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Abstract
Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the

retina and optic nerve. Several studies have previously evidenced the anti-apoptotic proper-

ties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor

degeneration. The aim of this study was to investigate the effects of systemic administration

of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat

retina using a functional and morphological approach. Tauroursodeoxycholic acid was

administered intraperitoneally before and after intravitreal injection of NMDA. Three days

after insult, full-field electroretinograms showed reductions in the amplitudes of the positive

and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory poten-

tials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduc-

tion in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic

acid attenuated the functional impairment induced by NMDA, which correlated with a higher

retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid

administration in vivo, suggesting it would be a good candidate for the pharmacological

treatment of degenerative diseases coursing with retinal ganglion cell loss.

Introduction
Retinal ganglion cells (RGCs) are the output neurons of the retina, whose axons converge at
the optic disk to form the optic nerve. RGCs collect and integrate visual information from sec-
ond-order neurons and then transmit electrical impulses from the retina to the brain. Loss of
RGCs is a hallmark of a number of retinal or optic nerve diseases such as diabetic retinopathy,
retinal ischemia, glaucoma, or Leber hereditary optic neuropathy [1–3]. While in fish and
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amphibians RGC neurogenesis may be extended into adulthood, in mammals this process is
restricted to the period of embryonic/neonatal retinal development (reviewed in [4]), meaning
these post-mitotic neurons are irreplaceable in the mature, terminally differentiated, retina.
Therefore, RGC loss implies progressive and permanent vision impairment. In this context, the
discovery of compounds that enhance RGC survival might be of therapeutic interest.

Bear bile has been used in ancient Chinese medicine for the improvement of visual acuity,
but it has not been until recently that several investigations have documented the anti-apopto-
tic properties of the bile constituent tauroursodeoxycholic acid (TUDCA) in rodent models of
photoreceptor degeneration, including light-induced retinal damage [5], retinitis pigmentosa
[6–9] experimental retinal detachment [10] and Leber congenital amaurosis [11]. Photorecep-
tor loss was significantly delayed by TUDCA in these retinal disease models, simultaneously
with a general improvement of retinal morphology and function. Nevertheless, studies report-
ing the anti-apoptotic effect of TUDCA on visual disorders affecting retinal neurons other
than photoreceptors are scarce. Boatright and colleagues reported a neuroprotective effect of
TUDCA on RGC degeneration following optic nerve transection in the mouse [12], but to date
the efficacy of TUDCA has not been tested in any other RGC death models or animal species.
In the present study, we address this issue using electroretinographical and histological tech-
niques to evaluate the neuroprotective potential of TUDCA against N-methyl-D-aspartate
(NMDA)-induced retinal injury in vivo. Although perhaps more relevant from a physiological
point of view, genetic models of RGC degeneration, such as the DBA/2J mouse, take consider-
ably long to develop and display high between-animal variability regarding disease progression
[13–15]. Intravitreal injection of NMDA, in contrast, represents an acute animal model of exci-
totoxicity, reasonably convenient for drug screening and efficacy studies, as it causes reproduc-
ible and fast RGC death in rodents [16–19]. Excessive stimulation of NMDA receptors, one of
the three ionotropic glutamate receptor subtypes expressed in inner retinal cells, induces a
series of events such as perturbation of Na+/K+ homeostasis, Ca2+ overload, mitochondrial dys-
function and oxidative stress [17,20–22], that ultimately lead to cell death.

After performing a detailed, quantitative analysis of RGC distribution and function follow-
ing excitotoxic insult, we confirm here that systemic administration of TUDCA enhances RGC
survival. Clinical trials of TUDCA are currently active or in recruiting phase for various pathol-
ogies, including cystic fibrosis, cholestasis, diabetes/obesity and amyotrophic lateral sclerosis
(NIH Clinicaltrials.gov NCT00004441, NCT01829698, NCT00771901, NCT00877604). Our
results provide a proof of principle of the efficacy of TUDCA as a neuroprotective factor for
RGC, paving the way for clinical trials on glaucoma patients and other degenerative diseases
coursing with RGC death.

Materials and Methods

Animals and treatments
Experimental procedures were carried out in strict accordance with the current regulations for
the use of laboratory animals (ARVO statement for the use of animals in ophthalmic and visual
research and European Directive 2010/63/UE) and all efforts were made to minimize animal
suffering and numbers. The protocol was approved by the University of Alicante Research Eth-
ics Committee (permit number #UA-2013-07-22). Sprague-Dawley rats, obtained from Harlan
laboratories (Indianapolis, IN, USA), were used in this study. The animals were bred at the
University of Alicante animal facilities and reared in an artificial 12-h light/dark cycle with
food and water ad libitum.

Tauroursodeoxycholic acid (TUDCA; Calbiochem, Merck Millipore, Darmstadt, Germany)
was dissolved in phosphate-buffered saline solution, pH 7.4, and sterile-filtered prior to
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administration. Adult (12–16 weeks) rats received a daily intraperitoneal dose of TUDCA (500
mg/kg) or vehicle (phosphate-buffered saline) for 6 days.

Electroretinogram (ERG)
ERG recordings were first performed on the fourth day of treatment with TUDCA or vehicle,
immediately before intravitreal delivery of NMDA. ERG responses were again evaluated on the
seventh day, i.e. three days after inducing retinal damage (timeline is shown in Fig 1A). In each
case recordings were performed at least 24 h after TUDCA or vehicle administration, to avoid
the influence of stress or treatment-derived acute effects on ERG responses.

Dark-adapted (12 h) rats were anaesthetized with an intraperitoneal injection of ketamine
(100 mg/kg) and xylazine (4 mg/kg) solution, and were maintained on a thermal blanket at
38°C for the entire procedure. Pupils were dilated by topical application of 1% tropicamide
(Alcon Cusí, Barcelona, Spain) and a drop of 0.2% polyacrylic acid carbomer (Viscotears;
Novartis, Barcelona, Spain) was instilled on each eye to prevent corneal dehydration and to
optimize electrical contact with the recording electrodes, which were DTL fiber electrodes with
a silver-coated nylon conductive yarn (X-Static; Sauquoit Industries, Scranton, PA, USA). The
reference electrode was a 25-gauge platinum needle inserted under the scalp, between the eyes,
and the ground electrode was placed in the mouth. Animal handling and preparation was done
under dim red light, then anaesthetized rats were placed on a Faraday cage and all experiments
were performed in absolute darkness.

Scotopic flash-induced ERG responses were recorded simultaneously from both eyes in
response to light stimuli produced with a Ganzfeld stimulator. Light stimuli were presented for
10 ms at 15 different increasing intensities ranging from -5.5 to 0 log cd�s/m2. 3 to 10 consecu-
tive recordings, 500 ms in duration, were averaged for each light presentation. Scotopic thresh-
old responses (STR) were obtained for flash intensities ranging from -5.5 to -4.5 log cd�s/m2.
The interval between light flashes was 10 s for dim flashes (-5.5 to -1.5 log cd�s/m2) and up to
20 s for the highest intensity (-0.9 to 0 log cd�s/m2). ERG signals were amplified and band-pass
filtered (0.1–1000 Hz) using a commercial amplifier (DAM 50; World Precision Instruments,
Aston, United Kingdom), and digitalized at 4 kHz with a PowerLab acquisition device (ADIn-
struments; Oxfordshire, United Kingdom). To visualize oscillatory potentials, the signal
recorded was filtered between 100 and 1000 Hz. The amplitude of the pSTR was measured
from the baseline to the peak of the pSTR (*115 ms after the stimulus); the amplitude of the
nSTR was measured from the baseline to the trough of the nSTR (*220 ms after the stimulus);
the amplitude of the a-wave was measured from the baseline to the trough of the a-wave
(*15 ms after the stimulus); and the amplitude of the b-wave was measured from the trough
of the a-wave to the peak of the b-wave (*50 ms after the stimulus). For oscillatory potentials
the maximum peak-to-trough amplitude was considered.

Intravitreal injection
Using a 30-gauge needle an initial puncture was made in the dorso-temporal sclera, about
1 mm from the sclerocorneal limbus. A 33-gauge needle, coupled to a Hamilton syringe, was
then introduced to the vitreous cavity and 3 μl of 20 mM NMDA (60 nmol; Sigma, St. Quentin
Fallavier, France) were injected in both eyes of each animal. The cannula was left in place for
one minute and then slowly withdrawn. The animals were housed in individual cages and
allowed to recover from anaesthesia on a warm water pad. Ocular lubrication was provided.
Animals with lens damage or vitreal haemorrhage were excluded from the study.
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Immunohistochemistry
At the end of the treatment, animals were euthanized by cervical dislocation under deep anaes-
thesia and the retinal tissue was harvested and processed for immunohistochemistry. Previ-
ously to eye enucleation, a suture was placed on the superior pole of each eye to maintain
retinal orientation. Enucleated eyes were fixed in freshly made 4% (w/v) paraformaldehyde, in
0.1M phosphate buffer pH 7.4, for 1 h at room temperature, and washed several times with
phosphate buffer. Then, the cornea and lens and vitreous body were carefully removed and the
retina was dissected out. The retinas were incubated for 72 h at 4°C with goat polyclonal anti-
Brn3a antibody (1:500; #sc-31984L, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) and
rabbit polyclonal anti-RBPMS antibody (1:10000; a generous gift from Dr. Nicholas Brecha),
diluted in 0.1M phosphate buffer containing 1% (v/v) Triton X-100 (Sigma). After several
washes with phosphate buffer, the retinas were incubated for 2 h at room temperature with a
cocktail of secondary antibodies, Alexa Fluor 488 donkey anti-goat IgG (1:500; Molecular
Probes1, Eugene, OR, USA) and Alexa Fluor 555 donkey anti-rabbit IgG (1:500; Molecular
Probes1). Then, the retinas were washed, flat-mounted on glass slides with the vitreous side
up, coverslipped with anti-fading mounting medium (Citifluor Ltd., London, United King-
dom) and sealed with nail polish.

Confocal microscopy and quantification of surviving RGCs
Using a laser-scanning confocal microscope (TCS SP2, Leica Microsystems, Wetzlar, Germany),
serial horizontal xy-sections, 4 μm in depth, were acquired in the z-axis with a 20X objective
along the dorsal-ventral and nasal-temporal axes of the retina. Double positive Brn3a/RBPMS
cells in the ganglion cell layer were scored in maximal confocal projections at 16 regions of inter-
est (four areas per retinal quadrant at different eccentricities, 1, 2, 3 and 4 mm from the optic
disc; measuring 400 x 400 μm2 each). Mean density (number of cells per mm2) values were calcu-
lated for all eccentricities as well as over the whole retina. A total of 6 retinas per experimental
group (untreated, vehicle+NMDA or TUDCA+NMDA) were analyzed.

Statistical analysis
Statistical analyses were performed using SPSS 18.0 software (IBMArmonk, NY, USA). A two-
way repeated measures ANOVA was performed to evaluate the effects of the treatment (vehicle
vs. TUDCA) on ERG responses throughout the experimental stages (before and after inducing ret-
inal damage with NMDA). A two-way ANOVA was performed to evaluate differences in the
mean density of RGCs between the three experimental groups (untreated, vehicle+NMDA or
TUDCA+ NMDA) at the distinct eccentricities. When a 0.05 level of significance was found, post-
hoc pairwise comparisons using Bonferroni’s test were made. Normal distributions and homoge-
neity of variance were found for all analyzed categories. P values less than 0.05 were considered
statistically significant. Data were plotted as the mean ± standard error of the media (SEM).

Results

Intravitreal injection of NMDA reduces retinal responsiveness
In order to evaluate retinal functionality, we performed full-field ERG recording in dark-
adapted conditions, before and after NMDA-induced retinal lesion (Fig 1A). Several reports

Fig 1. Effect of NMDA and TUDCA on the rat full-field ERG. (A) Experimental timeline indicating the days of intraperitoneal injection with TUDCA or
vehicle, ERGs and intravitreal delivery of NMDA. (B) Representative scotopic ERG waveforms performed before (thin traces) and after (bold traces) NMDA-
induced retinal lesion in rats treated with TUDCA or vehicle. Units on the left indicate input flash intensities in log cd�s/m2.

doi:10.1371/journal.pone.0137826.g001
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suggest that, in rodents, the ERG response to a very dim light stimulus, near the scotopic
threshold, depends on inner retina function, specifically on RGCs [23–26]. Accordingly, this
ERG response has been called the STR and consists of a positive potential followed by a nega-
tive component, known as the pSTR and nSTR, respectively. Representative scotopic full-field
flash responses to stimulus of increasing intensity are shown in Fig 1B. STR components were
evaluated for flash intensities ranging from -5.5 to -4.5 log cd�s/m2. With increasing stimulus
intensity both, the pSTR and nSTR, grew in amplitude. The positive and negative components
had their peak amplitudes at*115 ms and*220 ms, respectively. At higher stimulus intensi-
ties the a- and b-waves dominated the ERG, with peak amplitudes at*15 ms and*50 ms,
respectively. The relationship between stimulus intensity and ERG amplitude is represented in
Fig 2. As it can be observed in Figs 1B and 2, intravitreal injection of NMDA caused a signifi-
cant reduction in the mean amplitude of all these parameters: pSTR (52% less), nSTR (49%
less), scotopic a-wave (38% less) and scotopic b-wave (42% less) (ANOVA, Bonferroni’s test,
P< 0.01 in all cases). Although, NMDA-mediated toxicity did not affect the implicit time of
pSRT or nSTR, it caused a significant increase in the implicit time of a- and b-wave (7% more
in both cases), as compared to untreated control rats (ANOVA, Bonferroni’s test, P< 0.01 in
both cases). In addition, scotopic oscillatory potentials (OP), which reflect light-induced activ-
ity in the inner retina [27], were recorded at 0 log cd�s/m2 before and after NMDA-induced
damage (Fig 3). Pharmacological studies indicate that both, RGCs and amacrine cells are
involved in the events underlying OPs [27,28]. OPs amplitude in rats was significantly higher
(ANOVA, Bonferroni’s test, P< 0.01) before NMDA-induced lesion (amplitude: 176 ± 13 μV;
latency: 30.9 ± 0.4 ms) than after the damage (amplitude: 93 ± 14 μV; latency: 32.9 ± 1.2 ms).
Differences in the implicit time were not significant.

TUDCA attenuates retinal function decline induced by NMDA
To test the neuroprotective effect of TUDCA on retinal function, full-field ERG recording was
performed in parallel on a group of rats that received a daily intraperitoneal dose of TUDCA
three days prior to NDMA administration, and until their sacrifice (Fig 1A). ERG responsive-
ness was less deteriorated by NMDA in TUDCA-treated than in vehicle-treated animals (Figs
1B and 2). Although TUDCA did not completely prevent the fall in retinal responsiveness
upon NMDA injection, it reduced the damage considerably. pSTR and nSTR amplitudes
recorded after NMDA injection were significantly higher in TUDCA-treated rats (72% and
62% more, respectively), as compared to vehicle-treated animals (ANOVA, Bonferroni’s test,
P< 0.01 for pSTR and P< 0.05 for nSTR). TUDCA treatment also promoted in NMDA-
injected animals scotopic a- and b-wave amplitudes significantly higher (61% and 66% more,
respectively) than those observed in vehicle-administered control rats (ANOVA, Bonferroni’s
test, P< 0.01 in both cases). The effect of TUDCA on the a-wave implicit time in NMDA-
injected rats was negligible, however, it promoted a significant reduction on the b-wave implicit
time observed in NMDA-damaged rats (2.3% less; ANOVA, Bonferroni’s test, P< 0.01). Fur-
thermore, TUDCA treatment significantly reduced the deleterious effect of NMDA on the sco-
topic OPs, as shown in Fig 3. Whereas TUDCA administration did not completely abolish the
decrease in the OP amplitude caused by NMDA, scotopic OP amplitudes after NMDA-induced
lesion were significantly higher (ANOVA, Bonferroni’s test, P< 0.01) in TUDCA-treated than
in vehicle-treated rats (78% more).

RGC numbers decrease following intravitreal NMDA delivery
After evaluation of retinal function impairment by NMDA administration, we sought to verify
that our findings correlated with a decrease in the number of surviving RGCs. To meet that

TUDCA Protects RGCs from Excitotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0137826 September 17, 2015 6 / 14



purpose, RGCs were doubly labeled with antibodies against specific RGC markers, the
transcription factor Brn3a and the RNA binding protein RBPMS [29–31], and retinal flat-
mounts were photographed under a confocal microscope along the dorsal-ventral and nasal-
temporal axes (Fig 4). As previously described, Brn3a staining showed nuclear localization in
RGCs [29], consistent with its role as a transcription factor. In contrast, RBPMS immunoreac-
tivity was observed in the cytoplasm, as expected for a post-transcriptional regulatory protein
[31]. In agreement with previous reports [31,32], RGC density was higher in the central retina
(2370 ± 306 and 2267 ± 272 RGCs/mm2, at 1 and 2 mm from the optic nerve head, respec-
tively) and declined to the periphery (1735 ± 245 and 1137 ± 210 RGCs/mm2, at 3 and 4 mm
from the optic nerve head, respectively) (Figs 4A and 5B), being the highest density located in
the dorsal quadrant of the retina, at 1 mm from the optic nerve head (Fig 5C). Injection of

Fig 2. Effect of NMDA and TUDCA on the ERG intensity-response functions. The graph represents mixed scotopic ERG amplitude (mean ± SEM)
versus stimulus intensity previous to retinal damage (pre-lesion, circles, n = 11), and after NMDA-induced lesion in rats either treated with vehicle (NMDA,
squares, n = 5) or TUDCA (NMDA+TUDCA, triangles, n = 6). Scotopic pSTRs, nSTRs, a-waves and b-waves recorded after retinal insult in TUDCA-treated
rats reached higher values than those obtained in vehicle-administered animals. Asterisks indicate statistical significance (ANOVA, Bonferroni’s test),
*P<0.05, **P<0.01.

doi:10.1371/journal.pone.0137826.g002
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60 nmol of NMDA into the vitreous chamber induced a global decrease in the density of RGCs
compared to non-injected control eyes (64% less; Fig 5A), which can be readily observed in ret-
inal micrographs (Fig 4B, 4E and 4H).

TUDCA promotes RGC survival against NMDA-induced damage
To further confirm the protective effect of TUDCA on RGCs, the density of double positive
Brn3a/RBPMS cells in the GCL of retinal flat-mounts was compared between vehicle- and
TUDCA-treated rats. Overall RGC survival, expressed as percentage of the average RGC den-
sity in non-injected control rats, was significantly higher (Student´s t test, P< 0.05) in
TUDCA-treated animals after NMDA insult (Fig 5A). When RGC eccentricity was taken into
account, a significant (two-way ANOVA, P< 0.001) protective effect of TUDCA was detected
in the central areas of the retina (at 1 and 2 mm from the optic nerve head), but not in the
peripheral areas (at 3 and 4 mm from the optic disc) (Fig 5B). The average RGC density in 15
out of 16 regions analyzed was higher in the TUDCA-treated group than in the vehicle-treated
(Fig 5C and 5E). However, this difference was significant (two-way ANOVA, P< 0.05) only in
1 region located at the dorsal quadrant of the retina, 1 mm from the optic nerve head (Fig 5C).

Discussion
There is considerable evidence regarding the cytoprotective role of TUDCA, a hydrophilic bile
acid, in experimental models of inherited or induced retinal degeneration [5–11]. However,
none of these studies targets RGCs for neuroprotection despite the fact that glaucoma, an optic
nerve disease characterized by the irreversible loss of RGCs, is the second leading cause of

Fig 3. Effect of NMDA and TUDCA on the ERGOPs. (A) Representative examples of filtered OP traces from scotopic ERGs recorded before (thin traces)
and after (bold traces) NMDA-induced retinal damage, in vehicle- (upper graph) or TUDCA-treated (lower graph) rats, in response to a 1 cd�s/m2 stimulus
(arrow). (B) Amplitude (mean ± SEM) of maximumOPs before retinal damage (pre-lesion, n = 11), and after NMDA-induced lesion in rats either treated with
vehicle (NMDA, n = 5) or TUDCA (NMDA+TUDCA, n = 6). Asterisks indicate statistical significance (ANOVA, Bonferroni’s test) for pre-lesion vs. NMDA, and
NMDA vs. NMDA+TUDCA groups, **P<0.01. No significant differences were found when comparing pre-lesion vs. NMDA+TUDCA groups.

doi:10.1371/journal.pone.0137826.g003
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blindness worldwide [33]. In the present work, we used an NMDA-mediated neurotoxicity
model combined with a functional and morphological evaluation of the retina to demonstrate
a neuroprotective effect of TUDCA on RGCs in vivo. We showed that systemic administration
of TUDCA not only attenuated the functional changes associated with NMDA-induced retinal
damage in Sprague-Dawley rats, but also delayed RGCs loss.

NMDA receptor subunits in the rat retina have been immunohistochemically localized on
RGCs and displaced amacrine cells in the ganglion cell layer, as well as in a subset of amacrine
cells in the inner nuclear layer [34]. Although the NR1C2’ subunit has also been localized in
the outer plexiform layer, specifically within rod and cone photoreceptor terminals [34], a
functional mapping of the NMDA receptor-mediated drive, using the channel permeant indi-
cator 1-amino-4-guanidoutane, found no evidence of functional NMDA receptors in photore-
ceptor cells [35]. Consequently, NMDA treatment results primarily in the degeneration of
amacrine and RGCs, but does not directly affect other cells in retina such as photoreceptors. In
fact, the presence of TUNEL positive profiles, a hallmark of apoptosis, has been detected essen-
tially in the ganglion and inner cell layers of the retina 24 hours after intravitreal administra-
tion of NMDA [36–38]. As expected, when we injected NMDA into the vitreous chamber of
Sprague-Dawley rats it caused a significant decrease in the number of RGCs, as visualized by
immunohistochemistry with Brn3a and RBPMS antibodies, 72 hours after administration.
Quantification of surviving RGCs evidenced that cell death was not homogeneous throughout
the whole retina, but occurred mainly around the optic nerve head (central retina) and at the
dorsal and temporal quadrants (Fig 5C and 5D). This could probably be attributable to a non-
homogeneous distribution of NMDA when delivered into the vitreous chamber, so the more
affected areas are those near the injection site.

Degeneration of RGCs and, presumably, amacrine cells would account for the reduction in
the amplitude of several parameters of the dark-adapted ERG, including the pSTR, nSTR, b-
wave and OPs, observed in the present study. However, we also detected a significant reduction
in the amplitude of the scotopic a-wave, which mainly reflects the activity of photoreceptors.
This is in agreement with other reports showing, as well, decreased amplitude of the scotopic
a-wave following NMDA-induced retinal damage [36–39]. In a previous work, Bui and col-
leagues [24] reported that blockade of inner retinal activity by intravitreal injection of 0.8 mM
NMDA did not alter the amplitude of the scotopic pSTR, a-wave or b-wave of the rat full-field
ERG. Importantly, this experiment was designed to suppress light responses of third-order reti-
nal neurons by depolarizing their membranes, and ERG recording was carried out as short as
30 minutes after NMDA administration. Therefore, long-term effects of retinal exposure to
NMDA were not evaluated [24]. A possible explanation for the decrease in the a-wave ampli-
tude observed in this and other studies is that NMDA is incidentally inducing functional
impairment of photoreceptors. Overstimulation of NMDA receptors has been demonstrated to
cause activation of NOX2, an enzyme that generates superoxide, producing oxidative stress in
neighboring cells [20,40]. Likewise, the increase in pro-inflammatory cytokines in the retina
and the recruitment/activation of microglia are two factors linked to NMDA-mediated neuro-
toxicity that may help propagate the damage to other retinal cells [41,42].

Overactivation of NMDA receptors triggers neuronal toxicity and degeneration. A pharma-
cological approach for the treatment of glaucoma with NMDA receptor antagonists has been

Fig 4. Immunohistochemical analysis of RGCs after NMDA-induced damage in the presence or absence of TUDCA.Confocal images of whole-
mounted retinas labelled with the RGCmarkers Brn3a (green) and RBPMS (red). A representative image of the dorsal area of the retina is shown for (A)
untreated, (B) NMDA and (C) NMDA+TUDCA experimental groups. High magnification images (D-I) correspond to central (D-F) and peripheral (G-I) areas of
the retina for the three experimental groups. Scale bar 1 mm (A-C), 50 μm (D-I).

doi:10.1371/journal.pone.0137826.g004
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proposed [43]. However, NMDA receptors mediate synaptic transmission and plasticity,
which are essential for the normal function of the nervous system. Moreover, their activity is
coupled to the transcriptional control of the glutathione biosynthesis, important for the main-
tenance of the cellular redox balance [44]. Thus, NMDA receptor complete blockade may
imply intolerable side effects. An interesting alternative would be the use of antiapoptotic com-
pounds as RGC neuroprotectans. One of such compounds is TUDCA, whose antiapoptotic
activity has been previously demonstrated in photoreceptor degenerations. In the present
study we demonstrate TUDCA improves RGC survival and function following excitotoxic
insult. The detailed molecular mechanisms that mediate TUDCA protection have not been
fully investigated, though it seems to block apoptosis at various levels, including the alleviation
of endoplasmic reticulum stress [45], the stimulation of the PI3K and MAPK (p38, ERK1/2)

Fig 5. Quantitative analysis of RGC survival after NMDA-induced damage in the presence or absence of TUDCA. (A) Percentage (mean ± SD) of
surviving RGCs with respect to control (untreated, 100%), in NMDA-injected retinas of animals treated with vehicle or TUDCA. *P<0.05; Student’s t-test. (B)
RGC density was determined in 16 regions of interest at 4 different eccentricities along the dorsal-ventral and nasal-temporal axes of the retina, as
represented schematically in the picture, and the data were plotted as an average (mean ± SD) of the 4 values corresponding to each eccentricity. (C) RGC
density (mean ± SD) in each of the 8 regions of interest along the dorsal-ventral axis of the retina. (D) RGC density (mean ± SD) in each of the 8 regions of
interest along the nasal-temporal axis of the retina. Asterisks in (B-D) indicate statistical significance *P<0.05, **P<0.01 and ***P<0.001; two-way ANOVA.
In all cases (A-D) RGC density was determined in a total of 6 rats per experimental group (n = 6).

doi:10.1371/journal.pone.0137826.g005
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survival pathways [46] and the blockade of Bax translocation to the mitochondria impeding
subsequent cytochrome c release [47]. Specifically in the retina, TUDCA has been shown to
attenuate oxidative stress in photoreceptor degenerations [7,10] and to restrain neuroinflam-
mation, preventing the detrimental effects of uncontrolled microglia activation [48,49]. The
ability to interfere with multiple death mechanisms may underlie the neuroprotective action of
TUDCA on RGCs. In summary, we demonstrate that systemic administration of the antiapop-
totic TUDCA attenuates apoptosis and improves functionality of RGCs.
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