contextual cue, monkeys 

tended to lick on the first trial of the new block, and this default strategy could continue for a 

few trials. We refer to this behavior as “exploratory”, and it appears to compete with the 

strategy to employ inference based on knowledge of the task structure. Exploration involves 

an active sampling of the environment (Quilodran et al., 2008), and can arise from a 

mismatch between predictions about reward and environmental feedback (Cohen et al., 

2007). Licking in response to a CS in our task is necessary to collect rewards, and it is one 

way a monkey can sample the environment to determine if a CS is rewarded. In our 

experiments, we classified trials as belonging to an exploratory phase using a behavioral 

criterion (Fig. 2C). Context encoding decreased dramatically in the amygdala, OFC, and 

ACC on these trials (Fig. 7B), which could be attributed to a decrease in signal rather than 

an increase in noise (Fig. 8). The decreased signal could arise from the fact that the 

exploration strategy does not require the active re-expression of abstract information about 

context.

Humans also exhibit exploratory phases, and the presence of such strategies can be adaptive. 

For example, if one uses a task that contains three or more contexts, or if a task employs 
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unreliable feedback, immediate switching becomes impossible, and exploration is necessary 

to figure out the new context (Koechlin, 2014; Yu and Dayan, 2005) (also see (Collins and 

Koechlin, 2012; Donoso et al., 2014); these papers refer to a context as an “task set”). 

Exploration is also an important component of optimal behavior when new contexts are 

occasionally introduced. Humans tend to adopt the same strategy whether contexts are 

recurrent or new, even though learning new contexts is significantly more challenging 

(Collins and Koechlin, 2012). Thus subjects tend to use a strategy that is optimal for the 

most difficult situations, which may be encountered more often in the real world, even 

though this strategy may be sub-optimal for simpler cases.

Neural correlates of errors

Once monkeys exit the exploratory phase, their anticipatory licking predicts whether a trial 

is rewarded or not with high probability. Occasionally, however, monkeys either lick on a 

non-rewarded trial or they do not lick on a rewarded trial. In the amygdala, but not in OFC 

or ACC, we observed a significant decrease in the decoding performance of our linear 

decoder for the context signal on error trials during CS presentation (Fig. 7B). Further 

analysis revealed that this drop in decoding accuracy could be attributed to a loss in 

encoding signal, as indexed by changes in mean firing rates, and not to an increase in noise, 

as indexed by increases in firing rate variance (Fig. 8). Previous studies have also noted that 

activity in PFC representing abstract rules does not differ on correct compared to error trials 

(Mansouri et al., 2006).

Conceivably, the observed decrease in performance accuracy for decoding context could 

have resulted from a change in the encoding scheme on error trials rather than from a loss of 

context information. We consider this unlikely because the linear classifier successfully 

decoded context before the CS presentation on error trials (Fig. S5). The change in encoding 

scheme would therefore have to occur abruptly during error trials, an unlikely scenario. In 

general, our approach postulates that the performance of a linear decoder is a proxy for the 

information that can be decoded by a local downstream circuit. We assume that brain 

structures downstream to the areas we have studied are tuned to the encoding scheme 

utilized during correct trials, which are the trials we train the decoder on. It seems unlikely 

that these downstream areas can instantaneously adapt to arbitrary codes on error trials.

Comparison with studies of context-dependent modulation of behavior and neural activity

The neural representation of cognitive context emerges in the amygdala, OFC, and ACC 

before a CS appears, and then is sustained during CS presentation, even when context is not 

cued by a sensory stimulus. We showed that this neural signal encodes the task set that 

defines a context by training a linear decoder to decode context on trials following 2 CS-US 

trial types, one from each of the 2 contexts, and then successfully decoding context on trials 

following the other 2 CS-US trial types (Fig. 6C). The neural representations of the pairs of 

CS-US associations that define each context are thereby linked. This representation reflects 

a process of cognitive abstraction connecting together the sets of associations that define 

each context.
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The method through which we define and establish context in our experiments differs from 

prior studies investigating contextual fear-conditioning or context-specific extinction. In 

those studies, contexts are typically defined by a set of sensory stimuli appearing during 

presentation of a CS (Hobin et al., 2003; Maren et al., 2013; Orsini et al., 2013); these 

paradigms do not require the brain to activate an internal, uncued representation of context 

to respond appropriately. As a result, those paradigms likely invoke distinct brain 

mechanisms from those investigated here.

Studies that employ explicit sensory cues to signal context have suggested that the 

hippocampus represents this information (Anderson and Jeffery, 2003; Hayman et al., 2003; 

Holland and Bouton, 1999). By contrast, the amygdala has been found to play a critical role 

in forming and storing associative links between contexts (or cues) and reinforcing stimuli 

(Maren and Quirk, 2004; Maren et al., 2013). Consistent with this view, context-dependent 

modulation of responses to sensory stimuli predicting reinforcement have previously been 

reported in the amygdala (Bermudez and Schultz, 2010; Hirai et al., 2009; Hobin et al., 

2003; Orsini et al., 2013) and elsewhere when animals undergo context-specific extinction 

(Bouton and Todd, 2014; Milad and Quirk, 2012; Orsini et al., 2013). The neural responses 

described in those studies could be related to changes in the subjective valuation of a CS 

depending upon context. For example, during context-specific extinction, a subject learns 

that a CS no longer predicts aversive stimulus delivery in one context. In a different context, 

the CS is not extinguished, so it still can elicit an emotional response. The observed context-

dependent modulation of responses to a CS therefore could reflect the differential 

associative meaning of the CSs in each context, and not context per se.

The neural signals reflecting reinforcement expectation in our study correspond to the 

inferred value of a CS (Stalnaker et al., 2014), a context-dependent response which is the 

output of the computation that underlies monkeys’ performance. By contrast, neural signals 

representing CS identity and context are the input signals required to perform inference. The 

neural representations of cognitive context in the amygdala, OFC, and ACC are therefore 

fundamentally different, both in their nature and in their computational role, from prior 

observations of context-dependent modulations of neural activity in response to a CS.

Our task design bears resemblance to occasion setting tasks in which there is not a one-to-

one mapping of a CS onto a US (Schmajuk and Holland, 1998). In these tasks, the 

interpretation of a CS depends upon the stimuli that “set the occasion” for the CS 

presentation. The hippocampus, and perhaps related structures like the rhinal cortices, are 

likely important for occasion setting (Holland et al., 1999; Yoon et al., 2011). These 

structures are interconnected with the amygdala (Stefanacci et al., 1996). Two aspects of our 

study distinguish it from typical occasion setting investigations. First, 60% of trials in our 

task did not contain a contextual cue (the equivalent of an occasion setter), and information 

about the current context had to be represented internally across trials. Second, monkeys 

exhibited inference on our task, which has not typically been reported during studies of 

occasion setting in rodent models. Thus our task probably engages distinct neural 

mechanisms from those revealed during studies of occasion setting.
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Neural representations of cognitive context for Reinforcement Learning algorithms

Recent influential work has suggested that goal-directed learning is instantiated by model-

based Reinforcement Learning (RL) algorithms in which an agent estimates state values by 

implementing a “cognitive search” procedure over an internal model of the environment 

(Daw, 2012; Daw et al., 2005; Doya, 1999; Rangel et al., 2008; Redish et al., 2008). This 

proposal is empirically supported by trial-by-trial fitting procedures that reveal high 

correlation between BOLD signals and the variables of model-based RL algorithms (Daw, 

2011). A recent study shows that BOLD signals in the amygdala representing value and 

precision may be better correlated with model-based, as compared to model-free, algorithms 

on a Pavlovian serial reversal task (Prévost et al., 2013).

Our data are compatible with the notion that the amygdala might contribute to model-based 

RL, since the abstraction of cognitive variables corresponding to the states of an internal 

representation of the environment is a necessary premise for model-based computation. 

Furthermore, since monkeys adjusted their behavior by using inference, a process that 

cannot be explained in terms of re-learning changed CS-US contingencies, their behavior 

would not be captured by the model-free RL algorithms considered by (Prévost et al., 2013). 

We emphasize, however, that once neural representations of internal states corresponding to 

external hidden variables like context are available, an agent might mimic goal-directed 

instrumental responses by implementing a reactive habitual policy over these internal states 

(Gershman et al., 2010; Redish et al., 2007; Rigotti et al., 2010). In this case, the agent 

would not need to perform an explicit search process. Our study does not determine which 

of these two algorithms - a model-based search over an internal representation of the 

environment, or a reactive policy over internal states - accounts for how inference is 

implemented. Instead, we demonstrate the existence of a neural representation of the 

element that is common to both strategies: the abstraction and representation of an internal 

cognitive variable in amygdala, OFC, and ACC.

Traditional views of amygdala function have held that the amygdala learns about the 

motivational significance of stimuli so as to coordinate emotional responses (LeDoux, 

2000), but have not ascribed to it a role in the maintenance of abstract cognitive information. 

The conceptual framework instead suggested by our data posits that representations of 

abstract information in the amygdala may play an important role in supporting computations 

of reinforcement expectation, thereby enabling subjects to respond flexibly to stimuli whose 

meaning differs depending upon the situation.

Experimental Procedures

Animals and behavioral task

Two rhesus monkeys (Macaca mulatta, one female, 5 kg, one male, 10 kg) were used in 

these experiments. All experimental procedures were in accordance with the National 

Institutes of Health guide for the care and use of laboratory animals and the Animal Care 

and Use Committees at New York State Psychiatric Institute and Columbia University. 

Methods are described in further detail in Supplemental Experimental Procedures.
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Monkeys performed a serial-reversal trace-conditioning task in which they were presented 

one of two novel conditioned stimuli (CSs, fractal patterns) for 0.35 sec (monkey V) or for 

0.15 sec (monkey C). A shorter CS presentation was used for monkey C to prevent 

systematic fixation breaks upon seeing the non-rewarded CS. After a 1.5 sec trace epoch, 

either a liquid reward US or nothing was delivered depending upon which CS had appeared. 

Rewarded and non-rewarded trials followed a pseudo-random schedule. The association 

between CS and US depended on the context in which the trial occurred. In Context 1, CS1 

was paired with reward and CS2 was paired with no-reward; in Context 2 the associations 

were reversed. Blocks were randomly selected to last 30, 40 or 50 trials for monkey V and 

20, 30 or 40 trials for monkey C. Context 1 and Context 2 blocks alternated 12–30 times 

during experiments. A contextual cue consisting of a color frame (Context 1, yellow; 

Context 2, blue) at the periphery of the screen appeared from fixation point onset until the 

end of the trace epoch on the first trial of a new block and overall on 40% of trials randomly 

selected.

Behavioral measures

Anticipatory licking behavior was measured by detecting the interruption of an infrared laser 

beam passing between the monkey’s lips and the reward delivery spout. Licking rate was 

defined as the proportion of time spent licking during the last 500 ms of the trace epoch. A 

threshold was applied to the licking rate to separate trials with high licking from trials with 

low licking (Fig. S6).

We defined the exploration phase as the set of trials at the beginning of a block that ends on 

the trial preceding the first non-rewarded trial in which the monkey’s licking rate was below 

threshold (Table S1). We defined error trials as trials after the exploration phase in a block 

in which the binary licking rate (reflecting monkey’s reward expectation) did not match the 

reinforcement delivered at the end of the trial (i.e. licking in a non-rewarded trial or not 

licking in a rewarded trial). Correct trials were defined as non-error trials outside of 

exploration phases.

Electrophysiological recordings

In each session, we individually advanced up to 8 tungsten electrodes into the 3 brain areas 

(1–4 to each area; impedance ~2 MΩ; FHC Instruments) using a motorized multi-electrode 

drive (NAN Instruments). Analog signals were amplified, band-pass filtered (250 Hz – 8 

kHz) and digitized (40 kHz) using a Plexon MAP system (Plexon, Inc.). Single units were 

isolated offline using Plexon Offline Sorter. Recording sites in OFC were located between 

the medial orbital sulcus and the lateral orbital sulcus (Brodmann areas 13m and 13l). 

Recording sites in ACC were in the ventral bank of the anterior cingulate sulcus (area 24c). 

Amygdala recordings were largely in the basolateral complex.

Data Analysis

Linear regression analysis—We fitted the firing rate of each cell with the following 

linear regression model:
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where US, CTXT and CS are binary vectors representing, for each trial, the reinforcement, 

the context and the CS, respectively; α is a constant term; β1, β2 and β3 are the coefficients 

and ε is the residual error. Trials in which the contextual cue was shown were excluded from 

the regression. The firing rate was taken from three time windows: Fixation interval 

(fixation point onset to CS onset), CS/Trace interval (CS onset to US onset) and US interval 

(US onset to US onset + 0.5 s). Cells were defined as context-coding if the CTXT term of 

the model significantly explained the firing rate in any of the three time windows (p<0.05, t-

statistic with Bonferroni correction for multiple comparisons). Cells were defined as CS- or 

reinforcement-coding if the firing rate in the CS/Trace interval was significantly explained 

by the CS or US terms, respectively.

Population decoding

Pseudo-simultaneous population response vectors: We used a population decoding 

algorithm for analyzing population neural activity; details appear in supplementary material. 

Briefly, the algorithm was based on a population decoder trained on pseudo-simultaneous 

population response vectors (Meyers et al., 2008). The components of these vectors 

corresponded to the spike counts of the recorded neurons in specific time bins. Within each 

trial we aligned the activity of neurons on CS onset and computed the spike count over time 

bins of 250 ms (Fig. 5A–B), 50 ms (Fig. 5C) or 500 ms (Figs. 6, 7, 8) that we displaced in 

steps of 50 ms (Fig. 5A–B) or 5 ms (Fig. 5C).

Given a task condition c and a time bin t (for instance, between 0 and 250 ms after CS 

presentation) we generated pseudo-simultaneous population response vectors by sampling, 

for every neuron i, the z-scored spike count in a trial in condition c, that we indicate by 

nc
i(t). This procedure resulted in the single trial population response vector nc(t) = (nc

1(t), 

nc
2(t),…, nc

N(t)), where N is the number of recorded neurons in the area under consideration. 

We used the same number of neurons for all areas, randomly discarding excess neurons so 

that we could meaningful compare findings across brain areas. We also discarded neurons 

for which we had fewer than 10 trials of “correct” behavior in each condition (i.e. in each 

context-CS combination). In total, this analysis focused on 143 neurons recorded in each 

brain area.

Training and testing the population decoder: Every trial in our task was indexed by one 

of 4 conditions given by the combination of CS identity (CS1 or CS2) and the reinforcement 

outcome (rewarded or non-rewarded). In all decoding analyses we discarded trials where the 

contextual cue was presented, eliminating contextual-cue selectivity as a possible 

explanation for apparent context selectivity.

All decoding analyses consisted in training a population decoder to discriminate between 

population response vectors belonging to two distinct classes that corresponded to two sets 

of experimental conditions for either CS identity, context, or expected reinforcement, and 

then testing the performance of the trained decoder on held-out trials in discriminating 
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between the two classes. The training of the decoder was always done on trials where the 

licking behavior was “correct”. We tested decoder performance on correct, error and 

exploration trials. This allowed us to assess how the neural patterns of activity differ 

between the state in which the monkey’s prediction is correct and states in which the 

monkey is engaged in exploratory behavior or is incorrectly anticipating reinforcement.

Population response vectors for training and testing were generated by randomly sampling 

(with replacement) trial pools for each neuron 1,000 times. The average decoding 

performance, and its statistical significance and confidence intervals were estimated by 

repeating this procedure either 1,000 (Fig. 5A, B) or 10,000 times (Figs. 5C, 6, 7) (Golland 

et al., 2005). The significance of the decoding performance was determined by the 

percentage of partitions yielding a performance above 0.5 (chance level). Similarly, 

significant decreases in performance (Fig. 7) were defined by the percentage (95% or 99%) 

of partitions yielding a performance difference above 0.

Definition and quantification of encoding signal: The decoding algorithm employed 

allowed us to quantify the signal collectively encoded in the neural population regarding 

context by summing the contribution of each neuron to the decoding performance in 

discriminating Context 1 and Context 2. This is accomplished by weighting the preference 

(i.e. the difference in trial average activity) of each neuron by the weight that the decoder 

attributes to each neuron as a consequence of the training procedure (see Supplemental 

Experimental Procedures for details). We define the encoding signal S as the (weighted) 

average preference across the population with regards to the two conditions (Contexts 1 and 

2). The encoding signal is a global measure of the “strength” of the signal that our particular 

decoder can use in order to discriminate between the two different contexts. Analogously to 

how we compute the encoding signal S we compute the corresponding encoding variance N, 

that measures the trial-to-trial variability of S (see Supplemental Experimental Procedures).

This method allows us to examine separately the encoding signal and the encoding variance, 

both of which may contribute to decoding performance. We could then determine whether a 

decrease in decoding performance between two experimental conditions is due to a decrease 

in signal (that quantifies the neural population selectivity), or an increase in variance (that 

quantifies the spike count variability across all neurons).

Comparison with alternative population decoder algorithms: The linear decoder 

described differs little from those using a Fisher discriminant method (Fisher, 1936). The 

Fisher discriminant method is equivalent to a multidimensional ROC analysis on the firing 

rates of all neurons simultaneously and is therefore very directly related to the activity of 

individual neurons. The decoding accuracy simply represents differences in mean spike 

counts between different conditions, averaged over the population by weighting each neuron 

with the strength of its selectivity.

The linear decoder we used is also tightly linked to conventional approaches such as 

regression analyses of single unit data. Figure S3 shows that the average weight (averaged 

across bagging folds within one training instance, see Supplemental Experimental 

Procedures) that the trained decoder attributes to each neuron is strongly correlated with the 
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coefficient found when fitting the firing rate of each individual neuron with a simple linear 

regression model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Monkeys used knowledge of contexts defined by task sets to predict upcoming 

rewards

Neurons in prefrontal cortex and the amygdala represented these abstract contexts

These representations reflected the linked sets of associations defining each context

Errors in performance correlated with reduced encoding of context in the amygdala
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Figure 1. Task design and example licking behavior
(A) Task design (see Experimental Procedures). (B) Licking rate (defined as the proportion 

of time spent licking during the last 500ms of the trace interval) as a function of trial number 

throughout an example of experimental session. CS1 is paired with reward in Context 1 and 

paired with no reward in Context 2. Block transitions are indicated by vertical dashed lines 

and the context in effect for each block is indicated by the diagram in (A).
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Figure 2. Behavioral evidence that monkeys utilize abstract representations of context
(A) Mean licking rate on the first CS B trial after a block switch as a function of the number 

of CS A trials experienced since the block transition, where A and B are the two CSs of the 

task. Block transition is represented by dashed vertical line and squares represent the value 

of the licking rate for CS B on its last occurrence before the transition. The CS that is 

rewarded or non-rewarded after the block transition is indicated by + or 0 superscript, 

respectively. Error bars: s.e.m. Asterisks: significant difference between two consecutive 

data points (p<10e-10, Wilcoxon rank-sum test). The color code is conserved for a given CS 

before and after the transition. Error bars for pre-transition values are smaller than symbols. 

(B) Mean licking rate in response to the CS that changes from non-rewarded to rewarded 

(left, red) and from rewarded to non-rewarded (right, blue) as a function of trials from the 

‘behavioral switch’, defined as the first rewarded trial after the block transition in which the 

monkey’s anticipatory licking is high (left) or as the first non-rewarded trial in which the 

licking is low (right) (see Experimental Procedures). The mean licking rate on behavioral 

switch is represented by a square. Error bars: s.e.m. Error bar on trial 0 is smaller than 

symbol. (C) Distribution of lengths of exploration phases for all blocks of all sessions. We 

define the exploration phase as the set of trials between the beginning of the block and the 

first non-rewarded trial in which the monkeys decreased their licking (see Experimental 

Procedures). Histogram was truncated at 10 for visual clarity. Mean ± s.d = 3.3 ± 3.2 trials. 

See also Figure S2.
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Figure 3. Recording locations
The location of each recorded neuron is indicated by a + symbol on the corresponding 

coronal slice. Blue: OFC neurons; purple: ACC; green: amygdala. Anterior-posterior 

coordinate of each slice is specified relative to the inter-aural plane (IA). Diagrams were 

constructed from anatomical MRIs of each subject.
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Figure 4. Single neurons in OFC, ACC and the amygdala encode context, CS identity, and 
reinforcement expectation
(A–C) Example OFC cells encoding context (A), CS identity (B) and reinforcement 

expectation of reward or no reward (C). Each plot is a peristimulus time histogram (PSTH) 

aligned on CS onset. (D–F) Example neurons from ACC. (G–I) Example neurons from 

amygdala. For all plots, fixation is acquired 1 sec before CS onset. PSTHs of example 

context-selective neurons exclude trials where the contextual cue was shown. By 

convention, CS1 is the stimulus that is paired with reward in Context 1. Thus, blue solid 

lines and red dashed lines both correspond to rewarded trials (indicated by + symbol), while 

red solid lines and blue dashed lines both correspond to non-rewarded trials (0 symbol). 

Vertical dashed lines represent, in order, CS onset, CS offset and US onset. Black arrows 

show where in the trial the specified feature is encoded. (J–L) Proportion of neurons in each 

brain area that significantly encode context (J), CS identity (K) and reinforcement 

expectation (L) as determined by linear regression analysis (Experimental Procedures). 

Asterisks indicate significant differences in proportions (* p<0.05, ** p<0.01, z-test for 

different proportions). Error bars indicate the estimated standard error of each proportion 

based on a binomial distribution.
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Figure 5. Population-level encoding of context and CS identity occurs fast enough to account for 
the correct anticipation of reinforcement
(A) Performance of the linear decoder at reading out two task-relevant trial variables, 

context and CS identity, during “correct” trials (defined in the Experimental Procedures). 

These variables could be used as “inputs” to a neural computation of expected 

reinforcement. The decoding accuracy was computed on a 250-ms sliding window stepped 

every 50 ms across the trial for the three brain areas separately: blue, OFC; purple, ACC; 

green, amygdala. The number of cells from each population used in the decoder was 

equalized for comparisons across areas (see Experimental Procedures). Shaded areas 

indicate 95% confidence intervals (bootstrap). Vertical dashed lines represent CS onset and 

earliest possible US onset. Grey shaded area corresponds to 500-ms window from 100 to 

600 ms after CS onset used in subsequent analyses. (B) Performance of the linear decoder at 

reading out reinforcement expectation, the output of a neural computation mediating task 

performance. (C) Relative timing between the CS identity signal (blue) and the 

reinforcement expectation signal (black) in OFC, ACC and the amygdala. The performance 

of the linear decoder was computed on a 50-ms sliding window stepped every 5 ms across 

the 500-ms time window shown in panels (A) and (B) (shaded area). Vertical dashed lines 

and corresponding labels indicate the first time bin where the decoding performance is 

significantly above chance level and remains above it for the 10 subsequent time bins. 

Shaded areas around chance level indicate 95% confidence intervals for the decoding 

performances when the two trial types (CS1 and CS2 or reward and no reward) were 

randomly labeled. See also Figures S3 and S4.
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Figure 6. Context and CS identity signals are present during inference and reflect the linked sets 
of CS-US associations that define context
(A) Decoding performance for context and CS identity on trials where subjects correctly 

inferred reinforcement expectation, as revealed by their licking behavior, on the first non-

rewarded trial following one or more rewarded trials after a block switch. Neural activity 

was taken during the 500-ms time window shown starting 100 ms after CS onset. Error bars 

indicate 95% confidence intervals (bootstrap). (B) Decoding performance for reinforcement 

expectation on the same trials as in (A). (C) Decoding performance for context on trials 

following non-rewarded trials (CS10 and CS20) for a decoder trained on trials following 

rewarded trials (CS1+ and CS2+). Neural activity was analyzed during a time window 

extending from 400 ms before CS onset to 100 ms after CS appearance on trials without a 

contextual cue; this window ends before CS-related responses commence. Error bars 

indicate 95% confidence intervals (bootstrap).

Saez et al. Page 27

Neuron. Author manuscript; available in PMC 2016 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Neural correlates of correct, exploration and error behavior: decoder analyses
Comparison of neural encoding of the two task-relevant trial features between correct trials, 

exploration-phase trials and error trials in the 500-ms time window starting 100 ms after CS 

onset (shaded area in Fig. 5A, B). (A) CS identity signal. (B) Context signal. Left: OFC. 

Middle: ACC. Right: amygdala. The number of trials used in the decoder was equalized 

across correct, exploration and error conditions for comparison purposes (see Experimental 

Procedures). Error bars indicate 95% confidence intervals (bootstrap). Horizontal, dotted 

line indicates chance level. Asterisks indicate significant differences in performance 

between conditions. * p<0.05, ** p<0.01, bootstrap. (C). Distribution of the differences in 

the decoding performance for context information between correct and error trials for OFC, 

ACC and the amygdala. The distributions were generated by repeated partitioning of the 

trials into training and testing sets (Experimental Procedures). See also Figure S5.
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Figure 8. A decrease in encoding signal, not an increase in noise, accounts for the lower decoding 
accuracy of context
(A) Context encoding signal, defined as the weighted sum (across neurons) of the mean 

difference in neural activity on context 1 and context 2 trials, is plotted for each brain area 

on correct, exploration and error trials. The weighted sum uses the weights from the decoder 

procedure (see Experimental Procedures and Supplemental Experimental Procedures). The 

context encoding signal is computed in the same time interval used in Fig. 7B (0.1–0.6 ms 

after CS presentation). The drops in context encoding signal are consistent with the 

decreases in decoding accuracy in Fig. 7B. Grey asterisks inside bars indicate a significant 

context encoding signal. Black asterisks indicate significant differences between correct and 

exploration or error trials. * p<0.05, ** p<0.01, bootstrap. (B) Context encoding variance 

plotted for each brain area during correct, exploration and error trials from the same time 

epoch as in (A). The context encoding variance is a measure of the variability of the context 

encoding signal quantified as the sample variance of the difference of the weighted sums of 

neural activity between context 1 and context 2 trials. The context encoding variance does 

not show a significant change between correct, exploration and error trials in any brain area 

(p>0.05 for all comparisons, bootstrap).
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Figure 9. Representation of reinforcement expectation during correct, exploration and error 
trials
Comparison of neural encoding of reinforcement expectation between correct trials, 

exploration-phase trials and error trials in the 1-sec time window preceding the US delivery. 

Besides the time window used, methodology and conventions are the same as in Fig. 7.
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