
RESEARCH ARTICLE

Graphite Carbon-Supported Mo2C
Nanocomposites by a Single-Step Solid State
Reaction for Electrochemical Oxygen
Reduction
K. Huang1, K. Bi1, C. Liang1, S. Lin1, W. J. Wang2*, T. Z. Yang2, J. Liu3, R. Zhang1, D.
Y. Fan1, Y. G. Wang1, M. Lei1*

1 State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing
University of Posts and Telecommunications, Beijing, China, 2 Beijing National Laboratory for Condensed
Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, 3 School of Materials
Science and Engineering, Central South University, Changsha, Hunan, China

*wjwang@iphy.ac.cn (WJW); minglei@bupt.edu.cn (ML)

Abstract
Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typi-

cal solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The

characterization results indicate that G-Mo2C composites are composed of high crystalliza-

tion and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes

ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is

believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobiliza-

tion of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in

alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE)

and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a con-

siderable catalytic activity and superior methanol tolerance performance for the oxygen

reduction reaction (ORR) benefiting from the chemical interaction between the carbide

nanoparticles and graphite carbon.

Introduction
As is well known to all, ORR is the main performance-limiting factor due to its sluggish kinet-
ics in the high-efficiency energy conversion devices such as fuel cells and metal-air batteries
[1–15]. To accelerate the ORR process, precious Pt-based electrocatalysts are highly desired,
but the limited reserve and increasing price of Pt have been turned out to be great restrictions
of such devices [16–18]. Fortunately, due to the recent advancements in anion-exchange mem-
brane materials [19–22], the serious CO2-poisoning problem to KOH electrolyte which will
reduce the ionic conductivity of the electrolyte and block the pores in the electrode has been
overcome. In addition, considering the superior kinetics of the ORR in alkaline solution to that
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in acidic media, a much wider range of less expensive materials can be used as efficient and sta-
ble ORR catalysts in alkaline solution [23–25].

On the other hand, transition metal carbides such as molybdenum carbide and tungsten
carbide owning the properties of covalent solids, ionic crystals and transition metals have been
proved to own similar electronic and catalytic performances to Pt-group noble metals in reac-
tions such as hydrogenation, dehydrogenation and isomerization of hydrocarbons [26–28].
Recently, Wan et al. synthesized multiple phases of molybdenum carbide as electrocatalysts for
hydrogen evolution reaction (HER) and showed promise as an alternative to Pt [29]. Ma et al.
modified molybdenum carbide by nickel using a temperature-programmed reaction process
and used it for steam reforming of methanol as enhanced catalysts [30]. Yan and coworkers
loaded Pt on Mo2C particles through ionic exchange process with a synergistic effect and
strong interaction force for methanol electro-oxidation [31]. Jager et al. synthesized micro/
mesoporous carbide derived carbon powder fromMo2C using high-temperature chlorination
method as a very active catalyst for ORR [32]. Moreover, Stottlemyer and co-workers have
demonstrated that transition metal carbides (TMCs) are well suited materials for the electro/-
catalysis of oxygen-containing species due to the strong oxygen-carbide interaction [33]. Thus,
in recent years, Liao et al. developed a facile calcination method for novel nanoporous molyb-
denum carbide wires as an active electrocatalyst towards ORR [34].

However, very limited electrocatalytic studies on the in situ formation of β-Mo2C nanocom-
posite on graphite carbon using organic amines as reductant and carbon source have been
investigated as far as we know. And compared with halides used in rapid solid-state method
for the synthesis of carbides previously, oxides are cheaper and more stable in nature. Herein,
we successfully prepared β-Mo2C nanocomposites supported on graphite layers (G-Mo2C)
with the size of Mo2C nanoparticles ranging from ca. 5 nm to 50 nm, which exhibit consider-
able activity and superior methanol tolerance during ORR process in alkaline electrolyte. And
it is believed that the surrounding graphitic layers works as a protective film on the surface of
Mo2C nanoparticles from being passivated during the ORR operation.

Experimental
All starting materials are of analytical pure grade and arepurchased from commercial sources.
Fig 1 shows the typical synthesis process optimized from our previous work beyond the restric-
tions of evacuating and sealing [35], 0.012 mol melamine and 0.04 mol MoO3 powder were
mixed together, pressed to a pellet and put in an alumina boat. Then, the alumina boat was
placed in the center of a horizontal alumina tubular furnace and flushed with nitrogen atmo-
sphere to remove the remaining air in the alumina tube, the furnace temperature was rapidly
increased to 1673 K and kept at the peak temperature for 3 hours under N2 flow at 200 sccm.
After the furnace was rapidly cooled to the room temperature in the flow of N2 atmosphere,
the black product was collected from the alumina boat.

Morphology and microstructure of the samples were characterized by TEM (CM200-FEG,
Philips), XRD (D/MX-IIIA, RIGAKU) and Raman spectroscopy (INVIA, RENISHAW). Elec-
trochemical characterizations were performed on a CHI660E electrochemical workstation with
a three-electrode system consisting of a glassy carbon electrode (5 mm in diameter) loaded
with catalysts of 0.5 mg cm-2 as the working electrode, a Pt foil as the counter electrode and an
Hg/HgO electrode as the reference electrode which was calibrated with respect to reversible
hydrogen electrode (RHE) by E(RHE) = E(Hg/HgO) + 0.92 V. CV measurements were performed
from 0.1 to 0.8 V with a scan rate of 50 mVs-1 in N2- and O2-saturated 0.1M KOH solution,
respectively. Rotating disk electrode (RDE) measurements were conducted at different rotating
speed from 400 to 2000 rpm at a scan rate of 5 mv s-1 and chronoamperometric responses were
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carried out at a constant voltage of 0.65 V in O2-saturated 0.1M KOH solution adding 3M
methanol at 500 s, successively.

Results and Discussion
As shown in Fig 2, the XRD patterns of the synthesized G-Mo2C can be typically indexed as
the hexagonal-close-packed structure of β-Mo2C (JCPDS No. 35–0787) together with graphite-
2H carbon (JCPDS No. 35–0787). The sharp and strong peaks and highly exposed (101) plane
indicate the good crystallization of the Mo2C nanoparticles while the unobvious diffraction
peaks of graphite carbon in the pattern can be attribute to the limited content. It is worth point-
ing out that the Mo:C ratio of 1:1 and 2:1 in molybdenum carbide crystals are the most stable
ones with respect to the stoichiometries. And as for Mo2C, hexagonal Mo2C or β-Mo2C is the

Fig 1. Typical synthesis process of G-Mo2C nanocomposites.

doi:10.1371/journal.pone.0138330.g001

Fig 2. XRD Pattern of G-Mo2C with the standard diffraction patterns of Graphite and Mo2C.

doi:10.1371/journal.pone.0138330.g002
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high-temperature stable phase with a disordered L’3 structure compared with the low-tempera-
ture phase of orthorhombic Mo2C or α-Mo2C which adopts an ordered ξ-Fe2N type structure.

To further investigate the configuration of this novel G-Mo2C composite, high-resolution
transmission electron microscopy (HRTEM) images at different magnification are shown in
Fig 3. It can be observed that Mo2C nanoparticles with sizes ranging from ca. 5 nm to 50 nm
anchored on the layers of graphite carbon uniformly corresponding to the results of XRD anal-
ysis. Moreover, since the Raman spectroscopy is a powerful and widely used method for the
characterization of graphitization degree of carbon-based materials, Raman spectrum of the
G-Mo2C is shown in Fig 4, exhibiting three obvious Raman peaks located at 1355, 1579 and
2695 cm-1 which can be attributed to the disorder induced D-band, G-band and 2D-band of
crystalline graphite respectively and indicate the existence of the ordered graphitic domains in
the G-Mo2C composites. In addition, the ratio of the G-band to D-band with a value of 1.69
could also be used to judge the high degree of graphitization intuitively [36]. Considering the
good contact between graphite carbon layers and β-Mo2C nanoparticles, the enhanced overall
electronic conductivity can be expected to benefit from the functional graphite carbon matrix.

It is reported that the pyrolysis of melamine will first generate NH3 with a series of interme-
diate condensed phases such as so-called melam ((C3N3)2(NH2)4(NH)), melem (C6N7(NH2)3),
melon ((C6N7)3(NH2)3(NH)3), graphitic carbon nitride materials (g-C3N4), and then further
release some chemically reactive hydrogen-, carbon-, and nitrogen-containing atomic species
such as C3N3

+, C2N2
+, C3N2

+ and CN2H
+ at higher temperatures [37–40]. Thus, the overall

pathway of synthesizing G-Mo2C can be concluded as follows: MoO3 is reduced into Mo ele-
ment by the chemically reactive atomic species with possible low-temperature intermediate
phase of MoxN, then the as-reduced Mo element is further converted to Mo2C with the increas-
ing of temperature [35]. Moreover, controlled test of pyrolysis of melamine tablets at same con-
dition was found to obtain no products in the alumina boat, which suggests that the dangling
bonds on Mo atom are beneficial to the immobilization of graphite carbon. To further illumi-
nate the chemical interaction between the Mo2C and graphite carbon, the XPS data of G-Mo2C
in Fig 5 have been provided in consideration of the surface consumption of oxygen on an ORR
catalyst. The appearance of surface O species can be ascribed to lattice oxygen in MoOx due to

Fig 3. TEM images of G-Mo2C at different magnifications.

doi:10.1371/journal.pone.0138330.g003
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the ageing process in air [41], and the XPS peaks corresponding to Mo-C-O bond in C 1S and
O1S spectra directly prove the chemical interaction [42].

In order to investigate the electrocatalytic performance of the G-Mo2C composites as a cata-
lyst for the ORR process, CV and RDE methods were employed in 0.1M KOH solution at
room temperature. As shown in Fig 6, G-Mo2C electrode is featureless in the N2-saturated
KOH solution during the CV operation, however obvious ORR peak turns up in O2-saturated
condition suggesting G-Mo2C as a suitable catalyst for ORR to some extent. Moreover, the
ORR activity of G-Mo2C upon mass transfer was further investigated by the RDE measure-
ments with a fixed potential scan rate of 5 mV s-1 by increasing the rotation rate from 400 to
2000 rpm as shown in Fig 7. It is clear that the onset potential is about 0.75 V vs RHE and the
diffusion current densities are enhanced with the increase of the rotation rate, and the current
density at 1600 rpm is about 3.32 mA cm-2 at the potential value of 0.1 V. Obviously, there are
two reduction peaks at 0.62 V and 0.54 V instead of a steady diffusion current density, indicat-
ing a two steps ORR mechanism for G-Mo2C.

It is well known to all, there are two major pathways for the reduction of oxygen in alkaline
aqueous solution: direct 4-electron pathway to H2O and 2-electron pathway with “peroxide” as
the reduction product. Thus, ORR kinetics determined by the transferred electron number
with G-Mo2C as the catalyst are further studied using Koutecky-Levich (K-L) plots according
to the parameters reported by Wang and Jirkovsky [43,44]:
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Where J and JK are the measured and kinetic-limiting current densities, ω is the rotation speed
(rpm), n is the transferred electron number, F is the Faraday constant (F = 96485 C mol-1), C is
the concentration of O2 in 0.1 M KOH solution (C = 1.2×10−6 mol cm-3), D is the diffusion
coefficient of O2 (D = 1.9×10−5 cm2 s-1), v is the kinematic viscosity (v = 0.01 cm2 s-1). As

Fig 4. Raman spectrum of graphite in the G-Mo2C composite.

doi:10.1371/journal.pone.0138330.g004
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shown in Fig 8, the numbers of electrons transferred for ORR per oxygen molecule during
ORR over the potential rangefrom 0.55 to 0.10 V in the illustration increase from 2.13 to 3.21,
suggesting the two steps of ORR process are the reduction of O2 toHO�

2 and then O2 or HO�
2

to OH−. Moreover, the ring-disk electrochemistry has also been provided to back up the Kou-
tecky-Levich data in Fig 9, where the oxidation current peaks located at about 0.53 V Vs. RHE
can be regarded as the typical detection of HO�

2 intermediate.
According to the calculations of atomic and electronic structure of molybdenum carbide

phases and the adsorption and dissociation of molecular oxygen of TMCs by Illas and co-work-
ers [45,46], β-Mo2C has a strong metallic character and low work function of low Miller-index
surface resulting in the fact that O2 may either bridge two Mo atoms or attach on the top of a
Mo surface atom preferably. Thus, Mo2C itself as well as molybdenum oxides/oxycarbide spe-
cies can act as catalytic sites for the ORR after the activation of Mo2C. Furthermore, as a result
of the approximate 2-electron reduction process for a large range of potential, G-Mo2C has a
very possible application in the reaction of H2O2 electro-generation. However, the ORR cata-
lytic behavior of G-Mo2C is inferior to the reported work by Liao [34], even comparing with
the pure nanoporous molybdenum carbide wires (NP-Mo2C). Possible reasons can be attrib-
uted to the facile mass transport and charge transfer of NP-Mo2C with the aid of 1-D ordered

Fig 5. XPS spectra of G-Mo2C (A)survey; (B) Mo 3d; (C) C 1s and (D) O 1s.

doi:10.1371/journal.pone.0138330.g005
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structure and intensive nanoporous channels. Further improvement for G-Mo2C as ORR cata-
lysts can be realized by supporting the nanoparticles of Mo2C on porous carbon materials as
well as reducing the size of Mo2C nanoparticles.

What’s more, considering the methanol crossover issue in the commercialization of alkaline
direct methanol fuel cells, the chronoamperometric responses of G-Mo2C electrode compared
with commercial Pt/C upon adding 3Mmethanol are shown in Fig 10. It is clear that the
G-Mo2C electrode shows negligible change in its ORR current density after the addition of
methanol at 500 s, while an instantaneous current jump is observed for Pt/C electrode contrib-
uting to the initiation of methanol oxidation reaction (MOR) [47]. The different responses

Fig 6. Cyclic voltammetry curves of G-Mo2C as ORR catalyst in N2-saturated and O2-saturated 0.1 M
KOH.

doi:10.1371/journal.pone.0138330.g006

Fig 7. Linear sweep voltammogram of G-Mo2C as ORR catalysts in O2-saturated 0.1M KOH, Scan rate:
5 mV s-1.

doi:10.1371/journal.pone.0138330.g007
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demonstrate the remarkably superior methanol tolerance and high catalytic selectivity against
methanol of G-Mo2C to commercial Pt/C as the ORR catalyst. It is believed that the superior
methanol tolerance of G-Mo2C can be attributed to the structure and crystal phase stability of
β-Mo2C with the addition of protective effect of graphite layers, since Mo2C alone hardly has
electrocatalytic effect on methanol oxidation [31]. In addition, the limited degeneration of cur-
rent density in the following period also indicates the good stability of as-prepared G-Mo2C
nanocomposites.

Fig 8. Corresponding K-L plots at different potentials for G-Mo2C electrode.

doi:10.1371/journal.pone.0138330.g008

Fig 9. The ring current densities at different rotation rates by RRDE in O2-saturated 0.1 M KOH at a
scan rate of 5 mV s-1.

doi:10.1371/journal.pone.0138330.g009
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Conclusion
As a summary, novel graphite-Mo2C nanoparticles composites are synthesized by a single-step
solid state reaction route. The morphology and component are further characterized by TEM,
XRD and Raman, suggesting that Mo2C nanoparticles have a uniform distribution on the sup-
ported graphite layers. Moreover, G-Mo2C composites exhibit considerable electrocatalytic
performances with certain activity and superior methanol tolerance for ORR in alkaline elec-
trolyte due to the chemical interaction between the protected carbide nanoparticles and acti-
vated graphite layers.
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