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Summary

Confounder selection and adjustment are essential elements of assessing the causal effect of an 

exposure or treatment in observational studies. Building upon work by Wang et al. (2012) and 

Lefebvre et al. (2014), we propose and evaluate a Bayesian method to estimate average causal 

effects in studies with a large number of potential confounders, relatively few observations, likely 

interactions between confounders and the exposure of interest, and uncertainty on which 

confounders and interaction terms should be included. Our method is applicable across all 

exposures and outcomes that can be handled through generalized linear models. In this general 

setting, estimation of the average causal effect is different from estimation of the exposure 

coefficient in the outcome model due to non-collapsibility. We implement a Bayesian bootstrap 

procedure to integrate over the distribution of potential confounders and to estimate the causal 

effect. Our method permits estimation of both the overall population causal effect and effects in 

specified subpopulations, providing clear characterization of heterogeneous exposure effects that 

may vary considerably across different covariate profiles. Simulation studies demonstrate that the 

proposed method performs well in small sample size situations with 100 to 150 observations and 

50 covariates. The method is applied to data on 15060 US Medicare beneficiaries diagnosed with 

a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital 

readmissions within thirty days of diagnosis.
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1. Introduction

Assessing the causal effect of an exposure, or treatment, on an outcome is a common goal in 

many observational studies. Since the exposure is not randomly assigned, individuals with 

different levels of exposure may differ systematically in baseline variables related to both 

the exposure and the outcome, or confounders. Estimation of the average causal effect 

(ACE) of the exposure on an outcome requires adjustment for confounders, but many 

observational studies contain a large number of observed baseline variables, and there is 

often uncertainty about which of these potential confounders are required for adjustment. 

The bias and variance of the ACE estimate can depend strongly on which variables are 

included for adjustment, and it is challenging to select and adjust for the right set of 

confounders from a large set of candidates.

An important related problem to prioritizing potential confounders is how to estimate causal 

effects that vary as a function of baseline characteristics. This is sometimes referred to as 

treatment effect heterogeneity (TEH). Kurth et al. (2006) and Lunt et al. (2009) showed that 

when the causal effect of exposure on an outcome is heterogeneous, different estimation 

methods may yield extremely different exposure effect estimates, illustrating the need for 

great care about the choice of methods and the interpretation of the results. These difficulties 

are amplified when the set of baseline variables is large and there is uncertainty regarding 

which factors may interact with the exposure.

We propose new methods that can a) prioritize which observed covariates are genuine 

confounders of causal effects, and b) transparently characterize effect modification for 

specific study populations. As an example that motivates this study, we use U.S. Medicare 

beneficiary data to evaluate the causal effect of surgery on hospital readmission rates among 

elderly individuals diagnosed with malignant brain tumors. Many factors, such as 

demographic characteristics and comorbid conditions, may confound the surgery effect, and 

it is also suspected that patients with different characteristics may respond to surgery 

differently.

Our approach builds upon work by Wang et al. (2012), who proposed a method called 

Bayesian Adjustment for Confounding (BAC) to account for the uncertainty in confounder 

selection when estimating the relationship between a continuous exposure and a continuous 

outcome with a linear regression model. The BAC method jointly considered two models: 

(1) an exposure model regarding the exposure as a function of potential confounders; and (2) 

an outcome model regarding the outcome as a function of the exposure and potential 

confounders. Rather than base inference on a single model specification, BAC applies 

Bayesian model averaging (BMA, Raftery et al. (1997)) to average inference across many 

model according to posterior support from the data. Whereas standard BMA assigns 

posterior weight primarily to outcome predictors, BAC is based on a joint model prior to 

consider potential confounders’ association with both the exposure and the outcome and 

assign large posterior weights to models including all the true confounders. BAC was 

extended to binary exposures by Lefebvre et al. (2014), but has not been used for general 

types of outcomes or for the purposes of identifying and estimating TEH.
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In this paper, we extend and generalize the BAC method (Wang et al., 2012; Lefebvre et al., 

2014) to any exposure and outcome that can be handled by generalized linear models 

(GLMs) and consider interactions that constitute TEH. In contrast to the special case of 

linear regression, where the exposure coefficient in the outcome model corresponds to the 

ACE in certain circumstances (Schafer and Kang, 2008), estimation of ACEs in GLMs 

differs from estimation of a single model coefficient because of non-collapsibility, that is the 

fact that the meaning and magnitude of exposure coefficient changes by adding or removing 

a variable unrelated to the exposure (Greenland et al., 1999; Vansteelandt, 2012). We 

propose a procedure to estimate ACEs by comparing the predicted outcome values between 

different exposure levels. The formula involves an integral over the distribution of 

confounders, which is estimated non-parametrically using a Bayesian bootstrap procedure. 

By including the possibility of interactions with the exposure, our method clearly indicates 

which confounders interact with the exposure and how, which characterizes TEH in 

scientifically-interpretable subgroups. The proposed approach can estimate the ACE for the 

whole population or for a given subpopulation of interest, e.g. patients from a certain age 

group.

Our generalized BAC method (henceforth BAC for brevity) shares important points of 

contact with methods based on propensity scores (Rosenbaum and Rubin, 1983; Imai and 

Van Dyk, 2004; Lunceford and Davidian, 2004; McCandless et al., 2009) in that it makes 

explicit use of a model predicting exposure, conditional on covariates (i.e., a propensity 

score model), and the target for inference is the ACE, possibly in population subgroups. 

Whereas typical propensity score methods estimate the ACE by comparing outcomes from 

exposed and unexposed individuals with similar estimated propensity scores, BAC estimates 

the ACE with a parametric outcome regression model that does not explicitly contain the 

propensity score, but rather uses the propensity score model to guide the inclusion of 

confounders in the outcome model.

Confounder selection is a critical issue for propensity score methods as well. When sample 

size permits, it is recommended to include into the propensity score model genuine 

confounders associated with exposure and outcome, as well as variables unrelated to the 

exposure but predictive of the outcome (Brookhart et al., 2006; Schafer and Kang, 2008). In 

smaller samples, however, inclusion of extraneous baseline variables comes at the cost of 

efficiency and the risk of separating the covariate distributions in exposure groups to the 

extent that they no longer overlap (Schafer and Kang, 2008). Data-driven methods to select 

variables to include in propensity score models are emerging. When exposure, outcome, and 

potential confounders are all binary, Schneeweiss et al. (2009) proposed an algorithm to 

rank potential confounders for inclusion in the propensity score model. When both exposure 

and outcome are binary, Zigler and Dominici (2014) proposed Bayesian methods for 

variable selection and model-averaged causal effect estimation with propensity scores that 

share important similarities with BAC. To our knowledge, there has not been a unified 

method that can handle uncertainty in confounder selection across different data types, and 

methods that account for uncertainty in the selection of population subgroups exhibiting 

TEH are nonexistent. The BAC method presented in this paper is intended to address these 

important practical barriers to causal inference in high dimensional settings where 

propensity score methods are difficult to implement and interpret.
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2. Methodology

2.1 The Causal Model

Let X be the exposure, Y be the outcome, and V be a set of M potential confounders V = {V1, 

…, VM }. Both the exposure and the outcome variables can be binary, continuous, count or 

other data type that can be handled by GLMs. Our goal is to estimate the ACE of X on Y, 

possibly within population subgroups, with adjustment for confounding. A priori, there may 

be uncertainty about which potential confounders should be adjusted for in the estimation as 

well as which baseline covariates might interact with the exposure.

Let Δ(x1, x2) represent the ACE of a change in X from x1 to x2. Formally, Δ(x1, x2) is defined 

as a comparison between potential outcomes under competing exposure levels (Rubin, 

1974). We forego potential-outcomes notation, and simply state the assumption of strongly 

ignorable treatment assignment (sometimes termed the “no unmeasured confounding 

assumption”), stating that potential outcomes are unrelated to levels of X, conditional on V. 

We further assume each unit has a positive probability of receiving any level of the 

exposure. This permits representation of Δ(x1, x2) as:

(1)

which can be estimated with observed data. The ACE is tied to the study population through 

the marginal distribution of V which could refer to the whole population or a specific 

subpopulation. We assume throughout that the confounders required for ignorability are an 

unknown subset of those available in V.

2.2 Bayesian Adjustment for Confounding (BAC)

We build our approach for estimating ACE via two collections of GLMs: one for exposure 

and one for outcome. Specifically, we consider the following equations:

(2)

where f(.) and g(.) are link functions and i indexes the sampling unit. In each equation, 

potential confounders are either included or excluded, depending on unknown vectors of 

indicators αX ∈ {0, 1}M and αY ∈ {0, 1}2M. Here  whenever Vm is included in the 

exposure model. Similarly,  whenever Vm is included and  whenever the 

interaction between Vm and X is included in the outcome model. In general, the number of 

possible interactions (including higher order interactions) that could be specified in (2) is so 

large as to necessitate the specification of a reduced number of potential interactions. For 

illustration, we restrict attention to the two-way interactions between each V and X, but other 

interactions could be included in (2). For brevity, we refer to different choices of the 

parameters αs as “models”. For regression coefficients, β and δ, we use a notation that 

explicitly keeps track of the fact that those coefficients differ in meaning with the αs. Let 

βα
Y
 be a vector of model parameters appearing in a certain outcome model αY. Our 
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specification is an extension of the linear case considered in Wang et al. (2012) to GLMs 

that include interactions between exposure and confounders.

We calculate the ACE by BMA (Raftery et al., 1997) across all possible outcome models 

with the functional form expressed in equation (2):

(3)

where D = (Y, X, V) are the observed data and Δα
Y
 (x1, x2) = EV {E(Y |X = x1, V, αY) – E(Y |

X = x2, V, αY)}. For a model αY that includes all the true confounders, Δα
Y
 (x1, x2) is the 

same as Δ(x1, x2). In contrast, Δα
Y
 (x1, x2) may be different from Δ(x1, x2) if αY does not 

include all the true confounders. Therefore, the second equation in (3) only holds 

approximately, requiring that the posterior p(αY |D) concentrates on models that include all 

the true confounders, which motivates the joint modeling of exposure and outcome in 

equation (2). As we will describe in more detail in Section 2.3, a joint prior for αX and αY 

favors inclusion of covariates correlated with both X and Y in the outcome model, which 

concentrates posterior mass on models including true confounders.

For a given outcome model αY, let h(X, V ; βα
Y
) be the linear function of X and V on the 

right hand side of the outcome model in equation (2). We have

(4)

When the outcome model is a linear regression without interactions between X and V, 

Δα
Y
(x1, x2) is equal to . In general, such a clear connection between the model 

coefficient for exposure and Δα
Y
 (x1, x2) is not available. The expression of Δα

Y
 (x1, x2) in 

equation (4) includes an integral over the distribution of V, which needs to be specified. This 

is different from regular GLM inference which is conditional on V, so the distribution does 

not need to be considered explicitly. To estimate the distribution of V, we use the Bayesian 

bootstrap (Rubin, 1981; Newton and Raftery, 1994). Suppose V takes K distinct values V1, 

…, VK and let θ = (θ1, …, θK)T be the probabilities with which V takes these values. Then 

Δα
Y
 (x1, x2) can be expressed as a function, ψ, with parameters βα

Y
 and θ

(5)

Plugging (5) into (3), we obtain the posterior of ACE as

(6)
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2.3 Prior and Posterior Distributions

We first consider the prior specification for αY. Our goal is to adjust for confounders without 

a priori certainty about which among a large set of potential confounders are required. We 

are concerned with studies where the sample size is small or moderate compared to the 

number of potential confounders (the ratio of sample size to the number of potential 

confounders is 2:1 to 10:1). To fully take into account the associations between potential 

confounders with both the exposure and the outcome, we consider the joint prior distribution 

on (αX, αY) proposed by Wang et al. (2012)

(7)

where ω ∈ [1, ∞] is a dependence parameter controlling both the prior odds of including Vm 

into the outcome model when Vm is included in the exposure model and the prior odds of 

excluding Vm from the exposure model when Vm is not included in the outcome model. 

When ω equals one, this prior reduces to the regular BMA prior where no connection 

between exposure and outcome models is assumed. When ω is large, this prior increases the 

chance for predictors strongly correlated with X to be included in the outcome model. These 

predictors are most likely to be true confounders if they are also correlated with Y. 

Therefore, the prior leads to a posterior distribution of αY that prioritizes models including 

all true confounders. See Wang et al. (2012) for more discussion. In the following, we focus 

on the case with ω = ∞, which maximizes the dependence between inclusion in the 

exposure model and the outcome model.

Moving to interactions between the exposure and potential confounders, we restrict the 

outcome model space to models that include the main effect terms whenever an interaction 

is included, that is,

(8)

In words, if Vm is included as a main effect, then we allow even odds a priori that Vm is 

included in an interaction; whereas if Vm is not included as a main effect, then it will not be 

considered to be an interaction. An alternative prior that allows interactions between 

confounders and the exposure in absence of main effects is provided in Web Appendix I.

We assume a priori independence between βα
Y
 and θ and show that their posteriors are also 

independent (see Web Appendix A for the proof). Therefore, these two parameters can be 

sampled separately in a Monte Carlo (MC) algorithm. Details of the prior and posterior 

distributions for βα
Y
 and θ are provided in Web Appendix A.

2.4 Implementation

We obtain posterior samples of the ACE by Markov chain Monte Carlo (MCMC) sampling 

from the posterior distributions of αY, βα
Y
 and θ, and equation (6). Our algorithm is:
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1. Generate a MCMC sample of αY from p(αY |D) by sampling (αX, αY) from their 

joint posterior p(αX, αY |D) based on the MC3 method of Madigan et al. (1995).

2. For each individual model αY, sample βα
Y
 and θ from their posteriors 

independently, then calculate ψ(x1, x2; βα
Y
, θ) to obtain a sample of Δα

Y
 (x1, x2), 

with size equal to the frequency of αY in the sample from step (1).

3. Stack samples of Δα
Y
 (x1, x2) from individual outcome models to form an 

approximate sample of Δ(x1, x2).

Details of the MCMC sampling procedure are provided in Web Appendix B.

2.5 Relation to Propensity Score Methods

The exposure model in (2) for a binary X is effectively a propensity score model. However, 

BAC does not make explicit use of the propensity score when adjusting for confounding, 

and does not share several purported benefits of standard propensity score methods. Benefits 

of propensity score methods are often described in the context of using observational data to 

approximate the “design” and “analysis” stages of a randomized study (Rubin, 2007). Noted 

virtues of “designing” the approximate randomized study include the ability to check for 

common covariate support and balanced covariate distributions in exposed and unexposed 

units. The separate “analysis” stage estimates causal contrasts without complete reliance on 

a parametric outcome model. However, these benefits of propensity score methods are 

contingent upon the ability to reliably estimate the propensity score and assess balance and 

common support, which can be challenging with high dimensional covariate information. 

Including many covariates in the propensity score model can sacrifice efficiency and, in 

extreme cases, simply preclude the ability to reliably estimate the propensity score. BAC is 

designed to specifically address high dimensional settings while acknowledging model 

uncertainty in the prioritization of confounders. BAC does not separate the “design” from 

the “analysis.” It uses outcome data along with exposure data to prioritize confounders and 

determine model weights, but does so in an automated data-driven way that does not 

compromise objectivity. The purpose is to provide a fair evaluation of the confounding 

effect for each potential confounder because by definition, a confounder is associated with 

both the exposure and the outcome so that its impact should be evaluated based on the 

strength of associations with not only the exposure but also the outcome. The potential for 

BAC to focus inference on a reduced set of factors that are empirically determined to be 

important confounders, while accounting for model uncertainty, may offer efficiency gains 

relative to methods that include a high number of potential confounders. A further 

distinction is that BAC is designed to identify specific factors that drive TEH through 

inclusion as interaction terms, whereas propensity score methods are useful for estimating 

effects that vary across levels of the propensity score. Without post-hoc analysis, the 

propensity score does not directly identify exactly which factors constitute population 

subgroups experiencing TEH.

To the extent that the proposed method’s reliance on a parametric model eschews many 

common benefits of standard propensity score methods, it does so in an effort to address 

practical challenges to making causal inference in high dimensional settings (a) where the 

number of available covariates is large enough so as to compromise or even preclude the 
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ability to reliably deploy propensity score methods and (b) where interest lies in identifying 

specific observed factors that constitute a basis for TEH. We revisit differences between 

BAC and propensity score methods in the Discussion.

3. Simulation Studies

We conducted simulation studies to assess the performance of BAC and compare it to 1) the 

true outcome model; 2) the full outcome model including all the potential confounders and 

interactions; 3) the stratification by propensity score method; 4) the generalized boosted 

weighting method proposed and implemented with the R package twang (Ridgeway et al., 

2014); 5) the high dimensional propensity score approach of Schneeweiss et al. (2009); and 

6) an Ad hoc method that starts with the full model and performs backward selection based 

on the percentage change in the exposure coefficient with or without a potential confounder. 

For BAC, we considered a uniform prior for βα
Y
 (BACN, where “N” stands for non-

informative). And when the outcome is binary, we also considered a more informative prior 

described in Web Appendix A (BACI, where “I” stands for informative). For the 

stratification by propensity score method, observations are stratified into five strata based on 

the quintiles of the estimated propensity score, and the ACE is estimated by a weighted sum 

of stratum-specific ACE estimates. We considered four variations of this method: a) a “full” 

model that estimates the propensity score using all potential confounders and then estimates 

the stratum-specific ACE as the difference of sample means of the outcome for each 

exposure (PSF, where “F” stands for full model); b) a “selected” model that estimates the 

propensity score with backward stepwise selection and then estimate the stratum-specific 

ACE with the difference of sample means of the outcome for each exposure level (PSS, 

where “S” stands for selected model); c) a method that augments the full model approach 

with regression adjustment by fitting an outcome regression model adjusting for all potential 

confounders within each propensity score stratum and estimates the stratum-specific ACEs 

with the average difference in predicted values comparing exposure levels (PSRF, where “R” 

stands for regression adjustment within stratum); and d) a method that augments the selected 

model approach with regression adjustment by performing backward stepwise selection 

within each propensity score stratum and then estimates the stratum-specific ACE by the 

average difference in predicted values comparing exposure levels from the “selected” 

within-stratum regression (PSRS). For the twang method, a generalized boosted regression is 

used to estimate the propensity scores. We considered three variations of inverse probability 

weighting with twang estimates to estimate the ACE: a) by the difference between weighted 

means of the observed outcomes for exposure groups (twangN, where “N” stands for non-

doubly robust); b) by a doubly robust estimator (Lunceford and Davidian (2004), equation 

(9)) incorporating an outcome regression model that includes all potential confounders 

(twangF, where “F” stands for full regression model); and c) by an estimator similar to the 

one in b), but the outcome regression model only includes potential confounders that do not 

achieve balance (based on a Kolmogorov-Smirnov test in twang package) after inverse 

probability weighting (twangS, where “S” stands for selected model). For the Ad hoc 

method, we considered 1% (Ad hoc1) or 5% (Ad hoc5) change in the exposure coefficient as 

the criterion of confounder selection. Since the approach of Schneeweiss et al. (2009) only 

deals with the situation where exposure, outcome, and potential confounders are all binary 
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and the Ad hoc method is only valid when there is no TEH, they are only included when the 

simulation scenario is appropriate. Web Table 10 lists methods compared under each 

simulation scenario.

Our first scenario considers 50 potential confounders (V1 to V50) independently generated 

from N(0, 0.52) having varying strengths of association with exposure and outcome and no 

interaction terms. Binary exposure and binary outcome variables were generated from

Web Table 1 summarizes the values of the regression coefficients. In this scenario, V1 

through V9 are true confounders with different strengths of associations with the exposure 

and the outcome. This scenario also includes three other predictors of Y (V10 through V12) 

that are not associated with X. We generated 500 independent simulation replicates for each 

sample size n = 100, 150, 300, or 500.

Figure 1 illustrates the marginal posterior inclusion probabilities (PIPs) assigned by BAC to 

each of the 50 potential confounders, averaged over simulation replicates. The PIP of the 

mth potential confounder is defined as  and is estimated by the 

proportion of posterior samples of αY that includes the mth potential confounder. The PIPs 

of true confounders (V1—V9, red dots) are higher than those of other covariates not in the 

outcome model (V13—V50, black circles). Higher PIPs are also assigned to other predictors 

of the outcome (V10—V12, blue squares). The difference in PIPs between true predictors and 

“noise variables” becomes larger as sample size increases. These results show that BAC 

identifies important variables in accordance with associations with both exposure and 

outcome. For example, V1, V2 and V3 have high PIPs due to their strong association with the 

exposure. The PIP of V1 is even higher due to its strong association with the outcome.

Next, we compare the estimation of ACE from BAC, stratification by propensity score (PSF, 

PSS, PSRF, and PSRS), the twang method (twangN, twangF, and twangS), the Ad hoc method, 

the true model, and the full model. For BAC, the MCMC chain ran for 2,500,000 iterations 

after 10,000 burn-in iterations. The thinning interval was set to 250 to reduce dependence 

among iterations. Simulation results are summarized in Table 1. The “true” ACE value was 

calculated based on a simulated data set with extremely large sample size (n = 10, 000, 000). 

The estimation of ACE based on BAC is virtually unbiased. The coverage probability (CP) 

for 95% credible interval is close to the desired value. The root mean square error (RMSE) 

from BACI is close to that from the true model, and smaller than those from all other 

methods. Interestingly, the stratification method with subsequent regression adjustment 

within subclasses (PSRF and PSRS) has worse performance than the stratification method 

without regression adjustment (PSF and PSS). This is because the stratification method with 

regression adjustment requires larger sample size to achieve stable results due to the 

inclusion of many parameters in the within-stratum regression models.
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For the smallest sample size considered (n = 100), BAC requires some stabilization via an 

informative prior distribution. While BACN does not provide stable results due to flatness of 

likelihood functions in some outcome models, the informative prior in BACI achieves the 

desired CP, with RMSE smaller than those from the true model and all the variations of the 

twang method. The prior in BACI has wide spread, and only serves to reduce prior support 

for unreasonably large coefficient values. So it seems that the instability in parameter 

estimation can be solved by offering a small amount of prior information. Propensity score 

stratification failed for almost all simulated data sets with n = 100 due to estimated 

propensity scores that were virtually equal to 1 (0) for all exposed (unexposed) units. Since 

this reflects of the instability of propensity score estimation, we do not report estimate 

results but rather mark estimates for the stratification approaches as “unavailable” for the n 

= 100 scenario. Difficulties in implementing propensity score stratification persisted for 

many data sets with n = 150, with some strata containing no units from one exposure group. 

For comparison with BAC, we merged strata until both exposed and unexposed units were 

represented in every remaining stratum. Web Table 2 lists the number of simulation 

replicates where propensity score stratification failed or where strata were merged for the n 

= 100, 150 scenarios.

Our second scenario aims to evaluate the performance of BAC in presence of interactions 

between the exposure and confounders. We considered 50 potential confounders (V1 to V50) 

independently generated from an exponential distribution with rate parameter equal to 2. 

Binary exposure and Poisson count outcome variables were generated from

Web Table 1 summarizes the values of the regression coefficients. In this scenario, the true 

confounders are V1—V6 and the true interaction terms are between X and V1, V3, and V5. For 

confounder/interaction selection, we considered potential confounders V1—V50 and 

potential interactions between X and V1—V10. As in scenario one, we generated 500 

independent simulation replicates for each sample size n = 100, 150, 300, or 500.

Figure 2 shows the PIPs assigned by BAC to the 50 potential confounders as well as the 10 

potential interactions. High PIPs are given to true confounders (V1 to V6, red dots) and true 

interactions (X with V1, V3, and V5, yellow filled triangles), indicating that BAC is able to 

identify both true confounders and true interactions, with higher PIPs for the larger sample 

sizes. For this scenario, we compare the estimate of ACE from BACN to the stratification by 

propensity score method (PSF, PSS, PSRF, and PSRS), the twang method (twangN, twangF, 

and twangS), the true model, and the full model. Results are summarized in Table 2. BACN 

performs well for all sample sizes, and stabilization with an informative prior is not 

required. The CP is very close to the desired value. In contrast, estimates from most 

propensity score methods are either largely biased or unstable. The only propensity score 

method that appears to have small bias is twangF, but this method fails to provide reliable 

results for n = 100 or 150 and has RMSE larger than BACN for n = 300 or 500.
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Web appendix E uses standardized bias (B) values (Rubin, 2007) to illustrate the difficulty 

in using the estimated propensity score to balance covariates when there are a lot of potential 

confounders and limited number of observations. Web appendices H, I, and J provide 

additional simulations to illustrate BAC in situations a) with both binary and continuous 

confounders that are correlated; b) with an alternative prior that permits interaction terms 

without main effects; and c) when the outcome model is misspecified. In all three situations, 

BAC reliably estimates the ACE and performs comparably to the comparison methods. Web 

appendix K compares BAC against the high dimensional propensity score approach of 

Schneeweiss et al. (2009). BAC provides improved performance relative to that method.

4. Evaluating the Causal Effect of Surgery on Thirty-day Readmission Rate 

for Brain Tumor Patients

Thirty-day hospital readmission is one of the most important pay-for-performance bench- 

marks and is used by policy makers as an indicator of hospital quality (Nuño et al., 2014). 

We use Medicare data from 15060 brain tumor patients diagnosed between 2000 and 2009 

in the US to assess whether surgical removal of the tumor reduces thirty-day readmission 

rate. Here, the time-to-readmission is calculated from the discharge date of the 

hospitalization when the cancer was diagnosed to the time of re-hospitalization. Patients 

who died within a month after diagnosis are excluded from the analysis (Nuño et al., 2014). 

We consider a set of 23 potential confounders listed in Table 3.

We apply the BAC method based on logistic regression models. The full model includes 

surgery, the 23 potential confounders as well as interactions between surgery and 

demographic characteristics including age, gender and race. For comparison, we also 

consider the full model, the stratification on propensity score method (PSF, PSS, PSRF, and 

PSRS) and the twang method (twangN, twangF, and twangS). All the methods yield very 

similar ACE estimates, indicating a statistically significant effect of surgery in reducing 

thirty-day readmission rate (Table 4). We also calculate the PIPs for potential confounders 

and interaction terms (Table 3). The interaction between surgery and age has a very high PIP 

equal to 0.93, evidencing a heterogeneous causal effect in patients with different ages. The 

TEH is also indicated by propensity score stratification, with stratum-specific ACE 

estimates indicating a stronger effect for higher levels of the propensity score (see Web 

Table 4). The lowest quintile exhibits an ACE of −0.026 (95% CI −0.059, 0.006), while the 

highest quintile has an ACE of −0.115 (95% CI −0.147, −0.083). While differences in ACE 

for different propensity score strata do not directly provide interpretable evidence about 

which patients exhibit TEH, the fact that average age decreases in the five propensity score 

strata (Web Table 4) suggests that the surgery effect may differ in patients with different 

ages. Thus, in this context, the presence of TEH is evident by estimating effects that differ 

across propensity score strata, and post-hoc investigation suggests that this heterogeneity is 

driven by age.

To further investigate TEH, we use BAC to estimate the average causal effects for patients 

less than 75 years old and greater than 75 years old separately. This procedure uses the same 

model posteriors obtained from the entire population, but only V values from patients from a 

given age group in equation (A1) in the Web Appendix. The average causal effect of surgery 
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for patients less than 75 years old is −0.099 (95 % CI −0.119, −0.075), which is much larger 

than that for patients greater than 75 years old (Table 4).

We also use BAC to estimate the average causal effect among patients who undergo surgery, 

known as the average causal effect for the treated (ATT) (Rubin, 1977; Imbens, 2004). The 

ATT reflects the treatment effect on those who ultimately receive the treatment. We again 

utilize the same model posteriors but plug in observed V values only from patients who had 

surgery in equation (A1). The estimated ATT (Table 4) is −0.080 (95% CI −0.095, −0.065).

To investigate small-sample performance of BAC in real data, we randomly sample 0.5% (n 

= 75), 1% (n = 150), or 2% (n = 300) patients from our data and apply BAC (BACN and 

BACI), the full model, the stratification by propensity score method (PSF, PSS, PSRF, and 

PSRS) and the twang method (twangN, twangF, and twangS) to estimate ACE. Results from 

500 replicates are listed in Web Table 5, where the ACE estimate from the whole data set is 

considered as the “true” value for each method. For the case n = 150, the RMSEs from 

BACN and BACI are at least 10% and 20% smaller than those from all the variations of the 

stratification by propensity score method, respectively. The results from BAC are 

comparable to those from the twang method (twangN, twangF, and twangS). For the case n = 

75, both the stratification by propensity score method (PSF, PSS, PSRF, and PSRS) and 

BACN fail to provide usable estimates, similar to what we observed in Section 3. But BACI 

and the twang method can still provide a usable estimate of the ACE, with the RMSE from 

BACI at least 15% smaller than those from all the variations of the twang method.

5. Discussion

We present a general framework to adjust for confounders with explicit consideration of 

interactions between confounders and exposure. We propose an automatic and data-driven 

procedure that accounts for uncertainty in which confounders and effect modifiers should be 

considered by jointly modeling exposure and outcome models. While our illustrations 

present binary or count data, the method can also be applied to any data type within the 

GLM framework. Computation with the MC3 algorithm (Madigan et al., 1995) is appealing 

for its simplicity in high dimensional settings, but other approaches to Bayesian variable 

selection such as the hierarchical mixture prior of George and McCulloch (1993) could also 

be adapted to the task considered here, possibly at the cost of increased computational 

burden. Note that the parametric models considered here can be easily relaxed by 

considering smooth non-linear functions in outcome or exposure models.

BAC can be used to estimate the average causal effect not only for the whole population but 

also for any subpopulation of interest. All the estimates are then still based on equation (6) 

with the same p(αY |D) on the model space, estimated by using all observed data. The 

difference lies in the specification and estimation of θ, which represents the distribution of 

V. To estimate θ for a given subpopulation, one needs to plug in observed data only from 

that subpopulation into equation (A1). Our procedure maximizes the utilization of all 

observed data to build models in the estimation of the ACE for a subpopulation. Because 

there is no data discarding, our method is likely to achieve a higher efficiency (Little et al., 
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2000). The independence of the posteriors of θ and βα
Y
 allows estimation of causal effects in 

subpopulations by simply re-generating samples of θ according to that subpopulation.

One limitation of BAC is that it provides no immediate way to check for balance or overlap 

in the empirical distributions of confounders in exposed and nonexposed groups. This is in 

contrast to propensity score methods that permit the checking based on estimated propensity 

scores (Rubin, 2007). Without confirming covariate balance and overlap, causal inference 

with BAC may be subject to model-based extrapolation. BAC is particularly well suited to 

settings where high dimensional covariate information compromises the ability to check for 

balance and overlap, for example, because the propensity score cannot be estimated reliably 

or because there are simply too many covariate dimensions to check. A virtue of BAC in 

these contexts is that it concentrates posterior support on models that only include the most 

relevant confounders (and interaction terms) for estimating the ACE. This provides some 

protection against unnecessarily separating covariate distributions on the basis of factors that 

are extraneous with respect to ACE estimation (Schafer and Kang, 2008). With knowledge 

of PIPs, overlap checking can focus on only the most relevant factors, for example, by 

combining PIPs with overlap checking methods such as the convex hull method (King and 

Zeng, 2006).

BAC provides an automatic and transparent way to indicate interactions between potential 

confounders and the treatment. While the methods developed here limit consideration to 

two-way interactions between a single covariate and treatment, extensions to include higher-

order interaction terms in (2) could help identify complex groups of variables that modify 

treatment effects. Inclusion of a limited number of higher-order interactions that are of 

suspected importance a priori is straightforward. However, novel methods would be 

required to enable efficient selection of the potentially huge number of possible higher-order 

interaction terms. Nonetheless, the ability to aid scientific interpretability by identifying the 

specific factors that interact with the treatment is an important feature of BAC, and another 

point of contrast with propensity scores. While propensity score analyses can provide 

evidence of TEH on the basis of the propensity score, such analyses will not necessarily 

provide information about the specific, interpretable factors that define types of patients 

exhibiting different effects. Knowledge that patients with different propensity scores 

experience different effects is not likely to provide any clinically meaningful value. While 

post-hoc analyses of how individual factors vary with values of the propensity score may 

possibly identify factors that drive TEH, as was the case with age in our analysis of surgery 

for brain cancer patients, systematic approaches to automatically identify such factors and to 

incorporate such information in the ACE estimation are unavailable. This limits the use of 

propensity scores for characterizing TEH in any scientifically or clinically interpretable 

manner, especially when the factors that might drive TEH are high dimensional.

In this paper, we choose the dependence parameter ω in equation (7) to be infinity, which, 

conditional on αX, forces predictors of exposure to be included in the outcome model. In 

practice, we suggest investigators to choose ω based on the design of their study and their 

knowledge about the data. If investigators are confident in excluding instrumental variables 

that are associated with X but not Y prior to the analysis, choosing ω = ∞ is optimal. 

However, if there is uncertainty about the presence of such variables, choosing ω = ∞ may 
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reduce the efficiency of the ACE estimation (Brookhart et al., 2006; Schafer and Kang, 

2008; Wang et al., 2012). Under such situation, we suggest investigators to choose a finite 

ω, as we pointed out in our previous publication (Wang et al., 2012). Investigators may also 

consider a more automatic procedure for choosing ω, which was proposed by Lefebvre et al. 

(2014).

The purpose of our analysis for estimating the ACE of surgery on the thirty-day readmission 

rate in brain tumor patients is to illustrate the use of BAC in real data. Because there were 

13.8% of patients who died within a month and our analysis excluded those patients, the 

ACE estimation may be subject to selection bias. A more appropriate approach is to consider 

the time-to-readmission as the outcome variable. Extending BAC to deal with censored data 

and time-to-event outcomes is one of our future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Marginal posterior inclusion probabilities of the 50 potential Mconfounders in the first 

simulation scenario, based on BAC.
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Figure 2. 
Marginal posterior inclusion probabilities of the 50 potential confounders and 10 potential 

interaction terms in the second simulation scenario, based on BAC.
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Table 3

Patients’ characteristics and posterior inclusion probabilities (PIPs) from BAC. Data from Medicare Part A for 

the period between 2000 and 2009

No surgery
n = 8023

Surgery
n = 7037

PIP

Thirty-day readmission 2214 (28) 1465 (21) —

White 7337 (91) 6544 (93) 0.48

Female 4056 (51) 3201 (45) 0.94

Age 76 (65–102) 73 (65–95) 1.00

Congestive heart failure 447 (6) 229 (3) 0.07

Chronic atherosclerosis 1809 (23) 1396 (20) 0.01

Valvular disease 584 (7) 438 (6) 0.02

Arrhythmia 821 (10) 499 (7) 0.13

Hypertension 5407 (67) 4628 (66) 0.22

Stroke 539 (7) 372 (5) 0.02

Cerebrovascular disease 452 (6) 287 (4) 0.01

COPD 1066 (13) 830 (12) 0.03

Pneumonia 443 (6) 275 (4) 0.01

Diabetes 1781 (22) 1419 (20) 0.02

Dementia 1218 (15) 810 (12) 0.98

Functional disability 729 (9) 394 (6) 1.00

Peripheral vascular disease 446 (6) 224 (3) 1.00

Metastatic cancer 558 (7) 277 (4) 1.00

Trauma in the past year 580 (7) 336 (5) 0.09

Substance abuse 690 (9) 690 (10) 0.03

Major psychiatric disorder 387 (5) 250 (4) 0.00

Major cancer 2149 (27) 1539 (22) 0.02

Depression 826 (10) 537 (8) 1.00

Seizure disorder 2308 (29) 1757 (25) 1.00

White × Surgery — — 0.01

Female × Surgery — — 0.01

Age × Surgery — — 0.93

Binary variables are reported as number of patients (percentage) and continuous variables are reported as median (range).

Biometrics. Author manuscript; available in PMC 2015 September 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 21

Table 4

mission rate for brain tumor patients

Estimand Method Point Estimate Standard Error 95% Confidence Interval 
or Credible interval

Average causal effect among the whole population full model −0.074 0.007 (−0.086, −0.058)

PSF −0.073 0.007 (−0.087, −0.058)

PSS −0.073 0.007 (−0.087, −0.059)

PSRF −0.076 0.007 (−0.089, −0.062)

PSRS −0.075 0.007 (−0.089, −0.060)

twangN −0.077 0.008 (−0.093, −0.062)

twangF −0.074 0.007 (−0.088, −0.059)

twangS −0.077 0.008 (−0.093, −0.062)

BACN −0.074 0.007 (−0.088, −0.060)

Average causal effect among patients with Age < 75 BACN −0.099 0.011 (−0.119, −0.075)

Average causal effect among patients with Age ≥ 75 BACN −0.049 0.011 (−0.075, −0.030)

Average causal effect among patients who undergo surgery BACN −0.080 0.008 (−0.095, −0.065)
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