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Summary

Medical and public health research increasingly involves the collection of complex and high 

dimensional data. In particular, functional data—where the unit of observation is a curve or set of 

curves that are finely sampled over a grid—is frequently obtained. Moreover, researchers often 

sample multiple curves per person resulting in repeated functional measures. A common question 

is how to analyze the relationship between two functional variables. We propose a general 

function-on-function regression model for repeatedly sampled functional data on a fine grid, 

presenting a simple model as well as a more extensive mixed model framework, and introducing 

various functional Bayesian inferential procedures that account for multiple testing. We examine 

these models via simulation and a data analysis with data from a study that used event-related 

potentials to examine how the brain processes various types of images.
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1. Introduction

Medical and public health research increasingly involves the collection of complex and high 

dimensional data. In particular, functional data—where the unit of observation is a curve or 

set of curves that are finely sampled over a grid—is frequently obtained (Ramsay and 

Silverman, 2005). Moreover, researchers often sample multiple curves per subject which 

yields repeated functional measures. A common question is how to analyze the relationship 

between two functional variables. While the field of functional data analysis (FDA) has 

progressed considerably in recent years, gaps remain in the literature with regards to 

function-on-function regression where both the predictor and outcome are functional.
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Regression in FDA can be classified into three broad sub-classes: scalar-on-function, 

function-on-scalar, and function-on-function. Morris (2015) contains a thorough review on 

existing work on functional regression. Scalar-on-function regression, on which a large 

literature exists, involves a scalar outcome and fucntional predictor, with functional 

regression coefficients. See for instance Ramsay and Dalzell (1991), Cardot, Ferraty, and 

Sarda (1999), Reiss and Ogden (2007), Malloy et al. (2010), Goldsmith et al. (2011), 

McLean et al. (2012), Gertheiss, Maity, and Staicu (2013), and references therein. Function-

on-scalar regression, also heavily investigated in the literature, involves regressing a 

functional predictor on to a set of scalar covariates, each of which has a functional 

regression coefficient. See for instance Brumback and Rice (1998), Morris and Carroll 

(2006), Reiss, Huang, and Mennes (2010), Staicu et al. (2011), Chen and Müller (2012), 

Goldsmith, Greven, and Crainiceanu (2013), and references therein.

In contrast, the literature addressing function-on-function regression, with functional 

outcome, functional predictor, and a coefficient surface, is rather sparse. Ramsay and 

Silverman (2005) do devote chapters to concurrent function-on-function regression and fully 

functional linear models for functional responses which assume iid residual errors, have no 

random effect functions, and no modeling of within-function correlation in the errors. 

Additionally, they focus on point estimation, not inference, and the authors further 

emphasize that Bayesian methods that model the variability in basis function selection 

would be welcome. Beyond that, much of the literature is dedicated to the historical 

functional linear model (HFLM), as described by Malfait and Ramsay (2003) and further 

examined by Harezlak et al. (2007) and Kim, Şentürk, and Li (2011). The primary 

assumption in an HFLM is that the association between curves is uni-directional. Function-

on-function regression allowing for bi-directional associations—that is, with unconstrained 

regression coefficient surfaces—is explored by Yao, Müller, and Wang (2005), Müller and 

Yao (2008), and Wang (2014). Also, there are some recent technical reports on the topic 

from one research group, Ivanescu et al. (2012), Scheipl and Greven (2012), Scheipl, Staicu, 

and Greven (2014), that discuss a penalized spline approach, identifiability issues, and 

function-on-function regression in Functional Additive Mixed Models, respectively. 

Inferential procedures, if addressed, rely on 95% point-wise confidence intervals (PWCI) to 

determine significance without adjusting for multiple comparisons. These use penalized 

splines, which may not be the best basis choice in various settings, including the spiky 

functions in this paper. Much existing work also assumes iid residual curve-to-curve 

deviations, which is not realistic for most functional data settings.

To illustrate the function-on-function regression problem, we examine data from a smoking 

cessation trial conducted at the University of Texas M. D. Anderson Cancer Center 

(Cinciripini et al., 2013). Event Related Potentials (ERPs) were obtained at baseline during 

the presentation of a series of images depicting neutral, positive, negative, and cigarette-

related contents. ERPs were collected using a 129 channel Geodesic Sensor Net. Finely 

sampled curves were produced over the course of 900 ms (100 ms prior to picture 

presentation and 800 ms after). Electrical potentials every 4ms were collected from 129 

electrodes distributed on the surface of the scalp resulting in 225 measurements for each 

electrode. While many analyses are of interest for these data, in this paper we focus on 
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characterizing the time-varying relationship between ERP outputs from specific electrode 

pairs.

In this paper, we propose a general Bayesian function-on-function regression modeling 

framework that can accommodate this type of multilevel functional data which we fit using 

a Monte-Carlo Markov Chain (MCMC) procedure. The model is flexible enough to 

incorporate a variety of basis expansions including such common approaches as principal 

components, splines, and wavelet-based functional representations. Our approach not only 

allows for correlation between functions through random effect functions, but also allows 

heteroscedasticity and within-function correlation in the residual error functions, unlike 

existing methods assuming iid errors. While the approach can be applied generally for any 

number of functional predictors and arbitrary interactions with other discrete and continuous 

predictors, we present specific model formulations for both a single functional predictor of 

interest as well an interaction of a discrete factor with a functional predictor resulting in 

separate function-on-function regressions for each factor.

We propose three approaches for inference that account for multiplicity. First we extend the 

Bayesian False Discovery Rate (BFDR) procedure for functional regression implemented by 

Morris et al. (2008) to the function-on-function setting. Second, from joint credible bands as 

in Ruppert, Wand, and Carroll (2003), we generate two novel summaries: (1) Simultaneous 

Band Scores (SimBaS), a functional measure that summarizes for each position in the 

regression surface the smallest α for which the 100(1 − α)% joint credible bands exclude 

zero, and (2) Global Bayesian P-Values (GBPV), which can be interpreted as a type of 

Bayesian p-value corresponding to a global functional null hypothesis of no relationship. 

These summaries are of general interest and can be used in other functional regression 

settings. To our knowledge global inference procedures within function-on-function 

regression have not previously been considered in the literature.

Section 2 develops a simple version of our proposed function-on-function mixed model, 

presents a more general model, and describes our basis function modeling strategy. Section 

3 details the BFDR, SimBaS, and GBPV inference procedures. In Section 4 we present the 

results of a simulation assessing model fit and the BFDR, SimBaS, and GBPV procedures. 

Section 5 presents the results obtained by applying the proposed methods to the ERP data, 

and Section 6 contains further discussion.

2. Function-on-Function Regression Model for Multi-Level Functional Data

Here we introduce the function-on-function model we will use to regress one function y(t), t 

∈  on another x(υ), υ ∈ ν. First we consider a simple case with a single functional 

predictor and repeated measures of {y(t), x(υ)} pairs for each subject, and then in Section 

2.3 we describe more complex models that can be handled by our approach.

Individual subjects are denoted as i = 1, …, n. Let c = 1, …, Ci index repeated pairs of 

curves observed on subject i. Then for subject i, curve set c, we observe xic(υ) and yic(t), 

{yic(t), xic(υ) : t ∈ , υ ∈ ν},
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(1)

We assume observation-specific and subject-specific Gaussian process errors Eic(t) ~  (0, 

ΣE) and Ui(t) ~  (0, ΣU). The integration over the entire support of υ allows an 

unconstrained exposure-response relationship, i.e. we do not assume the timing of an effect 

of x on y occurs in one direction or the other. That relationship is characterized by the 

surface β(υ, t).

In this paper, our focus is on functional data sampled on a common fine grid. Here, we 

consider a discretized version of Model (1). Let yic(·) be finely sampled on a grid t = [t1 ⋯ 

tT] of length T. Similarly, xic(·) is observed on a grid v = [υ1 ⋯ υV] of length V. We can then 

define the row vectors yic = [yic(t1) ⋯ yic(tT)] and xic = [xic(υ1) ⋯ xic(υV)] and express 

Model 1 in the discrete form

(2)

where yic, ui, and eic are 1 × T, xic is 1 × V, and β is the V × T matrix of coefficients and Δυj 
= υj − υj−1. If we sample on an equally spaced grid, then Δυj is a constant equal to the 

distance between measurement occurrences. Also note that eic ~ (0, ΣE) and ui ~ (0, 

ΣU). In practice, we center and scale both yic(t) and xic(υ) and thus, without loss of 

generality, α(t) in Model (1) is zero and not needed in Model (2). If one of the two functions 

is not centered, than α(t) can be incorporated into β with a corresponding column of ones 

added to the design matrix.

Now let N be the total number of observed response curves. Stacking the row vectors by 

subject, Y and X represent the N × T and N × V matrices of observed curves. Further, Z is 

the N × n random effects design matrix. Our discretized model for all subjects is then

(3)

where β is as defined in Model (2), U is the n × T matrix of subject specific random effect 

functions on the grid, and E is the N × T matrix of model errors, interpretable as residual 

curve-to-curve deviations. Assuming an equally spaced grid, we omit Δυj from Model (3).

As is typical in functional regression (Morris, 2015), we will represent y(t) and x(υ) using 

basis representations prior to model fitting. The basis transform modeling approach we use 

allows us fast calculations while inducing regularization in the coefficient surface β(υ, t) 

through basis-space prior distributions, and can be used with various choices of lossless or 

near-lossless basis choices, including wavelets, splines, PCs, and Fourier series. We will 

begin by describing the modeling approach in terms of general basis functions, and then we 

will present the rest of the modeling details using specific basis functions chosen for our 

simulation and data analysis, with the Web Appendix A mentioning some adaptations for 

other bases.
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2.1 General Basis Transform Modeling Approach

Here we describe our general basis function transform approach for fitting the function-on-

function regression models, which involves projecting both the functional responses and 

predictors into a chosen basis space, fitting the model in the basis space, and then 

transforming the results back to the original function space for interpretation and inference.

Let  and  be some chosen 

truncated basis expansions for the functional responses and predictors, respectively, and 

suppose this expansion results in a lossless (

and

∀ i, c, and observed t), or virtually lossless (

and

for some small ε) transform so the r(·) can effectively be ignored. Potential choices with 

these properties include wavelets, Fourier bases, splines (given sufficient knots), PCs, or 

independent components. Let Ξ be a matrix of size T* × T containing the basis functions on 

discrete grid t with element (j, t) given by ξj(t), and likewise let Φ be a V* × V matrix 

containing the basis functions for x(υ) on the grid v. Considering the discretely sampled 

functions in matrix form, we can write the basis expansion as Y = Y*Ξ and X = X*Φ, with 

Y* and X* being N × T* and N × V* matrices, respectively, containing the basis coefficients 

for the observed functions. Here we assume that Φ and Ξ are of full row rank, possibly but 

not necessarily orthogonal, so rank(Φ) = V*, rank(Ξ) = T* and ΦΦ′ and ΞΞ′ are invertible 

matrices of size V* × V* and T* × T*.

Replacing each functional quantity in Model (3) with its basis expansion, we have

(4)

where β* is V* × T*, U* is n × T*, and E* is N × T*, representing quantities of Model (3) in 

the transformed basis space. When Φ is orthogonal so that ΦΦ′ = IV*, if we multiply each 

side of (4) by Ξ− = Ξ′(ΞΞ′)−1, then we arrive at the basis space model
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(5)

When Φ is not orthogonal, we instead replace β* in Model (5) with β† = ΦΦ′β*. Thus, we 

can fit this basis space model after first transforming the functional responses and predictors 

to their respective basis spaces, Y* = YΞ− and X* = XΦ−, with Φ− = Φ′(ΦΦ′)−1, and then 

after fitting the model, transform back to the original function space to obtain estimates and 

inference for β = Φ′β*Ξ when Φ is orthogonal, β = Φ−β†Ξ otherwise. Note that for some 

choices of basis functions, fast transform algorithms can be used in lieu of matrix 

multiplication to compute the basis functions or transform back to the original space, e.g., 

discrete wavelet transform (DWT) for wavelets, discrete Fourier transform (DFT) for 

Fourier bases, and fast algorithms for computing independent components (Hyvarinen et al., 

2001).

We take a Bayesian approach to fit Model (5), using an Markov Chain Monte Carlo 

(MCMC) procedure to sample from the posterior distributions using appropriate prior 

distributions for each model parameter. Different choices of basis functions corresponds to 

different choices of Ξ and Φ. For example, for wavelets Ξ and Φ are inverse discrete wavelet 

transform (IDWT) matrices, for principal components they are the eigenvectors, possibly 

rescaled by the eigenvalues, for Fourier series they are the Inverse Discrete Fourier 

Transform (IDFT) matrices, and for splines they can be constructed based on B-splines or 

orthogonalized B-spline design matrices. Note that the same basis transform does not need 

to be used for both y(t) and x(υ). In this paper, we use wavelet bases to represent the 

functional form of y(t), and for x(υ), we use a composite strategy involving wavelets 

followed by principal components or wavelet Principal Components (wPC), which is similar 

to strategies used by Johnstone and Lu (2009) and Røislien and Winje (2012).

2.2 Model Formulation

Here, we present our modeling details using wavelets for y(t) and wPC for x(υ). First, we 

transform the functions to the wavelet space by applying the O(T) DWT to each row of Y 
and X, which can be represented as

and

. Wavelets are multi-resolution bases that are double-indexed by scale and location. The 

scales are j = 1, …, Jy and s = 1, …, Sx and locations

and
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for Y and X, respectively. The dimension of

is 1 × T* where

. Similarly,

has dimensions 1 × V* where

. After performing a DWT on each row of X, we then compute the wavelet-space PC scores 

by applying a singular value decomposition to obtain the matrix of right singular vectors. All 

coefficients can be kept for a lossless transform or a large number kept for a near-lossless 

transform.

Both transformations can be represented in matrix form. Thus performing the DWT on Y is 

equivalent to taking Ξ to be the matrix of wavelet basis functions evaluated on the T grid. 

And performing wPC on X is equivalent to letting Φ be the composite transform consisting 

of the product of the matrix of wavelet basis functions and the reduced matrix of right 

singular values. Web Appendix A has further discussion on the details of wPC.

Thus, after transforming the data, recall our basis space model (5) is given by Y* = X*β* + 

ZU* + E*. Consistent with previous work (Morris and Carroll (2006), Morris et al. (2008), 

Zhu, Brown, and Morris (2011), among others), we assume independence in the wavelet 

space. That is, for the subject specific version of Model (5), , we assume 

 where  is a diagonal matrix with elements varying by j, k, 

, and equivalently  where . The induced 

within-function covariances in the data space are given by  and , 

which with wavelets accommodates a broad class of covariances allowing heteroscedasticity 

and differing degrees of autocorrelation, and thus different degrees of borrowing of strength, 

in different regions of the function (Morris and Carroll, 2006).

The basis space independence assumption allows us to split Model (5) into a series of T* 

separate models for each basis coefficient in the y-space, double-indexed by (j, k), giving 
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, where  and  are N × 1,  is V* × 1, and 

is n × 1. X* and Z are as previously defined. This separability allows computational 

scalability to extremely large T, as calculations are linear in T*, sparse near-lossless basis 

functions frequently yield T* ≪ T, and when cluster computing resources are available, 

allows parallel computing across (j, k). For prior specification, we assume vague proper 

priors on the variance components and a spike-and-slab prior similar to that found in Morris 

and Carroll (2006), Malloy et al. (2010), and others. Note that the spike-and-slab prior for 

selecting among PCs has been used in other PC regression contexts (Joliffe, 1982; Aston et 

al., 2010; Yang et al., 2013). Posterior samples are generated for β* and projected back into 

the data-space using β = Φ−β*Ξ. These posterior samples are used to perform Bayesian 

inference on β, as detailed in Section 3. The MCMC algorithm used for estimation can be 

found in the Web Appendix. Code for running the above model is also available online 

(http://odin.mdacc.tmc.edu/~jmorris/FonF.zip). DWTs and wPC were performed using the 

MATLAB functions wavedec and princomp which are available in the wavelet and statistics 

toolboxes (MATLAB, 2013a).

2.3 More Complex Function-on-Function Mixed Models

Model (1) is a special case of a general function-on-function mixed model that incorporates 

arbitrary scalar covariates { a, a = 1, …, ps}, functional covariates {Xa(υa), a = 1, …, pf}, 

scalar-by-function interactions, and multiple levels of random effect covariates { , h = 1, 

…, H; l = 1, …, Lh}. In principle, our approach can also accommodate function-by-function 

interactions, but we omit that here. The general model can be written

(6)

where Ba(t) are functional coefficients for scalar predictors, βa(υa, t) are function-on-

function coefficient surfaces for functional predictors, βasaf (υaf, t) coefficient surfaces for 

the interaction of scalar covariate as and functional predictor af, and the random effects 

. The multiple levels of random effects allow the model to handle 

various types of multi-level models needed to accommodate many complex designs 

commonly encountered in practice. Our code is capable of fitting this general model.

For the ERP data considered in Section 5, we include a discrete factor image type both as a 

main effect as well as effect modifier for the functional predictor, which allows different 

functional intercepts and function-on-function regression surfaces for each image type. See 

Model (9) in Section 5 for specification. Inference can then be performed on any number of 

desired statistics resulting from the model.

2.4 Model Assessment

To assess our models we examine a functional R2 as well as the proportion of total variance 

contributed by the random effects. For the functional R2 measures, we propose the use of an 
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average functional R2 which Harezlak et al. (2007) implemented. Given the predicted values 

ŷic(t), we formulate R2 as

Since we sample on a grid, the integral above can be approximated as 

 where Δ(t) is the distance in time between measurements. For 

assessing the contribution of the random effects we use the ratio tr(ΣU)/tr(ΣU + ΣE) where tr 

denotes the trace.

3. Posterior Functional Inference

Previous work in the function-on-function setting has focused solely on estimation or 

inference based on the construction of point-wise confidence intervals over the surface 

considering intervals that don’t contain zero as significant (Scheipl, Staicu, and Greven, 

2014). However, such an approach does not account for the inherent multiple testing 

problem from testing multiple locations within the coefficient surface. When applied to 

Bayesian credible intervals, we refer to this as the point-wise credible interval (PWCI) 

procedure. This unadjusted approach may lead to coefficients spuriously designated as 

significant. Thus we propose two posterior functional inference procedures aimed at 

identifying significant regions of a surface while controlling overall α, either using false 

discovery rate or experiment wise error rate, plus a Bayesian global test for testing whether 

the regression surface is identically zero.

First, we extend to the function-on-function setting previous Bayesian False Discovery Rate 

(BFDR) approaches that were originally proposed by Müller, Parmigiani, and Rice (2006), 

and then extended to functional regression by Morris et al. (2008) and Malloy et al. (2010). 

The BFDR is reliant upon the selection of δ-fold intensity change. Ideally this value is 

biologically motivated, however such a value may not necessarily exist or may be difficult 

to determine. Therefore, we also consider joint credible bands similar to those considered by 

Ruppert, Wand, and Carroll (2003) and invert them to construct what we call Simultaneous 

Band Scores (SimBaS) that are based on experiment wise error rate.

Suppose we have M MCMC samples. Let β(m)(υ, t) be one posterior sample of the estimated 

surface for sample m, m = 1, …, M. Then for a specific υ, υ = 1, …, V, and t, t = 1, …, T, 

with δ a pre-determined intensity change of practical interest, consider

Note that standardized predictors should be used so δ has a consistent scale across β(υ, t). To 

correct for the discrete nature of the MCMC we replace any PBFDR(υ, t) = 0 with the 
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quantity (2M)−1. As discussed by Morris et al. (2008), this quantity can be interpreted as a 

local FDR for a true discovery defined by an effect size of at least δ in magnitude.

For a pre-specified global FDR-bound α, we select the set of points (locations) satisfying ψ 

= {(υ, t) : PBFDR(υ, t) ≤ να}. To obtain να, we sort {PBFDR(υ, t), υ = 1, …, V, t = 1, …, T} 

in ascending order across all sets of locations. This gives us the set {P(r), r = 1, …, R}, 

where R = VT or the ordered set of probabilities calculated above. We then define 

. The cutoff for selecting significant coefficients is then να = 

P(λ).

Alternatively, in the spirit of Ruppert, Wand, and Carroll (2003), consider constructing joint 

credible bands. A 100(1 − α)% credible band of β(υ, t) must satisfy

(7)

where L(υ, t) and U(υ, t) are the lower and upper bounds respectively. It follows from 

Ruppert, Wand, and Carroll (2003) that an interval satisfying (7) is

where β̂ (υ, t) and  are the mean and standard deviation for a given (υ, t) 

taken over all M MCMC samples, adjusted for autocorrelation as described in Web 

Appendix G. The variable q(1−α) is the (1 − α) quantile taken over M of the quantity

These joint bands control for multiple testing in a strong experiment-wise fashion while also 

not requiring a pre-specified δ-fold intensity change as in the BFDR.

Now consider inverting these joint bands, constructing Iα(υ, t) for multiple levels of α and 

determining for each (υ, t) the minimum α at which each interval excludes zero, denoted 

PSimBaS(υ, t) = min {α : 0 ∉ Iα(υ, t)}, which can be directly computed by

(8)

We call these probabilities Simultaneous Band Scores or SimBaS. Similar to the BFDR and 

PWCI, we can select a specific α and identify (υ, t) for which PSimBaS(υ, t) < α as 

significant, which is equivalent to checking if the joint credible intervals cover zero at a 

specific α-level. We can also compute global Bayesian p-values (GBPV), PGBPV = 

minυ,t{PSimBaS(υ, t)}, a measure for testing the global null hypothesis that β (υ, t) = 0 ∀ υ ∈ 

ν, t ∈ , when desired.
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The BFDR, SimBaS, and GBPV can be computed for individual surfaces β(υ, t) or any 

transformation or contrast defined across surfaces. For example, in the two surface setting, 

interest focuses on applying the procedure to both βg(υ, t), g = 0, 1, as well as the difference 

surface, D(υ, t) = β1(υ, t) − β0(υ, t). This allows us to detect differences between surfaces 

corresponding to two different experimental conditions or groups and determine where those 

differences occur.

4. Simulation

We generate data in two phases. First, we draw xic, ui, and eic. Second, we generate yic using 

yic = xicβ + ui + eic, where β is one of four true surfaces of association. To generate predictor 

curves, random effects, and model errors, we use Gaussian Processes with auto-regressive 1 

[AR(1)] covariance structures. Estimates for parameters of the covariance of xic come from 

estimating autoregressive parameters from the output of one electrode from our ERP data. 

We assign pairs of curves to each subject to induce repeated measures and consider three 

different sample sizes: n = 25, 50, and 100. Repeated measures brings the total number of 

observations up to N = 50, 100, and 200 respectively. We select parameters for the 

covariances of ui and eic as  and ρu = 0.75 and  and ρe = 0.5 respectively. 

Additionally, the maximum value of any location on the true surface does not exceed 0.13. 

Prior to constructing yic, we center and scale xic across i, c across all curves so that the 

variance at each time point is 1.

We select true surfaces to mimic biologically plausible time varying associations. The first 

and third rows of Figure 1 contains the heat maps of each surface. Each surface represents a 

different type of association, equations for which can be found in Web Appendix C. The 

ridge surface represents a relationship where the strongest association between x(υ) and y(t) 

occurs along the line υ = t. In other words, changes in y(t) are associated with concurrent 

changes in x(υ). The lagged surface suggests a relationship where changes in x(υ) at a given 

time are associated with later changes in y(t), but the strongest effect is delayed. The 

relationship between x(υ) and y(t) in the immediate surface is similar to that in the lagged, 

however the strongest effect occurs immediately before dying off. The peak scenario 

demonstrates a setting where changes in y(t) at a given time are associated with later 

changes in x(υ) and the association is characterized by a single peak. Finally, we consider 

one slightly more complicated scenario which involves a ridge effect that attenuates as both 

t and υ increase along with a single peak above the attenuated ridge.

For each surface, we generate 200 simulated data sets and draw 2000 posterior samples, 

discarding 1000 of them. We use Daubechies wavelets with four vanishing moments and 

three levels of decomposition. In preliminary simulations, zero-padding reduced edge effects 

better than symmetric-half point padding. Thus we implement zero-padding for all models. 

Motivated by the ERP data structure, we set the total number of time points in both time 

domains to be 225. For the wPC decomposition, we keep components accounting for 99.0% 

of the variability in X*. A single posterior estimate with near average rMSE for each surface 

can be found in Figure 1. Results from all three sample sizes were similar, thus we only 

present simulations for n = 25, N = 50 here. Results for n = 100, N = 200 can be found in the 

Web Appendix. For each dataset we also calculate root Mean Square Error (rMSE).
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We also examine the performance of the BFDR, SimBaS, and GBPV procedures in 

simulation using a global α of 0.05. For the BFDR, we use a δ-intensity change of 0.05 

which is roughly half the max signal from each surface. For comparison, we also generate 

unadjusted PWCIs. To evaluate the three procedures, we calculate false discovery rate, 

sensitivity, experiment-wise error rate (EWER), and type I error. Define false discovery rate, 

FDRε, as the number of selected locations (υ, t) with true value ≤ ε divided by the total 

number of selected locations. Next define the sensitivity, SENϒ, as the number of selected 

locations (υ, t) with true magnitude > ϒ divided by the total number of locations with true 

magnitude > ϒ. EWERε is calculated as the proportion of simulated datasets with at least 

one falsely discovered location, i.e. a selected location with true value ≤ ε. Type I error is 

calculated using a null simulation with true surface β(υ, t) = 0 ∀ υ ∈ ν, t ∈  and 

determining the proportion of simulated datasets with at least one location identified as 

significant.

Figure 1 allows for direct comparison of each estimated surface to the truth. For all surfaces, 

we see the model performed quite well, effectively reconstructing all the true surfaces. 

Estimation improves as sample size increases. Not surprisingly, rMSE decreases as sample 

size increases though even the smallest sample size produced small rMSEs. Heat maps 

containing the averaged set of identified coefficients for the BFDR and the average SimBa 

scores across datasets can be found in the Web Appendix. Both procedures correctly 

identified regions of elevated association in all four surfaces.

Table 1 displays both the average false discovery rate, FDRε, and the average sensitivity, 

SENϒ, for each scenario using ε = 0.01, 0.05 and ϒ = 0.05, 0.075. For each procedure, we 

use α = 0.05 to select the set of selected locations. We can see that the BFDR and SimBaS 

procedures performs similarly well by both measures, though BFDR does better for a higher 

ε and ϒ. While the PWCI has very good sensitivity, it comes at the cost of an inated false 

discovery rate. EWERε is calculated using ε = 0.01. Additionally, SimBaS controls 

experiment-wise type I error quite well at 0.05. While BFDR has a slightly low type I error 

of 0.04, PWCI has a very high value of 0.645. To assess PGBPV we determine the percent of 

datasets under each scenario with PGBPV < 0.05 which was all datasets in each scenario.

These simulation results suggest our method performs well both in estimation and in 

inference. Even at the smallest sample size we considered, the model effectively reproduces 

the true surface. Both the BFDR and SimBaS capture the regions of strongest association 

without spuriously selecting too many non-significant coefficients. They also control well 

for type I error. Further, BFDR and SimBaS outperform the PWCI while maintaining 

reasonable sensitivity. Increasing sample size improves these facets of the model. Our 

method using wavelets and wPCs better captured the local features of these simulations than 

the spline-based methods of Scheipl, Staicu, and Greven (2014), as shown in Web Appendix 

F.
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5. Application

5.1 Description of ERP Data Set

To illustrate the performance of our proposed methods, we analyzed data from the 

Department of Behavioral Sciences at the University of Texas M. D. Anderson Cancer 

Center. As part of a smoking cessation trial, researchers obtained Event Related Potentials 

(ERPs) at baseline for subjects viewing a series of images of different types, including 

neutral, emotional (positive and negative), and cigarette-related.

EEG was continuously recorded during image presentation and collected using a 129-

channel Geodesic Sensor Net and amplified with AC-coupled high-input impedance (200 

MΩ) amplifier (Geodesic EEG System 250; Electrical Geodesics, Inc., Eugene, OR) 

referenced to the Cz electrode. The time series were preprocessed as described in Versace et 

al. (2010a), with 0.1Hz high pass and 100Hz low pass filters, blink-corrected using spatial 

filtering, transformed to average reference, segmented into 900ms segments from 100ms 

before each image shown to 800ms after, obvious artifacts removed, and ERPs obtained by 

averaging across images for each image type per subject/electrode. After this processing, for 

each subject, we are left with functions of length 225 for each image type for all 129 

electrodes.

Example curves recorded from 180 participants at electrode Cz (#129, in the middle of the 

crown of the head) during presentation of cigarette-related and neutral images can be seen in 

Figure 2 with the average over curves included in red. Curves under the other image-types 

are similar in appearance. The irregularity and localized spikiness of the raw curves 

motivates our use of wavelets and wPC in our modeling approach (Figure 2).

While many analyses are of interest for these data, in this paper we aim to characterize the 

time-varying relationship between ERP output from pairs of electrodes, focusing on two 

pairs in particular. The first pair is 55 and 129. Electrode 129, as previously mentioned, is 

positioned at the top of the head and electrode 55 is located directly behind it. We expect 

these two adjacent electrodes to be positively associated along the diagonal, t = υ, axis. The 

second pair is 75 and 11. Electrode 75 is an occipital electrode located at the back of the 

head while electrode 11 is at the front. Output from these two electrodes is expected to 

exhibit a negative correlation and thus we anticipate a negative association along the 

diagonal axis. For each pair of electrodes, we jointly model the association between the 

electrodes under both the neutral and cigarette image conditions resulting in a multilevel 

data structure. Thus, for each model, subjects have four curves resulting from measurements 

from two electrodes while viewing two different image types. We would like to assess the 

inter-electrode relationships, determine whether these relationships vary over the time the 

image is shown, and differ by image type. Note that our goal in this analysis is not a broad-

scale analysis of all pairwise associations, for which other approaches may be more suitable 

(e.g. Montagna et al. (2012)), but rather perform function-on-function regression analyses of 

pre-specified pairs.

5.2 Analysis

We fit two models to the data. In general, the model is given by

Meyer et al. Page 13

Biometrics. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(9)

where g denotes group membership, 0 for neutral, 1 for cigarette. For the first model we 

used Electrode 129 as the outcome function and Electrode 55 as the predictor function. For 

the second we used Electrode 11 as the outcome and Electrode 75 as the predictor. In both 

models, inference was drawn on both image-specific surfaces, β0 and β1, as well as the 

difference surface D(υ, t) = β1(υ, t) − β0(υ, t). As in the simulation study, we used 

Daubechies wavelets with four vanishing moments, three levels of decomposition, and zero-

padding. Prior to decomposition, we standardized both outcome and predictor functions by 

time. After DWT, the dimensions of the transformed functional outcomes from Electrodes 

129 and 11 were both 360 × 245. After wPC and preserving 99% of the total variability in 

the signals, the dimensions of the transformed functional predictors were 360 × 72 for 

Electrode 55 and 360 × 62 for Electrode 75. We obtained 1000 posterior samples from the 

MCMC after a burn-in 1000.

MCMC convergence was assessed using Geweke’s Convergence Diagnostic (Geweke, 

1992) and evaluation of first order auto-correlation coefficients for each coefficient on the 

surface. Both diagnostics suggest chain convergence. Details of the diagnostics along with 

histograms of Metropolis-Hastings acceptance rates can be found in the Web Appendix. For 

the model regressing Electrode 129 on to 55, the 95% interval of acceptance rates across all 

variance components was (0.431, 0.777) with a mean of 0.588. Acceptance rates for the 

model regressing Electrode 11 on to 75 were similar with 95% interval (0.405, 0.787) and 

mean 0.56.

We considered inference for both models using all three procedures. For the BFDR 

procedure, we selected a global α of 0.05 when implementing it on the difference surfaces. 

We choose a somewhat strict intensity change of δ = 0.05 to focus on large differences 

between the surfaces. Choice of δ will potentially affect results, thus additional choices of δ 

can be found in the Web Appendix. We also implemented BFDR on the image-specific 

surfaces in both models. There the α-level was reduced to 0.025 for each surface, however 

the intensity change, δ, remained at 0.05 so to only select relatively large associations. For 

comparability, the same intensity change was used for both models. For the PWCI, we also 

used α = 0.05.

Figure 3 contains posterior means of all three surfaces for both models. Examination of the 

posterior estimates of the difference surfaces found in the first column of Figure 3 suggest 

little to no systematic difference between image type in both models. When we look at the 

image-specific surfaces in the model using electrodes 129 and 55 (top row, second and third 

column, Figure 3), we see an elevated ridge of association along the t = υ diagonal, which is 

the relationship we anticipated between these two adjacent electrodes. Note that this 

relationship is strongest in the first 300 ms in the ERP or 200 ms post picture presentation 

(image presentation occurred at t = υ = 0), corresponding to the initial response to viewing 

the image. Transitioning to the image-specific surfaces of the model using electrodes 11 and 

75 (bottom row, second and third column, Figure 3), we see a valley of negative association 
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along the t = υ diagonal that also begins to die out around 200 ms to 300 ms past 

presentation. Once again, this is consistent with the expected relationship between these two 

electrodes.

Figure 4 contains results from the BFDR procedure on the difference surface for both 

models. Each heat map plots the posterior probabilities PBFDR. We see that for both models, 

most locations have a low probability of being greater than δ. In fact, plotting ψ, we see no 

regions identified as significant (see the Web Appendix), suggesting there is little evidence 

that the correlation across the two electrodes differs across image types. The second and 

third columns of Figure 4 show the application of the BFDR to the image-specific surfaces 

in each model, and again the heat maps plot the posterior probabilities PBFDR. We see that 

the probabilities along the ridge are quite large suggesting that ridge of positive association 

is significant up until almost 300 ms past image presentation. However the negative 

association along the ridge we saw in the second model has lower probabilities along the 

ridge at the δ = 0.05 cut-off. The regions identified as significant by the procedure as well as 

additional choices of δ are presented in heat maps in Web Appendix.

For the SimBaS procedure, we plot heat maps of the logged SimBa Scores in Figure 5. We 

see that for both difference surfaces, the SimBa scores are all relatively large (at least 0.5 or 

more), and the global Bayesian p-value for both is , suggesting there is not 

enough evidence to conclude differences in the coefficient surfaces between image types. 

The second and third columns of Figure 5 show the SimBaS procedure applied to the image-

specific surfaces. These heat maps are also plotted on the log-scale so to distinguish 

variations in small SimBa scores. For both models, we see evidence of a non-zero 

coefficient surface for each image type (

for the model using Electrodes 129 and 55,

and

for the model using Electrodes 11 and 75). Additionally, the SimBaS procedure detects the 

ridge of positive association in first model but only finds some of the negative associations 

in second.

Heat maps of significant locations using PWCI can be found in the Web Appendix. Not 

surprisingly, the PWCI is more sensitive to minor variations in the surface where there 

appears to be no systematic association. While both BFDR and SimBaS found no significant 

locations in the difference surfaces, the PWCI discovers a number of regions and also finds 
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a number of significant locations in the image-specific surfaces that are off the t = υ axis 

while suggesting the association lingers longer. Given the results in the simulation studies, 

we interpret these results cautiously, as they may likely be spurious, and feel more confident 

in the multiplicity-adjusted inference from the BFDR and SimBaS procedures.

We calculated functional R2 as described in Section 2.4. The model regressing Electrode 129 

on to 55 had  while the model regressing Electrode 11 on to 75 had . 

We also examined the proportion of the variance attributable to the random effects. For the 

model regressing Electrode 129 on to 55, the random effects contributed to 35.6% to the 

total variability and residuals 64.4%, while for Electrode 11 regressed on 75 random effects 

contributed to 43.5% to the total variability and residuals 56.5%.

6. Discussion

Functional data analysis is an expanding field requiring more work to fill in gaps in the 

literature and build upon the general knowledge of the field. Previous work on function-on-

function regression is limited. Here we present a general approach to function-on-function 

regression modeling which benefits from several attributes. First, our approach can use any 

basis function for y(t) and x(υ) allowing us to handle functions of various types, including 

those with spiky and smooth features, can be used with functions on higher dimensional 

domains like images, and allows us to parsimoniously model correlated residuals rather than 

assuming iid errors. Second, we get fully Bayesian inferences on all model quantities 

including point-wise credible intervals, posterior probabilities interpretable as Bayesian 

FDRs, joint credible intervals, and SimBaS that provide global and experiment-wise 

inferential quantities. Third, our inference procedures correctly identify regions of elevated 

association without falsely identifying too many non-significant coefficients. Fourth, our 

method resides within the functional mixed model (FMM) framework as put-forth by Morris 

and Carroll (2006) that handles correlation between functions and random effects through 

random effect function distribution, and thus accounting for the various sources of 

variability in multi-level models. Using the mixed model representation of penalized splines, 

this also allows the relaxation of the linearity assumption between Y (t) and X(υ), although 

details are beyond the scope of this paper. Finally, the FMM framework also allows any 

combination of continuous and discrete scalar predictors, functional predictors, and their 

interactions, allowing function-on-function regression to be done in a much broader 

modeling context.

We demonstrated by simulation that our model performs well for realistic sample sizes and 

forms of functional association with fits improving as sample size increases. Simulations 

also show the BFDR and SimBaS procedures have better false discovery and type I error 

rates than the PWCI with comparable sensitivity. Our approaches for global inference and 

multiple-testing adjustment for Bayesian inference using BFDR, SimBaS, and GBPV are of 

general interest and can be used in other functional regression settings.

Our application displays the ability of the model to estimate the forms of the relationship of 

ERP output between different electrodes on the scalp. With the neighboring electrodes, a 

positive association was expected and seen along the diagonal axis t = υ while a negative 
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association was expected and seen between electrodes on opposite sides of the scalp. 

Further, both our inference procedures were able to detect these associations as significant, 

even the one based on experiment wise error rate.

In summary, the function-on-function mixed model with basis-space modeling comprises a 

flexible approach to the function-on-function regression setting. The method performed well 

in both simulation and application. Further studies are needed to explore the model’s 

performance in more complex settings, including non-functional components beyond a 

factor variable, incorporating multiple functional predictors, and various types of random 

effect correlation structures. Additionally, further examination of data reduction techniques 

could improve the modeling prowess of the method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heat maps of the true surfaces for simulation study are above heat maps of a single 

estimated surfaces for each simulated scenario based on a sample size of n = 25 with two 

measure per subject, Ci = 2 ∀ i, for a total of N = 50 observations. Each surface has near 

average rMSE and is based on a total of 2000 MCMC chains with the first 1000 discarded.
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Figure 2. 
On the left, raw profile curves are plotted in gray with the mean in red from electrode 129 

under the cigarette image condition. On the right, are raw curves and the mean from 

electrode 129 under the neutral image condition.
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Figure 3. 
The top row contains surface estimates for the association between electrodes 129 and 55. 

Posterior surfaces comparing electrodes 11 to 75 are in the second row. The estimated 

posterior surface of the difference between cigarette and neutral is found in the first column. 

Group specific surface estimates are in the second and third columns, Neutral and Cigarette 

respectively. ERP output from electrode 129 is the response and the output from electrode 

55 is the predictor for the first model and electrode 75 is the predictor of electrode 11 in the 

second model.
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Figure 4. 
Heat maps containing the posterior probabilities from the BFDR procedure using a δ 

intensity change of 0.05. Locations (υ, t) in white have a high probability of being greater 

than δ and thus likely to be included in ψ, the set of locations identified as significant. Black 

locations (υ, t) have a low probability of being greater than δ and are thus less likely to be 

identified as significant. The top row contains results from the model using electrodes 129 

and 55 while the second row contains results from the model using electrodes 75 and 11.
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Figure 5. 
Heat maps containing the SimBa scores for each surface of both models. The top row 

contains results from the model using electrodes 129 and 55 while the second row contains 

results from the model using electrodes 75 and 11. Scores are plotted on the log-scale with 

the color axis on the exponential scale. White regions represent coefficients with low SimBa 

scores, black regions represent coefficients with high SimBa scores.
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Table 1

FDR, sensitivity, experiment-wise error rate (EWER), and type I error values by inference procedure. The 

BFDR use a δ intensity change of 0.05. To determine assessment values for SimBaS, a cutoff of α = 0.05 was 

used. Likewise, the PWCI used 95% point-wise credible intervals to determine significant locations.

Measure Surface BFDR SimBaS PWCI

FDR0.01 Lagged 0.06% 0.08% 5.80%

Peak 0.48% 0.75% 22.9%

Ridge 0.12% 0.19% 20.5%

Immediate 2.25% 2.80% 20.9%

Ridge + Peak 0.20% 0.35% 17.4%

FDR0.05 Lagged 5.74% 13.9% 44.7%

Peak 4.01% 20.4% 73.5%

Ridge 9.75% 15.6% 53.3%

Immediate 5.74% 7.58% 38.1%

Ridge + Peak 5.45% 22.7% 73.4%

SEN0.05 Lagged 98.1% 96.2% 99.9%

Peak 64.9% 73.4% 99.9%

Ridge 96.8% 93.4% 99.9%

Immediate 97.9% 93.8% 99.9%

Ridge + Peak 63.6% 76.3% 99.9%

SEN0.075 Lagged 99.9% 99.3% 100%

Peak 94.4% 88.2% 99.9%

Ridge 99.8% 97.6% 99.9%

Immediate 99.9% 96.2% 99.9%

Ridge + Peak 95.7% 93.3% 99.9%

EWER0.01 Lagged 7.00% 16.5% 100%

Peak 4.50% 10.5% 100%

Ridge 9.50% 49.0% 100%

Immediate 100% 100% 100%

Ridge + Peak 6.00% 29.0% 100%

Type I Error Null 4.00% 5.00% 64.5%
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