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Summary

In a relative risk analysis of colorectal caner on nutrition intake scores across genders, we show
that, surprisingly, when comparing the relative risks for men and women based on the index of a
weighted sum of various nutrition scores, the problem reduces to forming a confidence interval for
the ratio of two (asymptotically) normal random variables. The latter is an old problem, with a
substantial literature. However, our simulation results suggest that existing methods often either
give inaccurate coverage probabilities or have a positive probability to produce confidence
intervals with infinite length. Motivated by such a problem, we develop a new methodology which
we call the Direct Integral Method for Ratios (DIMER), which, unlike the other methods, is based
directly on the distribution of the ratio. In simulations, we compare this method to many others.
These simulations show that, generally, DIMER more closely achieves the nominal confidence
level, and in those cases that the other methods achieve the nominal levels, DIMER has
comparable confidence interval lengths. The methodology is then applied to a real data set, and
with follow up simulations.
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1. Introduction

We use data on the relationship between diet and colorectal cancer from a subset of the
NIH-AARP Study of Diet and Health (Reedy et al., 2008), which itself is a large cohort
study with approximately 250,000 men and 200,000 women. The data subset that we have
access to includes 1,075 males that developed colorectal cancer during the course of the
study, along with 479 females who also developed colorectal cancer. In addition, the data set
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includes 3,225 randomly selected men and 1,437 randomly selected women who did not
develop colorectal cancer. Hence, there are 4,300 males and 1,916 females in the data set.

It is traditional in nutritional epidemiology to examine the risk of cancer from single foods
or nutrients normalized by energy (caloric) intake, e.g., the percentage of calories coming
from fat, the amount of whole grants per 1,000 calories, etc. However, nutritionists have
increasingly turned to dietary indices, which account for the patterns of energy-adjusted
intake for multiple foods and nutrients. There are many such indices, e.g., the Healthy
Eating Index - 2005 (HEI-2005, see Guenther et al., 2008), the Alternative Healthy Eating
Index, the Mediterranean Index, etc., and they have been shown to be related to many
chronic diseases and cancers. We use here the HEI-2005, which is based on the intakes of 12
interrelated dietary components, adjusted for energy intake. These intakes are then scored
individually, and their sum is the HEI-2005, which is then used to predict disease. The
Supplementary Material Table S.3 describes the components and how they are scored.

In our analysis of colorectal cancer, we fit a model where the scores are weighted and
summed, but the weights are common for men and women, as in any dietary index. We
show in Section 4.1 that, surprisingly, when comparing the relative risks for men and
women based on this common index, the problem reduces to forming a confidence interval
for the ratio of two (asymptotically) normal random variables. The latter is an old problem,
with a substantial literature, one that we revisit based on our example.

One popular method for computing a confidence interval for the ratio of two location
parameters is due to Fieller (Fieller, 1932; Fieller, 1954). Details of this method are
described in the Supplementary Material Appendix S.1.

Consequently, other methods have been developed, most of which are based on the
distribution of the ratio of the estimates of two location parameters (see for example recent
papers by Beyene and Moineddin, 2005; Pham-Gia et al., 2006; Sherman et al., 2011). Most
often, a normal approximation to the distribution is used, with subsequent intervals formed
by Wald’s method. Hayya et al. (1975) showed that, under certain conditions, the
distribution for the ratio of two estimators can be treated as a normal distribution with a
second order Taylor expansion. This method is also defined in the Supplementary Material
Appendix S.3. In addition, parametric and nonparametric bootstrap methods are also used.
However, our empirical investigations suggest that confidence intervals constructed by these
existing methods for the ratio often give inaccurate and sub-nominal coverage probabilities.

Motivated by such a problem, in this work we construct a new methodology, which we call
the Direct Integral Method for Ratios (DIMER). This methodology is also based on the
distribution of the ratio of the estimates of the two location parameters, a distribution that is
Cauchy-like and has heavy tails. We show that DIMER can be computed easily by
numerical integration. In our simulation studies, we show that DIMER closely achieves
nominal coverage, unlike the Wald method and the method of Hayya et al. (1975). DIMER
is also much faster computationally than bootstrap methods, which is important in large
cohort studies, where the model is a nonlinear logistic regression based on samples of sizes
in the tens of thousands or more.
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In Section 2 we describe the methodology, while Section 3 compares various methods via
simulation studies. Section 4 describes the analysis of the NIH-AARP Study. Simulations
based on the actual data reinforce the conclusions of the simulations in Section 3 and shed
more light on the data analysis. Technical details, proofs, definitions and additional
simulations are given in the Supplementary Material.

2. Methodology

2.1 Basic Definitions

Consider two random variables T4 and T, which have density functions f1{(t; — u1)/v1} and
f2{(to — H2)/ 1y}, respectively, with means |13 and 1o and standard deviations vy and 5. In
other words, f1(x) and f,(x) are the density functions of the standardized versions of T, and
T,, respectively. Let F1(-) and F(:) denote the corresponding distribution functions. We are
interested in making inference for the ratio p1/p. We will outline a series of cases where it
is possible to compute easily the cumulative distribution function of r = T1/T5. All proofs are
given in the Supplementary Material Section S.2.

2.2 Independent Case

Suppose that T1 and T, are independent.
Lemma 1—Define

(1 = 1 [{z(patva2) — p}/v1)) f2(2) exp () if 2 < —pafva,

9o iz, o, 02)= { F{e(ua+vs2) — m}/vn) fa(eap(22)  if 2> — pafon.

Then the cumulative distribution function of r = T1/T, is given by

pr( < @)=[2 g (zle, 1, p2, 01, 02) exp(—2%) dz,

a quantity that is easily computed by Gauss-Hermite quadrature.

In Lemma 1 x denotes a value of r and z denotes a value of T, and similarly in Sections
2.3-2.4.

If the parameters vy and v, are unknown, we can apply Lemma 1 using their estimated
values. However, we have found that a more numerically efficient approximation can be
developed in the case of normally distributed T4 and T,. We present this result in the

following setting. Suppose the estimated variances are 2 and 2 which are independent of
each other, and independent of T4 and T», and have degrees of freedom d; and d»,
respectively. Thus, both (T - ul)/vfand (Ty - pz)/v{follow the t-distribution with d; and
d, degrees of freedom, respectively. In addition, assume that d = min(dy, d») increases to
infinity, which is implied when the sample sizes increase to infinity. Suppose that

02=v2+0,(d; */?) and 63=0v3+0,(d; /*). Then we have the following lemma.
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Lemma 2—With an error of order Op(d‘l’z), 9(z|x, u1, Mo, 02 02) defined in Lemma 1 can
be approximated by

(1= Fra, [{z(pa+022) — pa}/01]) fra, (2) exp(2?) if 2 < —po /0o,

h(z|z 2,0%)= N N ; N
(Bl o, 2, 01, 23) { Fra, [{z(pat022) — m}/01] fray (2) exp(22)  if 2> — pa /0o,

where f; 4(-) and Fy 4(') are the t-density with d degrees of freedom and the corresponding
cumulative distribution function, respectively.

2.3 Dependent Case of Two Normally Distributed Variables with Known Covariance Matrix
Suppose now that (T4, T») are jointly normally distributed with means (u1, Jo), variances

(w2, v3), covariance vy and suppose that (w2, v2, v12) are known. Let ¢(-) and @(') denote
the standard normal density and distribution function.

Lemma 3—Define g(z|x, U, Mo, v? v2, v12) as follows. If z < —pp/ vy, then

9 (2|2, g, p2, 03,03, 012)=(2m) "2 (1= B[ {z (patva 2)—(p1+2v12/v) Yoo/ \[UF 03 — 03]) exp(22/2).

If z> —po/ 1y, then

g (2@, pa, oy 07, 03, 012)=(2m) T2 D [{ (a2 2) = (i +2 02 /va) fva/ \0F0d — vlexp (27/2).

Then the distribution function of r is

pr (7 < @)=[% g (2|2, p1, p2, 07, 03, v12) exp (—2%) dz,

which again can be computed by Gauss-Hermite quadrature.

Of course, when v15 = 0, Lemma 3 is a special case of Lemma 1.

2.4 Dependent Case of Two Normally Distributed Variables with Estimated Covariance
Matrix

Here we discuss the cumulative distribution of the ratio r = T1/T, when T4 and T, are jointly
normally distributed with jointly estimated variance and covariance which have the same
number of degrees of freedom d, and these estimates are independent of T1 and T». These
are the same assumptions noted in Fieller (1954). Define the estimates of the variances and
covariance of T and T; as ¢2, 53 and 1)1;. Let y=v1, /3. For fixed 7, write W = Ty — 7T,
Then W and T, are independent. In addition, if 92, 2 and vfz are computed from the sample
covariance matrix of normal random variables from a sample of size d + 1, then we also

have that Ty — 7T, and T, are independent of their estimated variances 6% — 250 ,,+n>03
and v, which are independent of each other and also have d degrees of freedom.
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We use the following algorithm, based on the approximation used in Section 2.2. Under our

assumptions, the variables Z1={(T1 — nT2) — (p1 — np2)}/ \/@f — 2n012+n20% and Z, =
(Ty - uz)/vaare independent and both have t-distributions with d degrees of freedom. As in
Lemma 2, we then make the approximation that the density of (T, T>), having fixed the
estimated covariance matrix, is approximately

A—1 [ N ~2\—1/2 ~ N ~ N
0y (87 — 20019+ 03) / fral{(t1—mnt2)—(p1—np2)}/ \/U% — 2010412 03) fr.a{ (t2—p2) [ D2}

If 2 < —o/ vy, define

9(2’|$,#1,#2,@%,ﬁ§,f112777)
— (1= Fua [z = ) arroa) = 1 = )}/ /97 = 200127203 ) fra (2) eap(:2),

while if z > o/ vy, define

9(Z|937H1,#2a@%>@%,f112>77)
:&dhu—mmﬁwa—ou—wgw¢ﬁ—mmﬁm@}nA@wmﬁy

Then, using the same device as in Lemma 2, we have that

pr(? < )=/ g (2|, p1, p2, 03,03, 012,1) exp(—2%) dz+0, (d7V/?). ()

In practice, 77is unknown, so we use =01, /03 to estimate it.

2.5 Algorithm for Computing the Confidence Interval of Ratios

In Sections 2.2-2.4, we express the distribution function of r as F(x; r) = pr(r £ x; r = y/uo)
when Ly £ 0. The ratio pﬁu{is an estimate of r = py/|lp, so that we can view F(X; u17u23 asan
estimate of the population distribution function F(x; r). Efron (1981) and Benton and
Krishnamoorthy (2002) pointed out that if we generate values rj,’i = 1,..., m, from F(x;
uﬂpzj, we can make inference about r using the distribution of the generated r;’s.

The main difference between our approach and that of Benton and Krishnamoorthy is that
instead of generating a larger number of r;”s and then obtaining its percentiles, we compute
the percentile of rjdirectly. Consequently, our method is much faster computationally.
Specifically, our simulation results indicate that DIMER usually needs less than 30 iteration
steps to obtain the quantile of a distribution, but in Benton and Krishnamoorthy (2002), they
used m = 100, 000 r;’s to get the quantiles.

Define the a/2 quantile for F(x; Ll]_?“gj as raAIZ\ulA/uzA- Then an approximate 100(1 - @)%
confidence interval for r is (r o2y /i F1-a/2) pyluy)- Here we give the steps of our iterative,
bisection-based algorithm to obtain the quantiles.
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+  Step 1. Give two initial values of r o1/, @S F'y <0 <y, and both have
sufficiently large absolute values to make sure that r 2|,/ IS inside the interval
(Fap» Tap). How we did this is described in the Supplementary Material Appendix S.
4. Our method, being based on bisection, is not sensitive to these starting values.

»  Step 2. Apply the Gauss-Hermit quadrature to the cumulative distribution function
of r to obtain ¢ = pr{r < (rgy + rep)/2}. I cop < al2, let r gy = (g + rey)l2; if
Car2 > al2, let r 4, = (Vg + rap)l2; if Cop = al2, stop the iteration and let r o|ug/y =
(Fay * rap)l2.

«  Step 3. Repeat Step 2 until ¢ is close to a/2 and/or the difference |r., = 1| is
negligible. Then we have ro\upjuy = (Fag + fp)/2, the lower limit of interval.

*  Step 4. Repeat Steps 1-3 to obtain r{— |/, the upper limit of the interval.

3. Simulations

3.1 Overview

We performed simulations on two simple linear regression models. The first (Section 3.4) is
to illustrate an application of the formulas in Section 2.2 where the two variables are
independent. The second (in Supplementary Material Appendix Section S.6) is an example
to demonstrate the performance of our method developed in Section 2.4 when the two
variables are dependent. In both simulations, some other possible methods are outlined and
compared with DIMER. Since the dependent case is developed with the normality
assumption, it is important to evaluate how sensitive DIMER is to the violation of this
assumption. Therefore, we also considered such a case in the second part of our simulations.

3.2 Comments Upon and Applications of Fieller’s Intervals

Fieller’s interval, defined in Supplementary Material Section S.1, is sometimes of infinite
length, being either the entire real line or the union of two disconnected infinite length
intervals, e.g., when the denominator of the ratio is not significantly different from zero.

Fieller’s intervals have been used in a variety of contexts. Here are three cases, the first two
of which are illustrated in our simulations. The simulation of the first case appears here,
while the second in the Supplementary Material, Section S.6.

e Inaslope ratio assay (Finney, 1978; Hubert, 1984; Redmond, 2005c), data are fit to
a standard and treatment, observing Ys = ag + Xgf% + & for the standard, while the
treatment is fit to the model Y1 = a1 + X7/r + er. The relative potency pis a
function of S/, where the estimates of fr and & are independent. In a common
setting, it is assumed that ag = ar but the doses Xg = X7 = X, and by centering X the
described model holds with different intercepts. This is an example of two
independent slope estimates.

e Inaradioimmunoassay (Finney, 1978; Redmond, 2005b) with dose denoted by X
and response Y, if one is in the linear part of the calibration cure a reasonable model
isY = a+ Xf+ & The logarithm of D5, the dose required for 50% of binding
inhibition, is given by log(IDsg) = a/f. The parameter estimates (a,Ap)Aare generally
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correlated, and this is an example of estimating the ratio of the intercept to the
slope when the parameter estimates are correlated.

e Inanparallel line assay (Finney, 1978; Redmond, 2005a), a standard is fit to the
linear model Ys = ag + Xgff + &5 while the treatment is fit to the model Y1 = a7 +
X7+ er : the slope is the same in both, hence parallel line. The log-relative
potency in this assay is log(p) = (at — ag)/p. In the homoscedastic case, unless Xg =
X7, the estimates of the numerator and denominator are not independent.

In radioimmunoassays, it is often the case that the variance of the responses is proportional
to a power dof the mean, but with 1 < #< 2. Generalized least squares can then be used to
estimate ¢ (Davidian, et al., 1988), but once the estimates in these examples are obtained, we
still have a problem of forming a confidence interval for a ratio of two parameters.

3.3 Comments on Sample Sizes and Parameter Choices

Fieller intervals for a ratio 6,/6 are of infinite length if the null hypothesis Hp : & =0
cannot be rejected. If the power for rejecting this hypothesis is low, Fieller intervals will
have terrible properties. In simulations not reported here, the behavior of the alternative
methods is also very poor. If the power for rejecting the hypothesis is essentially 100%, then
all the methods will be essentially the same, with minor fluctuations depending on the
sample size. The interesting cases lie on the boundary between low and perfect power, e.g.,
80%-90% power with Type I error 0.05. Our simulations include settings with low power,
perfect power and in between.

In our simulations, which are based on linear regression with error standard deviation v,, we
have set the covariates to be Normal(0, 1), and we set v, = 1, so that the standard error of the
slope is roughly n"Y2y,/s,, where s, is the sample standard deviation of the covariates. On

average, s, ! ~ 1.0, so the standard error of the slope estimate ~ n~Y2, Consequently, the
sample sizes we have chosen, n = 18, 25 and 50, result in reasonable standard errors that
illustrate a range of powers for the test that the slope = 0.0. In Table 2, had we changed v, =
2, 3 and 4, the sample sizes needed to get roughly the same percentage of infinite length
Fieller intervals are roughly 60, 130 and 225, respectively. In the Supplementary Material,
Table S.4, we show what happens to Table 1 when we set (n, v,) = (55, 2) and (115, 3),
showing that roughly the same results apply in this setting.

3.4 Linear Model When the Two Estimates are Independent

3.4.1 Setup—Caonsider the 2-group linear regression model

Y1;=B10+X1; Briters, i=1, ..., ny;
Yo;=020+Xz2; Bo1+€2j,7=1,...,n2,

where (Y1, X1j) and (Y, Xpj) are the same outcomes and predictors from different
populations. See Section 3.2 for an example. Also &;j and &;; are independently normally

distributed with mean zero and variances vZ, and v2,, respectively. Our interest is in the ratio
of the two slopes /1//11.
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The model can be rewritten as follows in order to use a simple expression for the ratio:

Yi;=Bro+Xwtey, i=1,...,ny; )
Yo;=0320+P21 Xojw+tea;, j=1,...,na. @

Then the ratio of the slopes now is /1 and w is the slope for the first group.

Our interest is to construct a confidence interval for /4. Let (521, ) “denote the maximum
likelihood estlmate (mle) of (%1, w), and define A = fhiwand its estimate 1 = ﬂ21a) Both (/1
- /1)/’[)/1 and (a) co)/va, follow mdependentt -distributions with degrees of freedom ny — 2
and nq — 2, respectively, where v, “and v, are corresponding estimated standard deviations.

The estimated cumulative distribution function of /)’21 is obtained as in Section 2.2. We can
then apply the DIMER algorithm in Section 2.5 to obtain confidence intervals. To compare
with other methods, in Section 3.4.2 we outline an application of Fieller’s interval. In
addition, we apply the Wald interval by inverting the Fisher score matrix, Hayya’s method,
the nonparametric bootstrap, the parametric bootstrap, and the likelihood ratio test; see the
details in the Supplementary Material, Appendices S.1, S.3 and S.5.

3.4.2 Comparison with the Fieller’s Interval—To form a confidence interval for /51,
one common method in practice is Fieller’s interval. However, in this linear regression

setting, it cannot be applied directly since 2 and Oi are obtained independently. In this case,
by the Welch-Satterthwaite equation (Satterthwaite, 1946; Welch, 1947), the degrees of

freedom of (0% +ﬁ§1 02) are approximately given by

d,= (05403 02) /{(@§)2/(n2 — 2)+(85,02)%/(n1 — 2)}. We use iy instead of Sy in the
expression to obtain the estimated degrees of freedom

d,=(0 +ﬂ21 ) /{( 2)*/(na — 2)+(3 ﬁf:)z/(nl —2)}. Then we have

a=0? — t2 02 c= 2 — 2 02 ; :
ax a2 Yo b= —2a)/1 and ax /2 A Used in the Supplementary Material.

Here p =0 since wand A are independent.

3.4.3 Simulation Results—Our simulations for model (2) compare the seven methods

mentioned in Section 3.4.1. For simplicity, in all settings, we first fixed v2 _u ,=1,and
without loss of generality, let the intercepts 5o and /g be 0. Supplementary Materlal Table

S.4 gives some additional results when v§1:v§2:2 and 3. We generated Xy and Xp;
independently from the standard normal distribution.

We considered two parameter configurations: (f19, %0, /1, @) = (0,0, 1, 1), (0, 0, 1, 0.75).
For each parameter setting, we report simulation results for (nq, ny) = (18, 18), (25, 25), (50,
50) with 2000 runs. In our experience in linear regression cases, and with these effect sizes,
sample sizes higher than that typically lead to good numerical performances for all methods.
Following Efron and Tibshirani (1994, p. 52), we used B = 400 bootstrap replications for all
the bootstrap results reported in this article.

Biometrics. Author manuscript; available in PMC 2015 September 18.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wang et al.

Page 9

The results for the first parameter configuration (510, /o, 1, @) = (0, 0, 1, 1) are given in
Table 1 while Table 2 presents the results for setting (410, 50, 1. @) = (0, 0, 1, 0.75). QQ
plots (not shown here) comparing the quantiles of ,621 with the quantiles of the standard
normal distribution in the two parameter configurations with ny = n, = 18 clearly show that
for small to moderate sample sizes, normal approximations are not appropriate.

Table 2 shows that when ny = ny = 18 the empirical mean of ,321 is 2.85 when the true value
is 1.00. The reason for this difference is that ﬂ{l follows a Cauchy like distribution, and one
of characteristics for this distribution is that it has severely heavy tails. For example, the
maximum of the absolute values of ,621 reached 3, 138 over the 2,000 runs in this case.
Therefore, some severe outliers dramatically affected the empirical mean. In sharp contrast,
the empirical median of ,821 is 1.00.

Table 2 also displays the percentage of times the Fieller and likelihood ratio confidence
intervals have infinite length.

The inverse Fisher information matrix algorithm has the lowest coverage probabilities.
Hayya’s method and the likelihood ratio test also have sub-nominal coverage probabilities
when the sample sizes are small. Moreover, the latter has a positive probability to get
infinite length. The performance of the two bootstrap methods is acceptable when the
sample sizes are relatively large. When the sample sizes are small to moderate, the coverage
rate of the bootstrap methods for the 90% confidence intervals are higher than 90%, while
the coverage rate of the 99% confidence intervals is lower than 99%.

Fieller’s interval has good performance overall in coverage. Here we focus on cases that the
sample sizes are small and moderate (n1 = np = 18 and ny = ny = 25), where Fieller’s interval
can be the real line or otherwise of infinite length. The inverse Fisher information method
produced the shortest confidence interval lengths, not surprising, since its coverage rates are
below the nominal values. Hayya’s method remains stable but has a low coverage when the
sample sizes are small. Compared with the two bootstrap methods, our method obviously
has markedly shorter lengths in the 90% and 95% confidence intervals when the sample
sizes are small and moderate, especially when (n1, ny) = (18, 18). When the sample sizes are
small, DIMER and Fieller’s interval have similar median and interquartile ranges of lengths,
but our method is much shorter in terms of mean and 90t percentile of length.

4. Empirical Example and Further Simulations

4.1 Method and Data Analysis

The HEI-2005 and the NIH-AARP data available to us were described in Section 1. The
sample sizes were 4,300 males and 1,916 females. Let H (x) = exp(x)/{1 + exp(x)} be the
logistic distribution function. Let = 1, 2 denote men and women, respectively. Let Y,
denote the binary outcome of colorectal cancer for personi =1, ..., nyin sample Zand let
Xijjefor j=1, ..., J =12 denote the HEI-2005 score for the jt dietary component. The
traditional HEI-2005 analysis then posits a model

7
pr(Ye=1|Xi1e, ..., X,;)=H (ar+5 =1 Xije), in other words, the HEI-scores are
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J
equally weighted. Notice here that the same predictor, ijl Xije, is to be used both for men
and for women. In our case, we allow for the possibility that the predictor is the same in
both populations, but the scores are weighted to be based on the data, so that our model is

pr (Yie=1 X105, X,5)= H(a£+5ez Xije), (3

where the weights (ay, ..., @;) are estimated through the data. The model as such is not
identified, but if we make the restriction that #; = -1, then it is identified: the negative value
is because higher HEI-2005 scores, i.e., better diets, lead to lower rates of colon cancer.
Thus, with p; = -1, (3) becomes

pr(Yo=1Xin,...,X,,,) = H(x— JJW; Xij1);
pr(Yip=1X12,...,X,,,) = (012-1—/322 —1wj Xyja).

If we write Tié:ijle Xije, then we see that if the relative risk in men for changing T is
R, the same change in women has a relative risk R722. Hence we wish to form a confidence
interval for /. We fit model (3) by maximum likelihood, and the asymptotic covariance
matrix ¥ of (%, @1, ..., @3)T was estimated using the Fisher information matrix.

To see how this relates to the Fieller problem, let @ = (@, ..., @3)T, A= S, and e be the J x
1 vector of ones. From X and the delta method, the asymptotic covariance matrix for (, A/I)A
can be constructed, and the covariance matrix of (eT A, eT w) is easily computed. Also, 5 =
eT AeT wand 5, = eT Ve o. Thus, we see that 4 is the ratio of two asymptotically normal
random variables, and hence DIMER, Fieller’s method, etc. can be applied.

In the NIH-AARP study, the rate of colorectal cancer for men is 0.73%, while it is 0.48% for
women. In the data analysis, we found that ﬂzA: -0.747, so that if relative risk of 0.60 for
men who improve their diet by a fixed amount, it is 0.68 for women who improve their diet
the same amount. Thus, for colorectal cancer, the indication is that men are more
susceptible, a well-known fact, and that they will have greater benefit for the same change in
diet.

In the top panel of Table 3, we present the confidence intervals for the various methods. We
see there that the confidence intervals for the inverse Fisher score method and Hayya’s
method are noticeably shorter than the others, the nonparametric bootstrap is quite a bit
longer, and the parametric bootstrap, Fieller’s interval, DIMER, and the likelihood ratio test
are intermediate. The nonparametric bootstrap does not suggest differences in risk between
men and women even at 90% confidence. With the exception of the nonparametric
bootstrap, whose intervals we believe are much too long, see Section 4.2, all indications are
that the risk for men and women for the same change in diet is statistically significant, with
a p-value of < 0.01 for DIMER.

Biometrics. Author manuscript; available in PMC 2015 September 18.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wang et al.

Page 11

In the next subsection, we study whether the different lengths of the confidence intervals are
reproducible in simulations, and through these simulations, which methods attained nominal
coverage.

4.2 Simulation

The sample sizes were the same as in the data set, namely 4,300 males and 1,916 females.
We used a bootstrap resample of the HEI-2005 scores in the NIH-AARP data as the
covariates, separately for men and women, and generated 2,000 data sets with binary
outcome data according to the fit to the model (3), the parameter estimates of which are
given in the caption to Table 3. The mean confidence intervals across the 2,000 simulations
are given in the bottom panel of Table 3. The result reflects the same phenomenon that was
observed in the actual data set, namely the inverse Fisher score method and Hayya’s method
are noticeably shorter than the others, the nonparametric bootstrap is quite a bit longer, and
the parametric bootstrap, DIMER, and the likelihood ratio test are intermediate. As seen in
the previous simulations, the mean lengths of Fieller’s interval in this case are infinite for
90%, 95% and 99% intervals.

In Table 4, we show the confidence interval coverage performance of the various methods.
The inverse Fisher score method and Hayya’s method both have short confidence intervals
generally, but also much less than nominal coverage probability. The likelihood ratio test
has longer intervals than the inverse Fisher score and Hayya’s method, but it is still under
coverage. The nonparametric bootstrap had by far the longest intervals, and here we see
great over coverage. The parametric bootstrap, Fieller’s method and DIMER have close to
nominal coverage. For 95% confidence intervals, Fieller’s method was of infinite length for
almost 4% of the simulations. In this simulation, the parametric bootstrap performed
somewhat better than DIMER, with its confidence intervals being somewhat shorter,
although computationally it is, on average, 35 times slower to compute for data sets of this
size.

For comparison purposes, the average computational time in these simulations for the Fisher
Score, Hayya, nonparametric bootstrap, parametric bootstrap, Fieller’s interval, DIMER, and
likelihood ratio test were 0.07, 0.15, 75.94, 55.25, 0.15, 1.02, and 54.29 seconds,
respectively. To do a more severe time test, we also generated cohort data similar in size to
the NIH-AARP Study data (293, 615 males and 198, 245 females). For one such data set,
the computational time for the six former methods (without the likelihood ratio test) was
9.80, 19.25, 8709.00, 3223.44, 19.25, and 20.34 seconds, respectively, indicating that the
time of the parametric bootstrap was 159 times larger than that of DIMER.

5. Discussion

We have developed DIMER for constructing confidence intervals for the ratio of two
location parameters. The method, based on analytical results and further approximations to
account for nuisance parameters, is computationally fast. Our simulations indicated that
compared with other methods in the literature, DIMER achieves coverage probabilities close
to the nominal levels in all the different scenarios under consideration while providing
competitive confidence interval lengths.

Biometrics. Author manuscript; available in PMC 2015 September 18.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wang et al.

Page 12

While we have no definitive explanation, it is a reasonable conjecture that an important
reason why the DIMER method works well is that the distribution of the estimated ratio is
heavy tailed. Our DIMER method appeared to be less affected by this problem due to its
direct probability computation, although it is not unaffected, see below.

However, there are obvious cases that any of the intervals, including DIMER, may have
poor performance. In particular, in the cases that Fieller intervals are of infinite length, we
found in our simulations that DIMER intervals also increase in length, sometimes
dramatically, especially when the p-value for testing the denominator being 0 or not is large.
We found the same thing to happen to the other methods we have discussed: the results were
poor, although in some cases better than DIMER. In the case of normality, only Fieller’s
interval is guaranteed to achieve its nominal coverage probability, at the potential cost of
intervals of infinite length.

All the methods we have considered, other than Fieller’s interval, are first-order correct, i.e.,
their actual coverage probability is the nominal one +O(n~Y/2). There is a literature on
second order correctness, i.e., nominal level +O(n™1), such as Laplace approximations,
second order bootstrap, etc. It would be interesting to see how and whether these methods
can be applied to our problem of finding a confidence interval for the ratio of two
parameters. The properties of such methods such as confidence interval lengths and actual
coverage in the settings we have considered are not at all clear.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3
Top Panel: confidence intervals for 3, with the actual case-control data set of Section 4.1. The estimated
values for parameter are (B, ay, ap) = (-0.747,-1.115,-1.024), o = (0.030, 0.018, 0.083, 0.033, -0.001,

0.081, 0.094, —0.043, 0.068, —0.020, 0.041, 0.098)T. Bottom panel: average confidence intervals for , in the
simulation study of Section 4.2 for a logistic regression model with 2000 simulated case control data sets.

Data Analysis

Method 90% ClI 95% ClI 99% ClI
IF (-1.17,-0.33)  (-1.25,-0.25) (~1.40, -0.09)
HM (-1.18,-0.35) (-1.26,-0.27) (-1.41,-0.11)
NB (-167,0.18)  (-1.85,0.35)  (-2.20,0.70)
PB (-1.26,-0.23) (-1.36,-0.13)  (~1.56, 0.06)
FI (-1.26,-0.33) (-1.41,-0.24) (-1.84,-0.02)

DIMER (-1.26,-0.33) (-1.41,-0.24) (-1.84, -0.02)
LR Test (-1.28,-0.30) (-1.41,-0.22) (~1.69, —0.05)

Simulation: Average Confidence Intervals

Method 90% ClI 95% ClI 99% ClI

IF (-1.17,-0.37) (-1.24,-0.29) (-1.39, -0.15)
HM (-1.18,-0.38) (-1.26,-0.31) (-1.40,-0.16)
NB (-1.46,-0.08)  (-1.59, 0.06) (-1.85,0.32)
PB (-1.26,-0.27) (-1.36,-0.18)  (-1.55,0.01)
Fl 00 o) 00

DIMER (-1.28,-0.35) (-1.47,-0.22) (-2.52,0.53)
LR Test (-1.28,-0.36) (-1.40,-0.29) (-1.67, -0.14)

Here the acronyms are IF-Inverse Fisher score method, HM-Hayya’s Method, NB—Nonparametric Bootstrap, PB—Parametric Bootstrap, FI-
Fieller’s Interval, DIMER-Direct Integral Method for Ratios and LR Test—L.ikelihood ratio test.
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