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Summary

In a relative risk analysis of colorectal caner on nutrition intake scores across genders, we show 

that, surprisingly, when comparing the relative risks for men and women based on the index of a 

weighted sum of various nutrition scores, the problem reduces to forming a confidence interval for 

the ratio of two (asymptotically) normal random variables. The latter is an old problem, with a 

substantial literature. However, our simulation results suggest that existing methods often either 

give inaccurate coverage probabilities or have a positive probability to produce confidence 

intervals with infinite length. Motivated by such a problem, we develop a new methodology which 

we call the Direct Integral Method for Ratios (DIMER), which, unlike the other methods, is based 

directly on the distribution of the ratio. In simulations, we compare this method to many others. 

These simulations show that, generally, DIMER more closely achieves the nominal confidence 

level, and in those cases that the other methods achieve the nominal levels, DIMER has 

comparable confidence interval lengths. The methodology is then applied to a real data set, and 

with follow up simulations.
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1. Introduction

We use data on the relationship between diet and colorectal cancer from a subset of the 

NIH-AARP Study of Diet and Health (Reedy et al., 2008), which itself is a large cohort 

study with approximately 250,000 men and 200,000 women. The data subset that we have 

access to includes 1,075 males that developed colorectal cancer during the course of the 

study, along with 479 females who also developed colorectal cancer. In addition, the data set 
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includes 3,225 randomly selected men and 1,437 randomly selected women who did not 

develop colorectal cancer. Hence, there are 4,300 males and 1,916 females in the data set.

It is traditional in nutritional epidemiology to examine the risk of cancer from single foods 

or nutrients normalized by energy (caloric) intake, e.g., the percentage of calories coming 

from fat, the amount of whole grants per 1,000 calories, etc. However, nutritionists have 

increasingly turned to dietary indices, which account for the patterns of energy-adjusted 

intake for multiple foods and nutrients. There are many such indices, e.g., the Healthy 

Eating Index - 2005 (HEI-2005, see Guenther et al., 2008), the Alternative Healthy Eating 

Index, the Mediterranean Index, etc., and they have been shown to be related to many 

chronic diseases and cancers. We use here the HEI-2005, which is based on the intakes of 12 

interrelated dietary components, adjusted for energy intake. These intakes are then scored 

individually, and their sum is the HEI-2005, which is then used to predict disease. The 

Supplementary Material Table S.3 describes the components and how they are scored.

In our analysis of colorectal cancer, we fit a model where the scores are weighted and 

summed, but the weights are common for men and women, as in any dietary index. We 

show in Section 4.1 that, surprisingly, when comparing the relative risks for men and 

women based on this common index, the problem reduces to forming a confidence interval 

for the ratio of two (asymptotically) normal random variables. The latter is an old problem, 

with a substantial literature, one that we revisit based on our example.

One popular method for computing a confidence interval for the ratio of two location 

parameters is due to Fieller (Fieller, 1932; Fieller, 1954). Details of this method are 

described in the Supplementary Material Appendix S.1.

Consequently, other methods have been developed, most of which are based on the 

distribution of the ratio of the estimates of two location parameters (see for example recent 

papers by Beyene and Moineddin, 2005; Pham-Gia et al., 2006; Sherman et al., 2011). Most 

often, a normal approximation to the distribution is used, with subsequent intervals formed 

by Wald’s method. Hayya et al. (1975) showed that, under certain conditions, the 

distribution for the ratio of two estimators can be treated as a normal distribution with a 

second order Taylor expansion. This method is also defined in the Supplementary Material 

Appendix S.3. In addition, parametric and nonparametric bootstrap methods are also used. 

However, our empirical investigations suggest that confidence intervals constructed by these 

existing methods for the ratio often give inaccurate and sub-nominal coverage probabilities.

Motivated by such a problem, in this work we construct a new methodology, which we call 

the Direct Integral Method for Ratios (DIMER). This methodology is also based on the 

distribution of the ratio of the estimates of the two location parameters, a distribution that is 

Cauchy-like and has heavy tails. We show that DIMER can be computed easily by 

numerical integration. In our simulation studies, we show that DIMER closely achieves 

nominal coverage, unlike the Wald method and the method of Hayya et al. (1975). DIMER 

is also much faster computationally than bootstrap methods, which is important in large 

cohort studies, where the model is a nonlinear logistic regression based on samples of sizes 

in the tens of thousands or more.

Wang et al. Page 2

Biometrics. Author manuscript; available in PMC 2015 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Section 2 we describe the methodology, while Section 3 compares various methods via 

simulation studies. Section 4 describes the analysis of the NIH-AARP Study. Simulations 

based on the actual data reinforce the conclusions of the simulations in Section 3 and shed 

more light on the data analysis. Technical details, proofs, definitions and additional 

simulations are given in the Supplementary Material.

2. Methodology

2.1 Basic Definitions

Consider two random variables T1 and T2 which have density functions f1{(t1 − μ1)/υ1} and 

f2{(t2 − μ2)/υ2}, respectively, with means μ1 and μ2 and standard deviations υ1 and υ2. In 

other words, f1(x) and f2(x) are the density functions of the standardized versions of T1 and 

T2, respectively. Let F1(·) and F2(·) denote the corresponding distribution functions. We are 

interested in making inference for the ratio μ1/μ2. We will outline a series of cases where it 

is possible to compute easily the cumulative distribution function of r̂ = T1/T2. All proofs are 

given in the Supplementary Material Section S.2.

2.2 Independent Case

Suppose that T1 and T2 are independent.

Lemma 1—Define

Then the cumulative distribution function of r̂ = T1/T2 is given by

a quantity that is easily computed by Gauss-Hermite quadrature.

In Lemma 1 x denotes a value of r̂ and z denotes a value of T2, and similarly in Sections 

2.3-2.4.

If the parameters υ1 and υ2 are unknown, we can apply Lemma 1 using their estimated 

values. However, we have found that a more numerically efficient approximation can be 

developed in the case of normally distributed T1 and T2. We present this result in the 

following setting. Suppose the estimated variances are  and  which are independent of 

each other, and independent of T1 and T2, and have degrees of freedom d1 and d2, 

respectively. Thus, both (T1 − μ1)/υ1̂ and (T2 − μ2)/υ̂
2 follow the t-distribution with d1 and 

d2 degrees of freedom, respectively. In addition, assume that d = min(d1, d2) increases to 

infinity, which is implied when the sample sizes increase to infinity. Suppose that 

 and . Then we have the following lemma.
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Lemma 2—With an error of order Op(d−1/2), g(z∣x, μ1, μ2, , ) defined in Lemma 1 can 

be approximated by

where ft,d(·) and Ft,d(·) are the t-density with d degrees of freedom and the corresponding 

cumulative distribution function, respectively.

2.3 Dependent Case of Two Normally Distributed Variables with Known Covariance Matrix

Suppose now that (T1, T2) are jointly normally distributed with means (μ1, μ2), variances 

( , ), covariance υ12 and suppose that ( , , υ12) are known. Let ϕ(·) and Φ(·) denote 

the standard normal density and distribution function.

Lemma 3—Define g(z∣x, μ1, μ2, , , υ12) as follows. If z ≤ −μ2/υ2, then

If z > −μ2/υ2, then

Then the distribution function of r̂ is

which again can be computed by Gauss-Hermite quadrature.

Of course, when υ12 = 0, Lemma 3 is a special case of Lemma 1.

2.4 Dependent Case of Two Normally Distributed Variables with Estimated Covariance 
Matrix

Here we discuss the cumulative distribution of the ratio r̂ = T1/T2 when T1 and T2 are jointly 

normally distributed with jointly estimated variance and covariance which have the same 

number of degrees of freedom d, and these estimates are independent of T1 and T2. These 

are the same assumptions noted in Fieller (1954). Define the estimates of the variances and 

covariance of T1 and T2 as ,  and υ̂
12. Let . For fixed η, write W = T1 − ηT2, 

Then W and T2 are independent. In addition, if ,  and υ̂
12 are computed from the sample 

covariance matrix of normal random variables from a sample of size d + 1, then we also 

have that T1 − ηT2 and T2 are independent of their estimated variances 

and υ2̂, which are independent of each other and also have d degrees of freedom.
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We use the following algorithm, based on the approximation used in Section 2.2. Under our 

assumptions, the variables  and Z2 = 

(T2 − μ2)/υ2̂ are independent and both have t-distributions with d degrees of freedom. As in 

Lemma 2, we then make the approximation that the density of (T1, T2), having fixed the 

estimated covariance matrix, is approximately

If z ≤ −μ2/υ2̂, define

while if z > −μ2/υ2̂, define

Then, using the same device as in Lemma 2, we have that

(1)

In practice, η is unknown, so we use  to estimate it.

2.5 Algorithm for Computing the Confidence Interval of Ratios

In Sections 2.2-2.4, we express the distribution function of r̂ as F(x; r) = pr(r̂ ≤ x; r = μ1/μ2) 

when μ2 ≠ 0. The ratio μ̂
1/μ̂

2 is an estimate of r = μ1/μ2, so that we can view F(x; μ̂
1/μ̂

2) as an 

estimate of the population distribution function F(x; r). Efron (1981) and Benton and 

Krishnamoorthy (2002) pointed out that if we generate values r̂i, i = 1,…, m, from F(x; 

μ̂
1/μ̂

2), we can make inference about r using the distribution of the generated r̂i’s.

The main difference between our approach and that of Benton and Krishnamoorthy is that 

instead of generating a larger number of r̂i’s and then obtaining its percentiles, we compute 

the percentile of r̂i directly. Consequently, our method is much faster computationally. 

Specifically, our simulation results indicate that DIMER usually needs less than 30 iteration 

steps to obtain the quantile of a distribution, but in Benton and Krishnamoorthy (2002), they 

used m = 100, 000 r̂i’s to get the quantiles.

Define the α/2 quantile for F(x; μ̂
1/μ̂

2) as r̂α/2∣μ̂1/μ̂2. Then an approximate 100(1 − α)% 

confidence interval for r is (r̂α/2|μ̂1/μ̂2, r̂1−α/2| μ̂1/μ̂2). Here we give the steps of our iterative, 

bisection-based algorithm to obtain the quantiles.
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• Step 1. Give two initial values of r̂α/2∣μ̂1/μ̂2 as r̂α1 < 0 < r̂α2 and both have 

sufficiently large absolute values to make sure that r̂α/2∣μ̂1/μ̂2 is inside the interval 

(r̂α1, r̂α2). How we did this is described in the Supplementary Material Appendix S.

4. Our method, being based on bisection, is not sensitive to these starting values.

• Step 2. Apply the Gauss-Hermit quadrature to the cumulative distribution function 

of r̂ to obtain cα/2 = pr{r̂ ≤ (r̂α1 + r̂α2)/2}. If cα/2 < α/2, let r̂α1 = (r̂α1 + r̂α2)/2; if 

cα/2 > α/2, let r̂α2 = (r̂α1 + r̂α2)/2; if cα/2 = α/2, stop the iteration and let r̂α/2∣μ̂1/μ̂2 = 

(r̂α1 + r̂α2)/2.

• Step 3. Repeat Step 2 until cα/2 is close to α/2 and/or the difference |r̂α2 − r̂α1| is 

negligible. Then we have r̂α/2∣μ̂1/μ̂2 = (r̂α1 + r̂α2)/2, the lower limit of interval.

• Step 4. Repeat Steps 1–3 to obtain r̂1−α/2∣μ̂1/μ̂2, the upper limit of the interval.

3. Simulations

3.1 Overview

We performed simulations on two simple linear regression models. The first (Section 3.4) is 

to illustrate an application of the formulas in Section 2.2 where the two variables are 

independent. The second (in Supplementary Material Appendix Section S.6) is an example 

to demonstrate the performance of our method developed in Section 2.4 when the two 

variables are dependent. In both simulations, some other possible methods are outlined and 

compared with DIMER. Since the dependent case is developed with the normality 

assumption, it is important to evaluate how sensitive DIMER is to the violation of this 

assumption. Therefore, we also considered such a case in the second part of our simulations.

3.2 Comments Upon and Applications of Fieller’s Intervals

Fieller’s interval, defined in Supplementary Material Section S.1, is sometimes of infinite 

length, being either the entire real line or the union of two disconnected infinite length 

intervals, e.g., when the denominator of the ratio is not significantly different from zero.

Fieller’s intervals have been used in a variety of contexts. Here are three cases, the first two 

of which are illustrated in our simulations. The simulation of the first case appears here, 

while the second in the Supplementary Material, Section S.6.

• In a slope ratio assay (Finney, 1978; Hubert, 1984; Redmond, 2005c), data are fit to 

a standard and treatment, observing YS = αS + XSβS + εS for the standard, while the 

treatment is fit to the model YT = αT + XTβT + εT. The relative potency ρ is a 

function of βT/βS, where the estimates of βT and βS are independent. In a common 

setting, it is assumed that αS = αT but the doses XS = XT = X, and by centering X the 

described model holds with different intercepts. This is an example of two 

independent slope estimates.

• In a radioimmunoassay (Finney, 1978; Redmond, 2005b) with dose denoted by X 

and response Y, if one is in the linear part of the calibration cure a reasonable model 

is Y = α + Xβ + ε. The logarithm of ID50, the dose required for 50% of binding 

inhibition, is given by log(ID50) = α/β. The parameter estimates (α̂, β̂) are generally 
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correlated, and this is an example of estimating the ratio of the intercept to the 

slope when the parameter estimates are correlated.

• In a parallel line assay (Finney, 1978; Redmond, 2005a), a standard is fit to the 

linear model YS = αS + XSβ + εS while the treatment is fit to the model YT = αT + 

XTβ + εT : the slope is the same in both, hence parallel line. The log-relative 

potency in this assay is log(ρ) = (αT − αS)/β. In the homoscedastic case, unless XS = 

XT, the estimates of the numerator and denominator are not independent.

In radioimmunoassays, it is often the case that the variance of the responses is proportional 

to a power θ of the mean, but with 1 < θ < 2. Generalized least squares can then be used to 

estimate θ (Davidian, et al., 1988), but once the estimates in these examples are obtained, we 

still have a problem of forming a confidence interval for a ratio of two parameters.

3.3 Comments on Sample Sizes and Parameter Choices

Fieller intervals for a ratio θ1/θ2 are of infinite length if the null hypothesis H0 : θ2 = 0 

cannot be rejected. If the power for rejecting this hypothesis is low, Fieller intervals will 

have terrible properties. In simulations not reported here, the behavior of the alternative 

methods is also very poor. If the power for rejecting the hypothesis is essentially 100%, then 

all the methods will be essentially the same, with minor fluctuations depending on the 

sample size. The interesting cases lie on the boundary between low and perfect power, e.g., 

80%-90% power with Type I error 0.05. Our simulations include settings with low power, 

perfect power and in between.

In our simulations, which are based on linear regression with error standard deviation υε, we 

have set the covariates to be Normal(0, 1), and we set υε = 1, so that the standard error of the 

slope is roughly n−1/2υε/sx, where sx is the sample standard deviation of the covariates. On 

average, , so the standard error of the slope estimate ≈ n−1/2. Consequently, the 

sample sizes we have chosen, n = 18, 25 and 50, result in reasonable standard errors that 

illustrate a range of powers for the test that the slope = 0.0. In Table 2, had we changed υε = 

2, 3 and 4, the sample sizes needed to get roughly the same percentage of infinite length 

Fieller intervals are roughly 60, 130 and 225, respectively. In the Supplementary Material, 

Table S.4, we show what happens to Table 1 when we set (n, υε) = (55, 2) and (115, 3), 

showing that roughly the same results apply in this setting.

3.4 Linear Model When the Two Estimates are Independent

3.4.1 Setup—Consider the 2-group linear regression model

where (Y1i, X1i) and (Y2j, X2j) are the same outcomes and predictors from different 

populations. See Section 3.2 for an example. Also ε1i and ε2j are independently normally 

distributed with mean zero and variances  and , respectively. Our interest is in the ratio 

of the two slopes β21/β11.
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The model can be rewritten as follows in order to use a simple expression for the ratio:

(2)

Then the ratio of the slopes now is β21 and ω is the slope for the first group.

Our interest is to construct a confidence interval for β21. Let (β̂
21, ω̂) denote the maximum 

likelihood estimate (mle) of (β21, ω), and define λ = β21ω and its estimate λ̂ = β̂
21ω̂. Both (λ̂ 

− λ)/υ̂
λ and (ω̂ − ω)/υ̂

ω follow independent t-distributions with degrees of freedom n2 − 2 

and n1 − 2, respectively, where υ̂
λ and υ̂

ω are corresponding estimated standard deviations.

The estimated cumulative distribution function of β̂
21 is obtained as in Section 2.2. We can 

then apply the DIMER algorithm in Section 2.5 to obtain confidence intervals. To compare 

with other methods, in Section 3.4.2 we outline an application of Fieller’s interval. In 

addition, we apply the Wald interval by inverting the Fisher score matrix, Hayya’s method, 

the nonparametric bootstrap, the parametric bootstrap, and the likelihood ratio test; see the 

details in the Supplementary Material, Appendices S.1, S.3 and S.5.

3.4.2 Comparison with the Fieller’s Interval—To form a confidence interval for β21, 

one common method in practice is Fieller’s interval. However, in this linear regression 

setting, it cannot be applied directly since  and  are obtained independently. In this case, 

by the Welch-Satterthwaite equation (Satterthwaite, 1946; Welch, 1947), the degrees of 

freedom of ( ) are approximately given by 

 We use β̂
21 instead of β21 in the 

expression to obtain the estimated degrees of freedom 

. Then we have 

, b = −2ω̂λ̂ and  used in the Supplementary Material. 

Here ρ = 0 since ω̂ and λ̂ are independent.

3.4.3 Simulation Results—Our simulations for model (2) compare the seven methods 

mentioned in Section 3.4.1. For simplicity, in all settings, we first fixed , and 

without loss of generality, let the intercepts β10 and β20 be 0. Supplementary Material Table 

S.4 gives some additional results when  and 3. We generated X1i and X2j 

independently from the standard normal distribution.

We considered two parameter configurations: (β10, β20, β21, ω) = (0, 0, 1, 1), (0, 0, 1, 0.75). 

For each parameter setting, we report simulation results for (n1, n2) = (18, 18), (25, 25), (50, 

50) with 2000 runs. In our experience in linear regression cases, and with these effect sizes, 

sample sizes higher than that typically lead to good numerical performances for all methods. 

Following Efron and Tibshirani (1994, p. 52), we used B = 400 bootstrap replications for all 

the bootstrap results reported in this article.
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The results for the first parameter configuration (β10, β20, β21, ω) = (0, 0, 1, 1) are given in 

Table 1 while Table 2 presents the results for setting (β10, β20, β21, ω) = (0, 0, 1, 0.75). QQ 

plots (not shown here) comparing the quantiles of β̂
21 with the quantiles of the standard 

normal distribution in the two parameter configurations with n1 = n2 = 18 clearly show that 

for small to moderate sample sizes, normal approximations are not appropriate.

Table 2 shows that when n1 = n2 = 18 the empirical mean of β̂
21 is 2.85 when the true value 

is 1.00. The reason for this difference is that β̂
21 follows a Cauchy like distribution, and one 

of characteristics for this distribution is that it has severely heavy tails. For example, the 

maximum of the absolute values of β̂
21 reached 3, 138 over the 2,000 runs in this case. 

Therefore, some severe outliers dramatically affected the empirical mean. In sharp contrast, 

the empirical median of β̂
21 is 1.00.

Table 2 also displays the percentage of times the Fieller and likelihood ratio confidence 

intervals have infinite length.

The inverse Fisher information matrix algorithm has the lowest coverage probabilities. 

Hayya’s method and the likelihood ratio test also have sub-nominal coverage probabilities 

when the sample sizes are small. Moreover, the latter has a positive probability to get 

infinite length. The performance of the two bootstrap methods is acceptable when the 

sample sizes are relatively large. When the sample sizes are small to moderate, the coverage 

rate of the bootstrap methods for the 90% confidence intervals are higher than 90%, while 

the coverage rate of the 99% confidence intervals is lower than 99%.

Fieller’s interval has good performance overall in coverage. Here we focus on cases that the 

sample sizes are small and moderate (n1 = n2 = 18 and n1 = n2 = 25), where Fieller’s interval 

can be the real line or otherwise of infinite length. The inverse Fisher information method 

produced the shortest confidence interval lengths, not surprising, since its coverage rates are 

below the nominal values. Hayya’s method remains stable but has a low coverage when the 

sample sizes are small. Compared with the two bootstrap methods, our method obviously 

has markedly shorter lengths in the 90% and 95% confidence intervals when the sample 

sizes are small and moderate, especially when (n1, n2) = (18, 18). When the sample sizes are 

small, DIMER and Fieller’s interval have similar median and interquartile ranges of lengths, 

but our method is much shorter in terms of mean and 90th percentile of length.

4. Empirical Example and Further Simulations

4.1 Method and Data Analysis

The HEI-2005 and the NIH-AARP data available to us were described in Section 1. The 

sample sizes were 4,300 males and 1,916 females. Let H (x) = exp(x)/{1 + exp(x)} be the 

logistic distribution function. Let ℓ = 1, 2 denote men and women, respectively. Let Yiℓ 

denote the binary outcome of colorectal cancer for person i = 1, …, nℓ in sample ℓ and let 

Xijℓ for j = 1, …, J = 12 denote the HEI-2005 score for the jth dietary component. The 

traditional HEI-2005 analysis then posits a model 

, in other words, the HEI-scores are 
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equally weighted. Notice here that the same predictor, , is to be used both for men 

and for women. In our case, we allow for the possibility that the predictor is the same in 

both populations, but the scores are weighted to be based on the data, so that our model is

(3)

where the weights (ω1, …, ωJ) are estimated through the data. The model as such is not 

identified, but if we make the restriction that β1 = −1, then it is identified: the negative value 

is because higher HEI-2005 scores, i.e., better diets, lead to lower rates of colon cancer. 

Thus, with β1 = −1, (3) becomes

If we write , then we see that if the relative risk in men for changing Tiℓ is 

R, the same change in women has a relative risk R−β2. Hence we wish to form a confidence 

interval for β2. We fit model (3) by maximum likelihood, and the asymptotic covariance 

matrix Σ of (β2, ω1, …, ωJ)T was estimated using the Fisher information matrix.

To see how this relates to the Fieller problem, let ω = (ω1, …, ωJ)T, λ = β2ω, and e be the J × 

1 vector of ones. From Σ and the delta method, the asymptotic covariance matrix for (ω̂, λ̂) 

can be constructed, and the covariance matrix of (eT λ, eT ω) is easily computed. Also, β2 = 

eT λ/eT ω and β̂
2 = eT λ̂/eT ω̂. Thus, we see that β̂

2 is the ratio of two asymptotically normal 

random variables, and hence DIMER, Fieller’s method, etc. can be applied.

In the NIH-AARP study, the rate of colorectal cancer for men is 0.73%, while it is 0.48% for 

women. In the data analysis, we found that β̂
2 = −0.747, so that if relative risk of 0.60 for 

men who improve their diet by a fixed amount, it is 0.68 for women who improve their diet 

the same amount. Thus, for colorectal cancer, the indication is that men are more 

susceptible, a well-known fact, and that they will have greater benefit for the same change in 

diet.

In the top panel of Table 3, we present the confidence intervals for the various methods. We 

see there that the confidence intervals for the inverse Fisher score method and Hayya’s 

method are noticeably shorter than the others, the nonparametric bootstrap is quite a bit 

longer, and the parametric bootstrap, Fieller’s interval, DIMER, and the likelihood ratio test 

are intermediate. The nonparametric bootstrap does not suggest differences in risk between 

men and women even at 90% confidence. With the exception of the nonparametric 

bootstrap, whose intervals we believe are much too long, see Section 4.2, all indications are 

that the risk for men and women for the same change in diet is statistically significant, with 

a p-value of < 0.01 for DIMER.
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In the next subsection, we study whether the different lengths of the confidence intervals are 

reproducible in simulations, and through these simulations, which methods attained nominal 

coverage.

4.2 Simulation

The sample sizes were the same as in the data set, namely 4,300 males and 1,916 females. 

We used a bootstrap resample of the HEI-2005 scores in the NIH-AARP data as the 

covariates, separately for men and women, and generated 2,000 data sets with binary 

outcome data according to the fit to the model (3), the parameter estimates of which are 

given in the caption to Table 3. The mean confidence intervals across the 2,000 simulations 

are given in the bottom panel of Table 3. The result reflects the same phenomenon that was 

observed in the actual data set, namely the inverse Fisher score method and Hayya’s method 

are noticeably shorter than the others, the nonparametric bootstrap is quite a bit longer, and 

the parametric bootstrap, DIMER, and the likelihood ratio test are intermediate. As seen in 

the previous simulations, the mean lengths of Fieller’s interval in this case are infinite for 

90%, 95% and 99% intervals.

In Table 4, we show the confidence interval coverage performance of the various methods. 

The inverse Fisher score method and Hayya’s method both have short confidence intervals 

generally, but also much less than nominal coverage probability. The likelihood ratio test 

has longer intervals than the inverse Fisher score and Hayya’s method, but it is still under 

coverage. The nonparametric bootstrap had by far the longest intervals, and here we see 

great over coverage. The parametric bootstrap, Fieller’s method and DIMER have close to 

nominal coverage. For 95% confidence intervals, Fieller’s method was of infinite length for 

almost 4% of the simulations. In this simulation, the parametric bootstrap performed 

somewhat better than DIMER, with its confidence intervals being somewhat shorter, 

although computationally it is, on average, 35 times slower to compute for data sets of this 

size.

For comparison purposes, the average computational time in these simulations for the Fisher 

Score, Hayya, nonparametric bootstrap, parametric bootstrap, Fieller’s interval, DIMER, and 

likelihood ratio test were 0.07, 0.15, 75.94, 55.25, 0.15, 1.02, and 54.29 seconds, 

respectively. To do a more severe time test, we also generated cohort data similar in size to 

the NIH-AARP Study data (293, 615 males and 198, 245 females). For one such data set, 

the computational time for the six former methods (without the likelihood ratio test) was 

9.80, 19.25, 8709.00, 3223.44, 19.25, and 20.34 seconds, respectively, indicating that the 

time of the parametric bootstrap was 159 times larger than that of DIMER.

5. Discussion

We have developed DIMER for constructing confidence intervals for the ratio of two 

location parameters. The method, based on analytical results and further approximations to 

account for nuisance parameters, is computationally fast. Our simulations indicated that 

compared with other methods in the literature, DIMER achieves coverage probabilities close 

to the nominal levels in all the different scenarios under consideration while providing 

competitive confidence interval lengths.
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While we have no definitive explanation, it is a reasonable conjecture that an important 

reason why the DIMER method works well is that the distribution of the estimated ratio is 

heavy tailed. Our DIMER method appeared to be less affected by this problem due to its 

direct probability computation, although it is not unaffected, see below.

However, there are obvious cases that any of the intervals, including DIMER, may have 

poor performance. In particular, in the cases that Fieller intervals are of infinite length, we 

found in our simulations that DIMER intervals also increase in length, sometimes 

dramatically, especially when the p-value for testing the denominator being 0 or not is large. 

We found the same thing to happen to the other methods we have discussed: the results were 

poor, although in some cases better than DIMER. In the case of normality, only Fieller’s 

interval is guaranteed to achieve its nominal coverage probability, at the potential cost of 

intervals of infinite length.

All the methods we have considered, other than Fieller’s interval, are first-order correct, i.e., 

their actual coverage probability is the nominal one +O(n−1/2). There is a literature on 

second order correctness, i.e., nominal level +O(n−1), such as Laplace approximations, 

second order bootstrap, etc. It would be interesting to see how and whether these methods 

can be applied to our problem of finding a confidence interval for the ratio of two 

parameters. The properties of such methods such as confidence interval lengths and actual 

coverage in the settings we have considered are not at all clear.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3

Top Panel: confidence intervals for β2 with the actual case-control data set of Section 4.1. The estimated 

values for parameter are (β̂
2, α̂

1, α2̂) = (−0.747,−1.115,−1.024), ω̂ = (0.030, 0.018, 0.083, 0.033, −0.001, 

0.081, 0.094, −0.043, 0.068, −0.020, 0.041, 0.098)T. Bottom panel: average confidence intervals for β2 in the 

simulation study of Section 4.2 for a logistic regression model with 2000 simulated case control data sets.

Data Analysis

Method 90% CI 95% CI 99% CI

IF (−1.17, −0.33) (−1.25, −0.25) (−1.40, −0.09)

HM (−1.18, −0.35) (−1.26, −0.27) (−1.41, −0.11)

NB (−1.67, 0.18) (−1.85, 0.35) (−2.20, 0.70)

PB (−1.26, −0.23) (−1.36, −0.13) (−1.56, 0.06)

FI (−1.26, −0.33) (−1.41, −0.24) (−1.84, −0.02)

DIMER (−1.26, −0.33) (−1.41, −0.24) (−1.84, −0.02)

LR Test (−1.28, −0.30) (−1.41, −0.22) (−1.69, −0.05)

Simulation: Average Confidence Intervals

Method 90% CI 95% CI 99% CI

IF (−1.17, −0.37) (−1.24, −0.29) (−1.39, −0.15)

HM (−1.18, −0.38) (−1.26, −0.31) (−1.40, −0.16)

NB (−1.46, −0.08) (−1.59, 0.06) (−1.85, 0.32)

PB (−1.26, −0.27) (−1.36, −0.18) (−1.55, 0.01)

FI ∞ ∞ ∞

DIMER (−1.28, −0.35) (−1.47, −0.22) (−2.52, 0.53)

LR Test (−1.28, −0.36) (−1.40, −0.29) (−1.67, −0.14)

Here the acronyms are IF–Inverse Fisher score method, HM–Hayya’s Method, NB–Nonparametric Bootstrap, PB–Parametric Bootstrap, FI–
Fieller’s Interval, DIMER–Direct Integral Method for Ratios and LR Test—Likelihood ratio test.
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