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Background: Long-term fixation of uncemented joint implants requires early mechanical stability and implant osseoin-
tegration. To date, osseointegration has been unreliable and remains a major challenge in cementless total knee ar-
throplasty. We developed amurinemodel in which an intra-articular proximal tibial titanium implant with a roughened stem
can be loaded through the knee joint. Using this model, we tested the hypothesis that intermittent injection of parathyroid
hormone (iPTH) would increase proximal tibial cancellous osseointegration.

Methods: Ten-week-old female C57BL/6mice received a subcutaneous injection of PTH (40mg/kg/day) or a vehicle (n =
45 per treatment group) five days per week for six weeks, at which time the baseline group was killed (n = 6 per treatment
group) and an implant was inserted into the proximal part of the tibiae of the remaining mice. Injections were continued
until the animals were killed at one week (n = 7 per treatment group), two weeks (n = 14 per treatment group), or four
weeks (n = 17 per treatment group) after implantation. Outcomes included peri-implant bonemorphology as analyzed with
micro-computed tomography (microCT), osseointegration percentage and bone area fraction as shown with backscattered
electron microscopy, cellular composition as demonstrated by immunohistochemical analysis, and pullout strength as
measured with mechanical testing.

Results: Preimplantation iPTH increased the epiphyseal bone volume fraction by 31.6%. When the data at post-
implantation weeks 1, 2, and 4 were averaged for the iPTH-treated mice, the bone volume fraction was 74.5% higher
in the peri-implant region and 168% higher distal to the implant compared with the bone volume fractions in the
same regions in the vehicle-treated mice. Additionally, the trabecular number was 84.8% greater in the peri-implant
region and 74.3% greater distal to the implant. Metaphyseal osseointegration and bone area fraction were 28.1%
and 70.1% higher, respectively, in the iPTH-treated mice than in the vehicle-treated mice, and the maximum implant
pullout strength was 30.9% greater. iPTH also increased osteoblast and osteoclast density by 65.2% and 47.0%,
respectively, relative to the values in the vehicle group, when the data at post-implantation weeks 1 and 2 were
averaged.

Conclusions: iPTH increased osseointegration, cancellous mass, and the strength of the bone-implant interface.

Clinical Relevance: Our murine model is an excellent platform on which to study biological enhancement of cancellous
osseointegration.
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C
ementless joint arthroplasty was developed to preserve
bone stock, increase the ease of revision, and avoid com-
plications related to cementation. The survival of un-

cemented implants requires osseointegration, which is the
structural and functional connection between the bone and im-
plant. Osseointegration requires initial implant stability after sur-
gery, and early implantmicromotion correlates with failure of total
joint arthroplasty1-6. In total hip arthroplasty, cementless fixation of
the femoral stem is achieved by direct contact with cortical bone,
which has produced good clinical outcomes. In sharp contrast, the
results of cementless total knee arthroplasty have been mixed, and
the indications for its use are limited7-12. The tibial component in
total knee arthroplasty relies on cancellous bone to achieve initial
stability, and long-term failure of the bone-implant interface
leading to aseptic loosening of the tibial component remains a
major clinical challenge. The quantity and quality of cancellous
bone vary widely among individuals. Many patients are not con-
sidered candidates for cementless total knee arthroplasty because
of concerns about insufficient cancellous bone in the proximal part
of the tibia13-16. Biological enhancement of cancellous bone quan-
tity and osseointegration would provide one mechanism to im-
prove the outcomes of cementless total knee arthroplasty.

Intermittent-injection recombinant human parathyroid
hormone (iPTH) is the only anabolic agent approved by the U.S.
Food and Drug Administration (FDA) to increase bone mineral
density in osteoporotic patients. In previous animal models,
iPTH enhanced implant osseointegration of nonphysiologically
loaded cortical and cancellous bone in rabbits and rats17-23. These
models fail to simulate the intra-articular environment and phys-
iologic loading that accompany tibial cancellous fixation in
total knee arthroplasty. To overcome the limitations of previous
animal models, we developed a murine model that allows
weight-bearing of the implant through the knee joint and relies
exclusively on cancellous bone for support. We selected ten-
week-old C57BL/6 mice for several reasons. First, this strain is
used widely for the generation of transgenic and knockout an-
imals for bone research24. In particular, numerous genetic vari-
ants are available, making these animals a useful tool for studying
the molecular and cellular mechanisms underlying osseoin-
tegration. Second, iPTH reverses the bone loss accompanying
ovariectomy of young C57BL/6 mice25. Thus, we used C57BL/6
mice to generate our preliminary data to assess whether peri-
operative iPTH enhances tibial cancellous osseointegration of
our novel load-bearing uncemented implants.

Materials and Methods
Study Design

The experimental protocol was approved by our Institutional Animal Care
and Use Committee. Ninety ten-week-old female C57BL/6 mice (Jackson

Laboratory, Bar Harbor,Maine) were injected subcutaneously with either 40mg/kg
of PTH

25,26
(Amgen, Thousand Oaks, California) or a vehicle (0.9% saline solu-

tion) (n = 45 per treatment group) five days per week throughout the duration of
the experiment (Fig. 1). The animals began receiving injections six weeks before
surgery to avoid precluding any priming effects that iPTH may have on osseoin-
tegration of our implant. Injections were continued as part of a perioperative iPTH
regimen until the animals were killed. One mouse in each group died during the
first week of injections. After six weeks, six mice from each treatment group were

killed to establish baseline data prior to surgery. The remaining animals underwent
surgical implantation of a titanium implant in the right tibia. Mice from each
treatment group were killed one, two, and four weeks after surgery (Fig. 1). All of
the outcome measures were performed by investigators who were blinded to the
treatment group and the duration of treatment.

Implant and Surgical Technique
See Appendix and Figure 2-A.

Microcomputed Tomography (MicroCT)
MicroCT scans (mCT 35; SCANCO Medical, Bassersdorf, Switzerland) were
performed on all specimens at baseline (n = 6 per group), postoperative week
1 (n = 7 per group), week 2 (n = 14 per group), and week 4 (n = 17 per group),
representing six, seven, eight, and ten weeks of iPTH therapy. A 6-mm voxel size,
55 kVp, 145mA, and 0.36� rotation step (180� angular range) per viewwere used.
Two volumes of interest—epiphyseal and metaphyseal cancellous bone—were
examined (Fig. 2-B) for the baseline group. The area between these two volumes
of interest was excluded to avoid the confounding effects of calcified cartilage
from the growth plate. Additionally, this method allowed us to compare the
effects of iPTH in periarticular (epiphyseal) bone and metaphyseal bone sepa-
rately. We chose two other volumes of interest for the post-implantation groups
killed at weeks 1, 2, and 4: (1) peri-implant (cancellous bone along the distal 500mm
of the stem) and (2) distal to the implant (cancellous bone in the 500-mm segment
distal to the stem tip) (Fig. 2-B). Both volumes of interest were located within the
metaphysis of the tibia to avoid including the growth plate. A 60-mm-thick volume
around the edges of all implants was excluded to account for beam-hardening
artifacts due to the metallic implant.

Mineralized tissue was segmented with use of global thresholds for each
volume of interest (407.8 and 511.3 mg HA [hydroxyapatite] cm23 for the epiph-
yseal and metaphyseal volumes of interest, respectively, in the baseline group and
681.4 and 348.9mgHAcm23 for the peri-implant and distal-to-implant volumes
of interest, respectively, in the post-implantation groups). Bone volume fraction,
trabecular number, trabecular thickness, and tissue mineral density were
calculated.

Backscattered Electron Microscopy
Specimens collected at weeks 2 and 4 (n = 7 per group per time point) were fixed
in 10% formalin for forty-eight hours and embedded in polymethylmethacrylate.

Fig. 1

Study design. Mice were pretreated for six weeks with iPTH (n = 45) or a

vehicle (n = 45), and the same treatment modality was continued post-

implantation for the remainder of the study in seventy-six of the mice. One

mouse died in each treatment group during the early injection period. At

week 0, a baseline group (n = 6 per treatment) was killed for microCT

analysis. A tibial titanium implant was inserted into the proximal part

of the tibia of the remaining mice, which were then killed at one, two,

and four weeks after implantation surgery. The sample size for each

outcome measure is shown. microCT= micro-computed tomography,

IHC = immunohistochemistry, BSE = backscattered electron microscopy,

and MT = mechanical testing.
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Transverse sections perpendicular to the stem and coronal sections parallel to the
stem were cut with a diamond saw (IsoMet 5000; Buehler, Lake Bluff, Illinois).
The first transverse cut was made 1.2mm distal to the top of the plateau; this was
followed by two more cuts that were each displaced 0.5 mm from the preceding
cut (Fig. 2-C). After imaging, a coronal cut was made on the proximal portion of
the implant at the midline along the major axis. Thus, peri-implant metaphyseal
bone was visualized on the three transverse sections and epiphyseal bone was
visualized on the coronal sections. All cut surfaces were polished to a 1-mm
surface finish with a polisher (EcoMet-III; Buehler) and imaged with back-
scattered electron microscopy (Quanta 600 Electron Microscope; FEI, Hillsboro,
Oregon). The operating conditions were a 20-mm working distance, 30-kV ac-
celerating voltage, 200-mm aperture setting, 0.78-A filament current, and 100-nA
emission current. The osseointegration percentage, defined as the percentage of
the total implant surface that had direct contact with bone, and the bone area
fraction, defined as the percentage derived by dividing the area of bone by the total
area within 200 mm of the implant, were assessed on the transverse and coronal
sections (ImageJ; National Institutes of Health, Bethesda, Maryland). The results
for the three transverse sections were averaged for each specimen.

Immunohistochemical Analysis
The specimens obtained at weeks 1 and 2 (n = 7 per group per time point) were
fixed in 10% formalin for forty-eight hours and decalcified with use of 10%
EDTA (ethylenediaminetetraacetic acid). The implants were then removed
gently from the tibiae with minimal loss of tissue at the bone-implant inter-
face

19
, and the bone was embedded in paraffin. Transverse sections beginning

1 mm distal to the surface of the trimmed tibial plateau were cut serially. To
analyze the peri-implant cellular responses to iPTH, immunohistochemical
analysis was performed with procollagen I (1:50, SP1.D8; Developmental

Studies Hybridoma Bank, University of Iowa, Iowa City, Iowa) as an osteoblast
marker and cathepsin K (1:600)

27
as an osteoclast marker.

As previously described
19
, sections were deparaffinized and rehydrated,

endogenous peroxidase activity was blocked with 3% H2O2 for thirty minutes,
and then a protein block solution (X0909; Dako, Carpinteria, California) was
used for twenty minutes. Primary antibodies diluted in antibody diluent
(S3022; Dako) were allowed to react overnight; this was followed by incubation
with a biotinylated secondary antibody (1:200 E0464 [Dako] for procollagen I
and 1:400 E0432 [Dako] for cathepsin K) for one hour. After fifteen minutes of
incubation with avidin-biotin complex (VECTASTAIN [PK-6100]; Vector Lab-
oratories, Burlingame, California), color was developed with diaminobenzidine
(D5905; Sigma-Aldrich, St. Louis, Missouri) for twenty minutes. Sections were
counterstained for ten seconds with methyl green for procollagen I and with
hematoxylin for cathepsin K.

Images of sections were obtained at 20·magnificationwith a slide scanner
(ScanScope Digital Scanner; Aperio Technologies, San Diego, California). Positive
cells were countedwith use of ImageJ. The total numbers of procollagen-I-positive
and cathepsin-K-positive cells were manually counted, and the results were ex-
pressed as the osteoblast or osteoclast number/mm2 in a circular area of interest
200 mm around the implant cavity.

Biomechanical Testing
The strength of the bone-implant interface was measured with pullout testing.
Specimens obtained at week 4 (n = 10 per group) were wrapped in 0.9% saline-
solution-soaked gauze and were frozen at 220�C. Before testing, each tibia was
thawed to room temperature. The distal endwas potted in polymethylmethacrylate.
Bone at the proximal end was dissected with a number-11 scalpel blade to allow
the clamp of a custom fixture

28
to hold the implant under its plateau. Care was

Fig. 2

Dimensions and use of the novel titanium tibial implant, whichwasmanufacturedwith three-dimensionalmetal printing.Fig. 2-A Top left: Implants shown in

top, front, and side views. The implants were placed on a dime for size comparison. Bottom left: Secondary electron microscopy image of the implant

showing the roughened surface. Right: Lateral radiograph of a mouse knee with the tibial implant in situ. Fig. 2-B Volumes of interest for microCT

measurements. Left: At baseline, epiphyseal and metaphyseal volumes of interest were analyzed separately, excluding calcified cartilage at the growth

plate and all cortical bone. Right: At weeks 1, 2, and 4 post-implantation, peri-implant bone adjacent to the distal 500 mm of the implant and bone 500 mm

distal to the implant were analyzed. Fig. 2-C Regions of interest for backscattered electron (BSE) microscopy. Left: Three transverse sections 0.5 mm apart

were assessed and the results were averaged. Right: A coronal section on the midline of the plateau of the proximal 1.2 mm of the tibia was assessed.
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TABLE I Results of MicroCT of Cancellous Bone

Mean (95% CI) P Value (Student t Test or ANOVA)*

Vehicle Group iPTH Group Treatment Duration Treatment*Duration

Bone volume fraction (%)

Epiphysis (baseline) 34.2 (32.3, 36.1) 45.0 (43.1, 46.8) 0.005 — —

Metaphysis (baseline) 9.02 (8.55, 9.50) 8.60 (7.59, 9.61) N.S. — —

Peri-implant <0.001 N.S. N.S.

Wk 1 21.9 (13.4, 30.3) 28.7 (25.4, 31.9)

Wk 2 18.5 (14.5, 22.5) 35.1 (31.6, 38.6)

Wk 4 15.3 (11.0, 19.6) 33.4 (29.0, 37.9)

Distal to implant <0.001 N.S. 0.015

Wk 1 23.9 (7.35, 40.5) 39.3 (33.6, 44.9)†

Wk 2 12.7 (9.57, 15.9) 41.1 (36.0, 46.2)†

Wk 4 9.75 (5.50, 14.0)‡ 43.7 (37.7, 49.8)†

Trabecular number (mm21)

Epiphysis (baseline) 8.19 (5.89, 10.5) 8.95 (7.60, 10.3) N.S. — —

Metaphysis (baseline) 3.82 (3.68, 3.96) 3.77 (3.49, 4.04) N.S. — —

Peri-implant <0.001 0.018 N.S.

Wk 1 9.98 (6.34, 13.6) 14.7 (11.9, 17.5)

Wk 2 8.47 (6.75, 10.2) 16.4 (15.0, 17.8)

Wk 4§ 6.17 (4.48, 7.85) 14.4 (12.6, 16.1)

Distal to implant <0.001 N.S. N.S.

Wk 1 7.97 (3.05, 12.9) 9.78 (7.46, 12.1)

Wk 2 4.19 (3.76, 4.61) 8.73 (7.05, 10.4)

Wk 4 4.65 (3.73, 5.57) 10.8 (8.45, 13.2)

Trabecular thickness (mm)

Epiphysis (baseline) 57.5 (56.7, 58.3) 61.3 (58.3, 64.2) 0.030 — —

Metaphysis (baseline) 43.6 (41.7, 45.4) 39.6 (36.6, 42.7) 0.031 — —

Peri-implant N.S. <0.001 N.S.

Wk 1 28.0 (26.5, 29.6) 28.5 (26.8, 30.2)

Wk 2 27.5 (26.1, 28.8) 29.0 (28.0, 30.0)

Wk 4§# 32.4 (30.9, 33.9) 31.7 (30.4, 32.9)

Distal to implant <0.001 N.S. N.S.

Wk 1 43.7 (36.2, 51.3) 44.8 (41.8, 47.7)

Wk 2 40.4 (37.8, 42.9) 48.0 (46.1, 49.8)

Wk 4 38.8 (33.9, 43.8) 47.7 (45.0, 50.5)

Tissue mineral density (mg HA cm23)

Epiphysis (baseline) 951 (935, 968) 928 (920, 936) 0.013 — —

Metaphysis (baseline) 913 (903, 924) 882 (862, 901) 0.013 — —

Peri-implant N.S. 0.001 N.S.

Wk 1 963 (955, 970) 961 (956, 967)

Wk 2# 976 (970, 982) 969 (964, 973)

Wk 4§ 964 (960, 969) 965 (959, 971)

Distal to implant 0.003 <0.001 N.S.

Wk 1 753 (723, 782) 735 (706, 763)

Wk 2# 829 (816, 842) 803 (790, 815)

Wk 4# 816 (800, 833) 805 (794, 816)

*N.S. = not significant. †Significantly different from the value in the vehicle group at the same time point as shown by post hoc testing. ‡Significantly
different from the value in the same treatment group at week 1 as shown by post hoc testing. §Significantly different from the value at week 2, independent
of treatment, as shown by post hoc testing. #Significantly different from the value at week 1, independent of treatment, as shown by post hoc testing.
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taken to minimize the amount of tissue removed and to not move the implant in
the process

28
. The long axis of the implant was aligned with the axis of pullout

loading. The implant was pulled out of the tibia at 0.03 mm/sec under displace-
ment to failure with an EnduraTEC ELF 3200 system (Bose, Eden Prairie, Min-
nesota). Maximum pullout load (N) was calculated from the load-displacement
curves.

Statistical Analysis
Baseline differences in microCT parameters and differences in mechanical
testing data between treatment groups were assessed with Student t tests. Post-
implantation differences in microCT, backscattered electron microscopy, and
immunohistochemistry parameters, including effects of treatment, weeks after
implantation, and their interaction, were evaluated with multifactor analysis of
variance (ANOVA). If no significant interaction was present, only main effects
are reported. The data at all of the post-implantation time points in each
treatment group were averaged to calculate the difference between the two
treatment groups when the difference was independent of the duration of
treatment. Separate models were used to examine differences in microCT pa-

rameters in different volumes of interest. Post-hoc testing was performed with
the Tukey method. P < 0.05 was considered to indicate significance. Results are
presented as means and 95% confidence intervals (CIs). All results presented
are significant unless stated otherwise.

Source of Funding
This study was supported by Grant UL1 TR000457 of the Clinical and Trans-
lational Science Center at Weill Cornell Medical College (X.Y.), the Eduardo A.
Salvati Resident Research Grant (B.F.R.), and National Institutes of Health
(NIH) Grant R01-AR056802.

Results
Preimplantation iPTH Increased Bone Volume and
Trabecular Thickness in a Site-Specific Manner (Table I)

Six weeks of iPTH treatment increased the preimplantation
epiphyseal cancellous bone volume fraction by 31.6% and

epiphyseal trabecular thickness by 6.6% relative to the values

TABLE II Osseointegration and Bone Area Fraction Measured with Backscattered Electron Microscopy

Mean (95% CI) P Value (ANOVA)*

Vehicle Group iPTH Group Treatment Duration Treatment*Duration

Osseointegration (%)

Metaphysis 0.019 N.S. N.S.

Wk 2 45.6 (38.3, 52.9) 53.6 (46.5, 60.8)

Wk 4 41.0 (16.8, 65.1) 57.3 (52.1, 62.5)

Epiphysis N.S. N.S. N.S.

Wk 2 17.4 (2.15, 32.7) 15.6 (0.381, 30.9)

Wk 4 16.5 (5.16, 27.7) 22.8 (12.0, 33.6)

Bone area fraction (%)

Metaphysis <0.001 N.S. N.S.

Wk 2 32.2 (29.9, 34.5) 47.8 (44.5, 51.2)

Wk 4 24.1 (13.0, 35.2) 48.4 (46.3, 50.6)

Epiphysis N.S. N.S. N.S.

Wk 2 40.3 (28.6, 52.0) 29.7 (16.5, 42.9)

Wk 4 28.0 (17.1, 38.9) 30.7 (19.0, 42.3)

*N.S. = not significant.

TABLE III Osteoblast and Osteoclast Densities Measured with Immunohistochemical Analysis

Mean (95% CI) P Value (ANOVA)*

Vehicle Group iPTH Group Treatment Duration Treatment*Duration

No. of osteoblasts/area (mm22) 0.002 0.005 N.S.

Wk 1 406 (213, 599) 640 (402, 878)

Wk 2 281 (162, 399) 495 (363, 627)

No. of osteoclasts/area (mm22) 0.038 0.047 N.S.

Wk 1 66.4 (26.0, 107) 71.4 (45.9, 96.9)

Wk 2 69.9 (38.6, 101) 129 (86.2, 171)

*N.S. = not significant.
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for the vehicle control, whereas iPTH decreased the meta-
physeal cancellous trabecular thickness by 9.2%. Preimplan-
tation iPTH did not alter the trabecular number; however, it
decreased tissue mineral density in both the epiphyseal and the
metaphyseal region by 2.4% and 3.4%, respectively.

Peri-Implantation iPTH (Before and After Implantation)
Augmented Bone Mass in Both the Peri-Implant and the
Distal-to-Implant Region (Table I)
In the peri-implant region, iPTH treatment enhanced the bone
volume fraction by 74.5% and the trabecular number by 84.8%

without altering trabecular thickness when the data at the three
post-implantation time points were averaged. The trabecular
number decreased by 17.3% from two weeks to four weeks post-
implantation, and this effect was independent of the treatment
group. In the region distal to the implant region, iPTH increased
bone volume fraction by 168%, trabecular number by 74.3%,
and trabecular thickness by 14.3% when the data at the three
post-implantation time points were averaged. The bone volume
fraction was 64.4%, 224%, and 348% greater in the iPTH-
treated mice at one, two, and four weeks post-implantation,
respectively. The difference in bone volume fraction between

Fig. 4

Treatment with iPTH increased osteoblast and osteoclast density in the peri-implant region at weeks 1 and 2 post-implantation, as shown by these

representative immunohistochemical staining images for osteoblasts (pro-collagen I) and osteoclasts (cathepsin K). I = empty space after the implant was

withdrawn, arrow = osteoblast, and arrowhead = osteoclast.

Fig. 3

Treatment with iPTH enhanced osseointegration and bone area fraction in the metaphyseal region, as shown by these representative backscattered

electron microscopy images of the metaphyseal (transverse) region of vehicle and iPTH-treated mice at week 4 post-implantation.
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the two treatment groups was dependent on the duration of
treatment. Treatment with iPTH decreased tissue mineral
density by 2.29% in the region distal to the implant when the
data at the three post-implantation time points were averaged.
The bone volume fraction in this region decreased by 59.2%
from one to four weeks in the vehicle-treated mice.

Peri-Implantation iPTH Enhanced Osseointegration and
Bone Mass (Table II)
Treatment with iPTH increased the osseointegration percentage
and bone area fraction by 28.1% and 70.1%, respectively, relative
to the values in the vehicle-treated group, in the metaphyseal
region along the implant stem (Fig. 3). In contrast, iPTH did not
alter these two parameters in the coronal (epiphyseal) sections.

Peri-Implantation iPTH Increased Osteoblast and Osteoclast
Number in the Peri-Implant Region (Table III)
Use of iPTH increased osteoblast density by 65.2% and osteo-
clast density by 47.0%, relative to the values in the vehicle-treated
group, when the data at post-implantation weeks 1 and 2 were
averaged (Fig. 4).

Peri-Implantation iPTH Increased Bone-Implant Interface
Strength (Fig. 5)
The mean maximum pullout load at week 4 post-implantation
in the iPTH group was 23.3 N (95% CI, 18.7 to 27.8 N), which
was 30.9% higher than the value in the vehicle group (17.8 N
[95% CI, 15.6 to 20.0 N]).

Discussion

Rapid and robust cancellous osseointegration of the proximal
part of the tibial component is essential for the success of

cementless total knee arthroplasties. Previous studies of in vivo
models suggested that iPTH improves osseointegration17-23,29-34.
Previous studies on osseointegration, however, had substantial

limitations, including (1) use of large animals (rabbits, sheep, and
dogs) with accompanying high cost, lower throughput17,19,30,31,35-38,
and greater humanitarian concerns compared with those related
to small-animal models; (2) nonphysiologic implant placement
such as in themedullary canal or extra-articular locations18,20-22,32,39;
and (3) reliance on cortical bone support for stability18,20-22,40. In
the present study, we used a newly developed murine model with
an intra-articular titanium implant that was loaded through the
knee joint and supported by the cancellous bone bed of the
proximal part of the tibia. In this model, perioperative iPTH
increased metaphyseal cancellous osseointegration.

The finding that iPTH enhanced bone formation within
our titanium implant is consistent with the beneficial effects of
iPTH therapy on osseointegration seen in other models17-23,35. In
our study, an increase in trabecular number, as opposed to tra-
becular thickness, appeared to be the primary structural change
resulting from iPTH in the peri-implant region compared with
the distal region. Peri-implant trabecular thickness was similar
between the vehicle and iPTH groups at all time points, sug-
gesting that this morphologic parameter played less of a role in
increasing the maximum failure load of the implant. In support
of these observations, our previous study of rabbits showed
an increase in the trabecular number, as opposed to trabecular
thickness, as the primary morphologic change resulting from
iPTH in combination with a surgical insult19. Pathologic bone
states may have different responses to iPTH in the peri-implant
region relative to normal bone. In contrast to our findings, a
rat ovariectomy model showed increased trabecular thickness
to be critical to improving bone-implant interface strength with
iPTH20. The difference between iPTH actions in normal and
pathologic bone states should be investigated in future studies.

Our data show that iPTH had distinct effects on preoper-
ative bone mass and postoperative osseointegration in the
epiphyseal and metaphyseal regions in young adult C57BL/6
mice. Preoperative iPTH significantly increased the epiphyseal
but not the metaphyseal trabecular bone volume fraction. Sim-
ilarly, Zhou et al. found that administration of iPTH at a dosage
identical to the one used in our study (40 mg/kg/day) did not
increase the trabecular bone volume fraction in the metaphyseal
region of the proximal part of the tibia in C57BL/6 mice at seven
weeks25. In contrast, sites with a high baseline trabecular bone
volume, such as the vertebral body, did show a significantly in-
creased bone volume fraction, suggesting that pretreatment tra-
becular bone density correlates with the iPTH effect.

Post-implantation, iPTH improved osseointegration and
trabecular microarchitecture in the metaphyseal region. The in-
crease in osteoblast and osteoclast density by two weeks suggests
active remodeling in the peri-implant bone. The enhancement of
osseointegration and the increase in peri-implant bone mass due
to iPTHwere pronounced and appeared to be independent of the
impact of iPTH on trabecular bone remodeling in the preoper-
ative state. Using a rabbit model, we previously showed improved
osseointegration and greater osteoblast cell density in the setting
of surgical trauma combined with iPTH treatment19. Collectively,
these data suggest that synergymay exist between surgical trauma
and iPTH treatment. An explanation for this result is that actively

Fig. 5

Treatment with iPTH increased the maximum load to failure on pullout

testing at week 4 post-implantation. This box and whisker plot shows the

mean (line in the box), 95% confidence interval (bottom and top ends

of the box), and minimum and maximum (bottom and top whiskers) of

maximum load. *P < 0.05.
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remodeling surfaces may enhance the anabolic activity of oste-
oblasts in response to iPTH through the release of anabolic
growth factors41-44. Surgical trauma stimulates a local healing
response that may enhance these mechanisms of action19.

Surprisingly, osseointegration in the epiphyseal region of
the implant did not improve with iPTH treatment. One possible
explanation is the exposure of this region to the joint cavity with
synovial fluid access to the implant. In response to intra-articular
injury, increased synovial fluid production of matrix metal-
loproteinases and inflammatory cytokines such as interleukin-6
and tumor necrosis factor-alpha can create an adverse biological
healing environment45-47. Mechanical factors may also reduce
osseointegration in the epiphyseal region. Fluctuations in fluid
flow around an implant can induce osteoclastogenesis and
contribute to bone resorption48,49. The distal part of the implant
stem lies within the metaphysis and is not subject to the intra-
articular environment, so this part of the stem may be less af-
fected by the intra-articular environment and undergo better
osseointegration. These spatially different osseointegration pat-
terns may have clinical relevance, suggesting that proximal tibial
plateau fixation needs to be supplemented by a stem to stimulate
ingrowth and optimize early stability.

Our study has limitations. Given the size of the implant and
bone, it was not possible to use instrument guides to trim the tibial
plateau or adjust implant alignment. Using an operatingmicroscope
and landmarks such as the insertion of the posterior cruciate liga-
ment and the blush of the tibial canal improved consistency in
implant placement. The mice used the operatively treated leg nor-
mally throughout the postoperative period with no gait alterations
after the immediate postoperative period (Video 1 [online]). This
observation suggests that the mice were bearing weight; however,
the force experienced by the implant has not been quantified.

In conclusion, iPTH treatment improved metaphyseal os-
seointegration and bone-implant interface strength in this novel
physiologically loaded intra-articular murine model of tibial can-
cellous osseointegration. This model is a viable platform onwhich
to study pharmacologic enhancement of the bone-implant in-
terface and can be used in future studies to examine molecular
mechanisms of osseointegration.

Appendix
Implant and Surgical Technique (Fig. 2-A)

The mouse implants were produced on a direct metal laser
sintering system (EOSINT M 270; EOS Electro Optical Sys-

tems, Munich, Germany). The chemical composition of the
Ti6Al4V powder was in accordance with ASTM F1472 and DIN
(Deutsches Institut für Normung, translated into English as “The
German Institute for Standardization”) ISO (International Stan-
dards Organization) 5832-3. The powder was produced in an inert
argon gas with use of a gas atomization process. The powder was
spherical in shape with a median size (D50) of approximately
40 mm. The articulating surface of the implant was polished with
1200-grit (P2500) sandpaper, leading to amean surface roughness
of 8.4mm. Aminimum porosity of 39.5%was calculated with the
assumption that there was a single layer of hexagonal close-packed
40-mm-diameter titanium spheres coating the implant stem. The

dimensions of the smooth flat oval implant plateau were 2.0 mm
for the major axis and 1.5 mm for the minor axis with a 0.2-mm
thickness. The stem was 2.0 mm in length and 1.0 mm in di-
ameter. The rough stem surface allowed bone ongrowth.

Surgery was carried out with the animal under general
anesthesia induced with an intraperitoneal injection of ketamine
(65 mg/kg) and acetylpromazine (2.5 mg/kg) with additional
anesthesia (2% isoflurane, 2 L/min) administered with a nose
cone as needed.With use of a sterile technique, an 8-mmmedial
parapatellar incision was made in the right knee. The longitu-
dinal fibers of the quadriceps mechanismwere divided medially,
and the patella was dislocated laterally to expose the tibial pla-
teau. With use of an operating microscope for visualization, the
anterior cruciate ligament and menisci were resected. With use
of a fine-tip burr, the articular cartilage and proximal epiphysis
were removed to the level of the insertion of the posterior cruci-
ate ligament to accommodate the implant. A 0.9-mm-diameter
hole was created in the medullary canal with a high-speed drill.
The implant was press-fit into the hole until the top was flush
with the proximal part of the tibia. This press-fit approach was
used to avoid early micromotion and decrease interface gaps50-53.
A full range of motion of the knee was confirmed before the
closure of the wound. The extensor mechanism and skin were
closed in layers with resorbable suture. The mice were given
analgesia (buprenorphine, 0.05 mg/kg subcutaneously) for the
first forty-eight hours postoperatively. They bore full weight on
the limb from the day of surgery onward and exhibited full
unrestricted activity levels (Video 1 [online]). Immediately after
the mice were killed, the right tibiae were dissected free of soft
tissue with care taken to not disturb the tibial implant. Samples
were fixed with 10% formalin or frozen at 220�C until pro-
cessing for various outcome measures. n
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