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Abstract
Ficolin-2 (FCN2) is an innate immune pattern recognition molecule that can activate the

complement pathway, opsonophagocytosis, and elimination of the pathogens. The present

study aimed to investigate the association of the FCN2 gene single nucleotide polymor-

phisms (SNPs) with susceptibility to pulmonary tuberculosis (TB). A total of seven SNPs in

exon 8 (+6359 C>T and +6424 G>T) and in the promoter region (-986 G>A, -602 G>A, -557

A>G, -64 A>C and -4 A>G) of the FCN2 gene were genotyped using the PCR amplification

and DNA sequencing methods in the healthy controls group (n = 254) and the pulmonary

TB group (n = 282). The correlation between SNPs and pulmonary TB was analyzed using

the logistic regression method. The results showed that there were no significant differ-

ences in the distribution of allelic frequencies of seven SNPs between the pulmonary TB

group and the healthy controls group. However, the frequency of the variant homozygous

genotype (P = 0.037, -557 A>G; P = 0.038, -64 A>C; P = 0.024, +6424 G>T) in the TB group

was significantly lower than the control group. After adjustment for age and gender, these

variant homozygous genotypes were found to be recessive models in association with pul-

monary TB. In addition, -64 A>C (P = 0.047) and +6424 G>T (P = 0.03) were found to be

codominant models in association with pulmonary TB. There was strong linkage disequilib-

rium (r2 > 0.80, P < 0.0001) between 7 SNPs except the -602 G>A site. Therefore, -557

A>G, -64 A>C and +6424 G>T SNPs of the FCN2 gene were correlated with pulmonary TB,

and may be protective factors for TB. This study provides a novel idea for the prevention

and control of TB transmission from a genetics perspective.
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Introduction
Tuberculosis (TB) is a chronic infectious disease caused byMycobacterium tuberculosis (Mtb).
Mtb can cause other kinds of TB, but pulmonary TB is the most common [1]. According to the
World Health Organization’s 2013 global report on TB, an estimated 9.0 million people devel-
oped TB and 1.5 million died from this disease, 360,000 of whom were HIV-positive [2]. One-
third of the world’s population is infected with Mtb, of which 5–10% will eventually develop
active TB [3].

In 1926, newborn infants from the town of Lübeck in Germany were accidentally vaccinated
with live Mtb instead of the vaccine Bacillus Calmette-Guérin (BCG). Some of the babies
became severely ill and died, while others were unaffected [4]. In addition, a higher concor-
dance rate has been found in monozygotic twins (60%) than dizygotic twins (20%) [4]. It there-
fore suggests that genetic factors can influence an individual's susceptibility to TB. Reported
publications revealed the importance of genetic predisposition in the etiopathogenesis of TB
[5–8]. Single nucleotide polymorphisms (SNPs) in genes as inducible nitric oxide synthase [9,
10], solute carrier protein 11A1 [11], Toll-like receptors [12, 13], nucleotide oligomerization
domain 2 [14], CD14 [15], vitamin D nuclear receptor [16], mannose-binding lectin [17], sur-
factant protein A [18], tumor necrosis factor [19], interleukin (IL)-6 [20] and IL-10 [21],
monocyte chemoattractant protein-1 [22], RANTES [23] and C-X-C motif chemokine 10 [24]
have been reported [25] to be associated with increased or decreased risk of developing TB.

The complement system plays an important role in host defense against infectious patho-
gens. It can promote opsonization of pathogens and immune complexes, leukocyte recruit-
ment, inflammation and cell lysis. The lectin pathway is an important pathway of complement
activation [26]. Ficolin-2 (also known as P35, L-ficolin) is an innate immunity pattern recogni-
tion molecule. It consists of a collagen-like tail and a fibrinogen-related globular head region. A
triplet subunit is formed by the collagen-like triple helix, and this then forms higher multimers
[27]. Unlike other ficolins, it has complex binding sites within its internal space enabling it to
recognize a variety of molecular patterns, such as acetylated sugars and 1,3-β-glucans of patho-
gens [27]. Ficolin-2 was demonstrated to recognize and bind to a variety of pathogens includ-
ing hepatitis C virus [28], pseudomonas aeruginosa [29], aspergillus fumigatus [30], bovis [31],
and Mtb [32] through MBL-associated serine proteases (MASPs). The pathogen surface is
marked with C3b that can induce phagocytosis, formation of the membrane attack complex
and destruction of the cell membrane, resulting in direct elimination of the pathogen [33].

Ficolin-2 is encoded by the FCN2 gene located on chromosome 9q34. The FCN2 gene has
eight exons. Exon 1 encodes the signal peptide and the N-terminal residues. Exon 2 and 3
encode the collagen-like domain. Exon 4 encodes the linker region. Exons 5 to 8 encode the
fibrinogen-like domain [34, 35]. SNPs in the FCN2 gene have been reported in TB and other
diseases [35–39], indicating that FCN2 is involved in infectious diseases. SNPs in the promoter
region (-986 G>A, -602 G>A, -557 A>G, -64 A>C and -4 A>G) have been shown to be
related to the serum expression of ficolin-2 [40–42]. Two non-synonymous SNPs in exon 8
(+6359 C>T, Thr236Met and +6424 G>T, Ala258Ser) have been demonstrated to enhance or
weaken the binding ability of N-acetylglucosamine [40, 43]. SNPs of the promoter and exon 8
might also be related to some diseases, such as leprosy [44] hepatitis B [45], malaria [46], schis-
tosomiasis [41], and chronic chagas disease [47]. In addition, SNPs in the FCN2 gene associ-
ated with low levels of ficolin-2 level might predispose an individual to recurrent and/or more
severe streptococcal infection [48]. Functional haplotypes that produce normal ficolin-2 levels
protect against clinical leprosy [49]. Ficolin-2 insufficiency has been demonstrated to enhance
susceptibility to respiratory infections in children [50]. To the best of our knowledge, SNPs in
the FCN2 gene associated with susceptibility to pulmonary TB have not yet been reported. The
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present study aimed to investigate the association between SNPs of the FCN2 gene and suscep-
tibility to pulmonary TB in the Chinese Han population. The study provides novel ideas for the
prevention and control of pulmonary TB.

Materials and Methods

Ethics Statement
The study was approved by the Ethics Committee of School of Medicine (Zhejiang University,
China), and informed consent was obtained from all participants before conducting the study.
Written informed consent was given by adult participants (or legal guardians of children) for
their records to be used in the information system.

Patients and Controls
A total of 282 pulmonary TB patients (157 males and 125 females; aged 18–70 years, mean age
43 years) were recruited from the Sixth Hospital of Shaoxing (Zhejiang Province, China). The
blood samples were collected between January 2012 and May 2014. All TB cases were diag-
nosed according to the guidelines issued by the Chinese Ministry of Health. All patients met
one or more of the following diagnostic criteria: (1) at least one positive sputum smear and/or
culture; (2) negative sputum examination, but typical pathology of active TB on chest X-ray;
(3) histopathological diagnosis of pulmonary TB; (4) anti-TB drug therapy effective for the sus-
pected TB patients during follow-up observation. Patients with extrapulmonary TB, chronic
disease, cancer, autoimmune disease, or HIV infection were excluded. Blood samples were col-
lected from all patients before treatment initiation.

A total of 254 healthy controls (147 males and 107 females; aged 20–72 years, mean age 41
years) were recruited from the Zhejiang Hospital (China). Pulmonary TB, hepatitis B, AIDS,
autoimmune diseases and other chronic diseases were excluded after history taking, physical
examination, and blood tests.

The demographic characteristics of subjects showed no significant differences between the
two groups in age, gender, history of TB, and BCG vaccination. All patients and controls were
living in the same geographical region (Southeast China), and were from the same ethnic origin
(Chinese Han) (S1 Table).

The early morning fasting blood samples from all participants were collected in EDTA
tubes, and then dispensed into sterile centrifuge tubes and stored at -80°C

Genotyping
FCN2 SNPs information was obtained from the dbSNP database (http://www.ncbi.nlm.nih.
gov/snp/) and HapMap database (http://www.hapmap.org). We selected seven SNPs in the
FCN2 gene: -986 G>A (rs3124952), -602 G>A (rs3124953), -557 A>G (rs3811140), -64 A>C
(rs7865453), -4 A>G (rs17514136), +6359 C>T (rs17549193) and +6424 G>T (rs7851696).
Distribution and relative positions of 7 SNPs in the FCN2 gene are shown in S2 Table.

SNPs in the FCN2 gene were analyzed by PCR amplification and direct sequencing. Geno-
mic DNA was extracted from peripheral blood leukocytes by the DNA extraction kit
(QIAamp1 DNA Blood Mini Kit, Germany) according to the manufacturer’s instructions.
Primer Premier 5.0 software was used to design primers. The following primers were used for
the PCR: FCN2–986, -557 and -642 sites: forward: TCTCAGGACCACACATCTCCA; reverse:
GGTGTGGGCCTTACACAGTA. FCN2–64 and -4 sites: forward: AAACCCTTCCTTGTT
CCCCG; reverse: AACCTGCCTCGGTTTCCATT. FCN2 +6359 and +6424 sites: forward:
ATGATGATCCTGACCCCTGC; reverse: CCGCACAGCAAGACAAACC. The PCR program
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consisted of a denaturation at 94°C for 5 min, followed by 35 cycles of denaturation at 94°C for
45 s, annealing at 56°C for 45 s, and extension at 72°C for 1 min, and a final product extension
at 72°C for 10 min. The amplification products were purified with the PCR purification kit
(AxyPrep PCR cleaning kit, USA). The purified products were sequenced in the ABI 3100
sequencer (Applied Biosystems, USA).

Statistical Analysis
Hardy-Weinberg equilibrium was assessed by using the chi-square test for healthy controls.
The chi-square test was used to compare allele and genotype distribution in the pulmonary TB
patients and healthy controls by the GraphPad Prism version 5.0 software. The correlation
between individual SNP and pulmonary TB was analyzed in five different inheritance patterns
(codominant, dominant, recessive, overdominant, and log-additive) using the logistic regres-
sion method. Odds ratios (OR) and 95% confidence intervals (CI) were calculated by the Miet-
tinen method, and P< 0.05 was considered statistically significant. Haplotype frequencies and
associations were calculated by Haploview version 4.2, which uses the expectation-maximiza-
tion algorithm. Pairwise linkage disequilibrium was estimated by calculating pairwise D' and
r2. The nonparametric Mann-Whitney U test was used to analyze continuous variables of dif-
ferent groups.

Results

Allele Frequencies and Genotypes Frequencies
Seven SNPs (-986 G>A, -602 G>A, -557 A>G, -64 A>C, -4 A>G, +6359 C>T, and +6424
G>T) in the FCN2 gene were sequenced after PCR amplification (Fig 1). The allelic distribu-
tions of FCN2 SNPs were in accordance with Hardy-Weinberg equilibrium in the control
group (P> 0.05) (Table 1). There were no significant differences in allele frequencies between
the pulmonary TB group and the healthy controls group (P> 0.05) (Table 1).

The frequency of GG genotype at -557 A>G site in the pulmonary TB group (0.010) was
lower than the control group (0.040), and there was a significant difference between the two
groups (P = 0.037; OR = 0.271; 95% CI, 0.073–1.003). The frequency of CC genotype at -64
A>C site was also lower in the pulmonary TB group (0.011) than the control group (0.040),
and there was a significant difference between the two groups (P = 0.038; OR = 0.272; 95% CI,
0.074–1.008). The +6424 G>T TT genotype also had lower frequency in the pulmonary TB
group (0.010) than the control group (0.043), and there was a significant difference between
the two groups (P = 0.024; OR = 0.250; 95% CI, 0.068–0.911) (Table 1).

Correlation Analysis
To correlate the ficolin-2 levels with their respective genotypes, we went through the previous
publications and performed genotype-phenotype correlation analysis. We found that -557
A>G, -64 A>C, and +6424 G>T were associated with lower ficolin-2 levels, while -986 G>A,
-602 G>A, -4 A>G, and +6359 C>T corresponded to higher ficolin-2 levels (Table 2).

The correlation between SNPs and pulmonary TB was analyzed using the logistic regression
method. After adjustment for age and gender, the -557 A>G site was found to be the recessive
model (P = 0.02; OR = 0.24; 95% CI, 0.07–0.89), and was in significant association with pulmo-
nary TB. The -64 A>C site was found to be the recessive model (P = 0.02; OR = 0.24; 95% CI,
0.07–0.89) and codominant model (P = 0.047), and was in significant association with pulmo-
nary TB. The +6424 G>T site was found to be the recessive model (P = 0.01; OR = 0.23; 95%
CI, 0.06–0.82) and codominant model (P = 0.03), and was in significant association with
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Fig 1. The DNA sequences with 7 SNPs in the FCN2 gene.

doi:10.1371/journal.pone.0138356.g001
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pulmonary TB. Other sites were not significantly correlated with pulmonary TB in five differ-
ent inheritance patterns (P> 0.05). According to the minimum Akaike Information Criterion
(AIC), the best genetic models were the recessive models for -557 A>G, -64 A>C, and +6424
G>T (S3 Table).

Table 1. Distribution of the FCN2 SNP allele frequencies and genotype frequencies in the pulmonary TB group (n = 282) and the control group
(n = 254).

SNP
sites

Allele Controls N
(Freq)

Patients N
(Freq)

P
Value

OR 95% CI Genotype Controls N
(Freq)

Patients N
(Freq)

P
Value

OR 95% CI

-986 G/A G 475(0.939) 530(0.940) GG 224(0.885) 250(0.887) 1

A 31(0.061) 34(0.060) 0.947 0.983 0.595–1.624 GA 27(0.107) 30(0.106) 0.987 0.996 0.574–1.726

HWE(P) 0.251 AA 2(0.008) 2(0.007) 0.913 0.896 0.125–6.417

-602 G/A G 500(0.988) 557(0.988) GG 247(0.976) 275(0.975) 1

A 6(0.012) 7(0.012) 0.934 1.047 0.350–3.138 GA 6(0.024) 7(0.025) 0.934 1.048 0.347–3.161

HWE(P) 0.849 AA 0 0

-557 A/G A 403(0.796) 456(0.809) AA 160(0.632) 177(0.628) 1

G 103(0.204) 108(0.191) 0.62 0.927 0.686–1.253 AG 83(0.328) 102(0.362) 0.567 1.111 0.775–1.593

HWE(P) 0.851 GG 10(0.040) 3(0.010) 0.037 0.271 0.073–1.003

-64 A/C A 399(0.795) 452(0.804) AA 158(0.629) 174(0.619) 1

C 103(0.205) 110(0.196) 0.701 0.943 0.698–1.273 AC 83(0.331) 104(0.370) 0.482 1.138 0.793–1.631

HWE(P) 0.826 CC 10(0.040) 3(0.011) 0.038 0.272 0.074–1.008

-4 A/G A 476(0.948) 535(0.952) AA 226(0.900) 255(0.907) 1

G 26(0.052) 27(0.048) 0.779 0.924 0.532–1.606 AG 24(0.096) 25(0.089) 0.79 0.923 0.513–1.662

HWE(P) 0.675 GG 1(0.004) 1(0.004) 0.932 0.886 0.055–14.260

+6359
C/T

C 485(0.955) 537(0.952) CC 232(0.913) 256(0.908) 1

T 23(0.045) 27(0.048) 0.84 1.06 0.600–1.874 CT 21(0.083) 25(0.089) 0.806 1.079 0.588–1.979

HWE(P) 0.487 TT 1(0.004) 1(0.003) 0.945 0.906 0.056–14.580

+6424
G/T

G 405(0.797) 456(0.809) GG 162(0.638) 177(0.628) 1

T 103(0.203) 108(0.191) 0.643 0.931 0.689–1.259 GT 81(0.319) 102(0.362) 0.441 1.153 0.803–1.654

HWE(P) 0.829 TT 11(0.043) 3(0.010) 0.024 0.25 0.068–0.911

SNP: single nucleotide polymorphism; HWE: Hardy-Weinberg Equilibrium; N: numbers; Freq: frequency; OR: odds ratios; 95% CI: 95% confidence

intervals; P value and odd ratio were obtained by Chi-square test.

doi:10.1371/journal.pone.0138356.t001

Table 2. Significant changes in Ficolin-2 levels correlate with FCN2 SNPs in previous publications.

Ficolin-2 levels

Publications -986 G>A -602 G>A -557 A>G -64 A>C -4 A>G +6359 C>T +6424 G>T

Hummelshoj et al. [40] Higher Higher NS NS Higher ND ND

Kilpatrick et al. [42] Higher Higher Lower Lower Higher Higher Lower

Tong et al. [45] Higher NS ND ND NS ND Lower

Faik et al. [46] NS NS ND ND NS ND Lower

Fog et al. [62] Higher Higher NS NS Higher NS Lower

Metzger et al. [63] Higher Higher ND ND NS NS Lower

Cedzynski et al. [64] ND ND ND Lower NS NS Lower

SNP: single nucleotide polymorphism; NS: not significant; ND: not determined.

doi:10.1371/journal.pone.0138356.t002

FCN2 SNPsWere Correlated with Pulmonary Tuberculosis

PLOS ONE | DOI:10.1371/journal.pone.0138356 September 17, 2015 6 / 12



Linkage Disequilibrium and Haplotypes
There were strong linkage disequilibrium (r2>0.80, P< 0.0001) between 7 SNPs of the FCN2
gene except the -602 G>A site. The -557 A>G and -64 A>C sites were completely linked in
the control group, while the -557 A>G, -64 A>C and +6424 G>T sites were completely linked
in the pulmonary TB group (Fig 2). The linkage disequilibrium maps were basically identical in
the two groups.

Based on logistic regression analysis, we observed the correlations between the constructed
haplotypes and the occurrence of pulmonary TB. Considering the strong linkage disequilib-
rium between -557 A>G, -64 A>C and +6424 G>T sites, and -4 A>G and +6359 C>T sites,
we chose -986 G>A, -602 G>A, +6359 C>T, and +6424 G>T sites for haplotype analysis. The
frequencies of GGCG and AGTG haplotypes in the pulmonary TB group were higher than the
control group, while the frequency of GGCT and AACG haplotype in the pulmonary TB group
were lower than the control group. However, all haplotypes with the FCN2 gene polymor-
phisms were not significantly correlated with pulmonary TB (P> 0.05) (Table 3).

Discussion
Previous studies in our laboratory (S4 Table) showed that SNPs in genes were associated with
susceptibility to pulmonary TB [11, 14, 51–56]. The present study is the first to describe the
correlation between seven SNPs (-986 G>A, -602 G>A, -557 A>G, -64 A>C, -4 A>G, +6359
C>T, and +6424 G>T) in the FCN2 gene and pulmonary TB. We found significant lower fre-
quencies of -557 A>G GG genotype, -64 A>C CC genotype, and +6424 G>T TT genotype in
TB patients (Table 1), suggesting the protective role of these SNPs. There were strong linkage
disequilibrium between 7 SNPs except the -602 G>A site. Moreover, -557 A>G, -64 A>C, and
+6424 G>T, and -4 A>G and +6359 C>T sites were linked in TB patients. However, there
were no significantly correlated haplotypes.

Fig 2. Haploview plot illustrating the linkage disequilibrium (LD) of the FCN2 variants. A: Linkage disequilibrium of 7 functional FCN2 single nucleotide
polymorphism (SNPs) in the healthy controls. Block 1 represent the 2 SNPs (−557A>G and −64 A>C) completely linked.B: Linkage disequilibrium of 7
functional FCN2 SNPs in the pulmonary TB group. Block 1 represent the 3 SNPs (−557A>G, −64 A>C and +6424 G>T) completely linked. Open squares
indicate a high degree of LD (LD coefficient D0 = 1) between pairs of markers. Numbers indicate the r2 value.

doi:10.1371/journal.pone.0138356.g002
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We found that the heterozygote frequency of -602 G>A appeared relatively lower, and
there was no AA homozygous genotype. This is consistent with the studies conducted on the
Vietnamese [35], Nigerian [35], and Japanese populations [57]. However, the frequencies of
GA genotype in the Brazilian and European populations have been found to be much higher
than the above mentioned populations. Therefore, geographical differences of the -602 G>A
genotype frequencies in this study may be the result of racial evolution and environmental
interactions. The frequencies of GG, GT and TT genotypes at +6424 G>T in the present study
are consistent with the frequencies found in the Brazilian, Nigerian, Vietnamese, and European
populations [35].

The frequency of -557 A>G GG genotype in the pulmonary TB group was lower than the
control group. However, previous research on the association between the FCN2 gene and lep-
rosy [44] has shown that the frequency of -557 A>G GG genotype in patients with leprosy was
not significantly different (P = 0.085) compared to the healthy controls. In the present study,
-64 A>C CC genotype was a protective factor in pulmonary TB patients. However, no such
findings were observed in patients with Behcet's disease [57], indicating that FCN2 polymor-
phisms vary with different diseases. The frequency of +6424 G>T TT genotype also showed
different function of FCN2 between pulmonary TB and paucibacillary leprosy [44].

Whole blood RNA has been widely applied to characterize differences between individuals
with active TB [58]. Mtb evades the host immune system by being phagocytosed by macro-
phages and neutrophils [59]. Complement-dependent opsonisation of extracellular mycobacte-
ria may assist Mtb to enter into macrophages [31, 60]. Serummannan binding lectin (MBL)
and ficolin-2 have been shown to directly bind to the Mtb, leading to MASP-2 activation [31].
Luo et al. [32] found that ficolin-2 could recognize and bind to the surface glycolipid of virulent
Mtb H37Rv. Opsonophagocytosis has also been shown to be promoted by ficolin-2. Herpers
et al. [61] found that +6424 G>T is a coding SNP located in exon 8, leading to amino acid sub-
stitutions within the fibrinogen-like (FBG) domain. FBG domain is related to the binding ability
of ficolin-2. In addition, +6424 G>T T allele could enhance the binding ability forN-acetylglu-
cosamine [43]. Through previous publications, we found that -557 A>G, -64 A>C, and +6424
G>T are associated with lower ficolin-2 levels (Table 2) [40, 42, 45, 46, 62–64]. As -557 A>G,
-64 A>C, and +6424 G>T were linked in pulmonary TB patients, therefore, we assumed that
this may affect the ficolin-2 expression and the binding activity of pathogens by influencing the
binding ability of N-acetylglucosamine, ultimately affecting the activation of complements. The
activity of the complement system depends on the genetic integrity of the genes. Thus gene
mutation, SNPs in particular, may play an important role in the immune process.

Table 3. Haplotype frequencies of polymorphisms variants of the -986 G>A, -602 G>A, +6359 C>T and +6424 G>T SNPs in patients with pulmonary
TB and healthy controls.

Allele at marker

Haplotype -986 -602 +6359 +6424 Controls Freq Patients Freq P valuea OR (95% CI)

1 G G C G 0.736 0.752 0.603 1.077 (0.815–1.422)

2 G G C T 0.200 0.186 0.547 0.911 (0.672–1.235)

3 A G T G 0.043 0.046 0.867 1.051 (0.587–1.882)

4 A A C G 0.011 0.009 0.830 0.877 (0.263–2.918)

Global haplotype association P value: 0.934

a Adjusted for age and sex.

Freq: frequency of haplotype; OR: odds ratios; 95% CI: 95% confidence intervals.

doi:10.1371/journal.pone.0138356.t003
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The present study found that the variant homozygous genotype of -557 A>G, -64 A>C and
+6424 G>T in the FCN2 gene may be protective factors for TB, and were significantly associ-
ated with TB in the recessive model. Correlation between FCN2 SNPs and pulmonary TB
revealed an important role of FCN2 in the pathogenesis of TB. This study provides a novel idea
for prevention and control of TB from a genetics perspective.
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