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Summary

Perfusion computed tomography (CTp) is an emerging functional imaging modality that uses 

physiological models to quantify characteristics pertaining to the passage of fluid through blood 

vessels. Perfusion characteristics provide physiological correlates for neovascularization induced 

by tumor angiogenesis. Thus CTp offers promise as a non-invasive quantitative functional 

imaging tool for cancer detection, prognostication, and treatment monitoring. In this paper, we 

develop a Bayesian probabilistic framework for simultaneous supervised classification of 

multivariate correlated objects using separable covariance. The classification approach is applied 

to discriminate between regions of liver that contain pathologically verified metastases from 

normal liver tissue using five perfusion characteristics. The hepatic regions tend to be highly 

correlated due to common vasculature. We demonstrate that simultaneous Bayesian classification 

yields dramatic improvements in performance in the presence of strong correlation among intra-

subject units, yet remains competitive with classical methods in the presence of weak or no 

correlation.
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1. Introduction

Perfusion computed tomography (CTp) is an emerging functional imaging technology that 

enables non-invasive observation and quantification of characteristics pertaining to the 

passage of fluid through blood vessels. Physiological models have been developed to 

quantify a variety of perfusion characteristics (such as relative blood volume, and capillary 

permeability) that derive from measuring temporal changes in contrast enhancement 

acquired under continuous CT scanning during intravenous administration of contrast 
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medium (Lee, 2002). Consequently, CTp provides a quantitative basis for distinguishing 

between biologically distinct tissue types through evaluation of vasculature heterogeneity. 

The functional imaging technology has been utilized in a number of organs and tumors, 

including prostate, colorectal, head and neck, lung, liver, and normal tissue.

Tissue perfusion plays a critical role in oncology. Cancerous cell growth and migration 

requires the proliferation of networks of new blood vessels through the process of 

angiogenesis, triggering modifications to the vasculature of surrounding host tissue. 

Measurements from CTp provide physiological correlates for neovascularization induced by 

tumor angiogenesis (Miles, 2002). The potential remains for statisticians to develop and 

apply statistical models that enable utilization of biomarkers acquired from CTp for the 

purpose of discriminating malignant from healthy tissue to assist in diagnosis, treatment 

monitoring, and disease prognostication.

Several frequentist classification methods, including linear discriminant analysis and 

quadratic discriminant analysis, are used widely in practice (Ripley, 1996). A Bayesian 

implementation of quadratic discriminant analysis was first discussed by Geisser (1964), and 

thereafter extended to regularized classification when estimation of covariance is ill-posed 

due to limited sample size, see Srivastava et al. (2007) and references therein. Recently, a 

few classification methods have been proposed to handle correlated data. Brown et al. 

(2001) initially proposed a Bayesian discrimination approach for longitudinal data. Cruz-

Mesía et al. (2007) generalize it to accommodate semiparametric hierarchical models using a 

mixture prior for the distribution of inter-cohort random effects. Marshall et al. (2009) 

further extended the approach to handle missing data. Classification approaches (including 

those aforementioned) predominantly evaluate possible class assignments for each 

classification target independently of neighboring targets, with Zhu et al. (2011) as a notable 

exception. For most biomedical applications this assumption is limiting. For example, 

perfusion observables acquired from functional CT tend to be highly interdependent across 

multiple liver regions within the same patient, due to shared features of the common hepatic 

vascular systems.

In this paper, we develop a Bayesian probabilistic framework for simultaneous supervised 

classification of multivariate correlated objects using separable covariance. The proposed 

approach broadens existing classification methods to accommodate prediction of 

interdependent collections of correlated objects, nested within multiple intra-subject units. 

The proposed classification approach is applied to discriminate between regions of liver that 

contain pathologically verified metastases from normal liver tissue using five CT perfusion 

characteristics. Our investigation reveals that simultaneous classification may yield dramatic 

gains in predictive accuracy when compared to conventional approaches to discriminant 

analysis, which treat the targeted units as independent. Additionally, the Bayesian classifier 

offers seamless incorporation of differential misclassification loss. A feature that is 

necessary in oncologic diagnostic radiology in general, and requisite to detection of 

metastatic disease. However, the general method offers the potential to improve 

classification performance in settings wherein multiple classification targets are evaluated 

within each subject, and thus appropriate for any biomedical application that utilizes 
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biomarkers to identify features intrinsic to a particular disease at multiple interdependent 

sites within an organ.

The ideas in this paper are presented in the following sequence. In Section 2 we discuss the 

motivating CTp data. In Section 3 we present the Bayesian model. The resultant predictive 

density and simultaneous classification method is presented in Section 4. In Section 5 we 

use the method to discriminate between hepatic metastases from neuroendocrine tumors and 

normal liver tissue using the actual CTp data. Simulation and discussion of the method’s 

properties is presented in Section 6.

2. CT Perfusion Data

The study focused on patients with neuroendocrine liver metastases who underwent CT 

perfusion for a target lesion in the liver with the malignancy determined clinically or 

radiologically. The study collected data between April 2007 and September 2009 on 16 

patients, 6 men and 10 women, with median age 54 and 59, respectively. More detailed 

description can be found in Ng et al. (2013). CT perfusion images (Figure 1 left) were 

obtained from a dual phase protocol spanning a duration of 590 seconds (s). Using a 

deconvolution analysis with the distributed parameter physiological model (Miles et al., 

2000, Lee, 2002, and Stewart et al., 2008), five perfusion characteristics were acquired: 

blood flow (BF), blood volume (BV), mean transit time (MTT), permeability-surface area 

product (PS), and hepatic arterial fraction (HAF). Figure 1 (right) illustrates the five CTp 

characteristics obtained for a single patient at four acquisition durations. The resultant CTp 

datasets consisted of fifty-nine 8-slice cine images temporally sampled at 0.5s from the 

phase 1 acquisition, together with eight anatomically matched 8-slice images from the phase 

2 acquisition. Our analysis used the average BF, BV, MTT, PS and HAF values obtained at 

around acquisition time 590s, a duration that was shown to yield stable acquisition in the 

liver (Ng et al., 2013). The values of the CTp characteristics were averaged over all 8 slices. 

As a result, a 5 × 1 vector is observed for each ROI. There were 25 separate tumor ROIs: 9 

patients had two ROIs in the right and left lobes respectively, and 7 patients had one each. 

There were 30 separate normal liver tissue ROIs: twelve patients had one ROI each in the 

right and left lobes; 3 patients had two ROIs in the right lobe (which were averaged); and 

one patient did not have delineable normal tissue. The latter resulted in 27 lobe specific 

normal liver ROIs.

Scatterplots of the log scaled CTp measurements are provided in Figure 2 (top). In 

diagnostic radiology, CTp characteristics are often considered in isolation using univariate 

models that neglect to exploit the fact that independencies among the five perfusion features 

vary substantially in magnitude and direction between vasculatures surrounding malignant 

and healthy tissues. For example, BF is shown to increase with PS in the tumor tissues but 

decrease in normal liver. Table 1 (a) summarizes Pearson sample correlations among CTp 

characteristics from the same ROI for each tissue type. Correlations for normal liver (tumor) 

are provided in the lower (upper) triangle matrix. Correlations between BF and PS, BF and 

HAF, BV and PS, BV and HAF, present different signs for tumor and normal ROIs, 

reflecting systematic modification of the underlying hepatic vasculature surrounding tumor. 
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Moreover, the strength of intra-region correlation differs among pairs of CTp measurements 

across tissue types.

Scatterplots for each of five characteristics from neighboring regions of the same tissue type 

are shown in Figure 2 (bottom), where the x-axis corresponds to ROIs in the left lobe and 

the y-axis for the right lobe. Notice that only patients with two normal ROIs or two tumor 

ROIs are shown. Figure 2 (bottom) suggests that neighboring ROIs of the same tissue type 

are highly correlated, which is expected because of common vasculature. Moreover, 

neighboring ROIs from the same patient but of different tissue types exhibit spread, which 

suggests no correlation across classes. Sample correlations between neighboring regions of 

common tissue type were calculated by computing deviations from the mean within each 

tissue group, then computing Pearson correlation to pairs of measurements obtained in 

neighboring intra-patient regions, as provided in Table 1 (b). Note that the sample 

correlation is calculated with pooled measurements from both tissue types because the inter-

region correlation behaves similarly for tumor and normal tissues. Four characteristics 

presented high intra-patient correlations (> 0.7). By way of contrast, PS exhibited relatively 

weak interdependence (< 0.2) across ROI. However, the scatterplot in Figure 2 (bottom) 

illustrates that strong linear dependence is evident with the exception of two outliers 

contributed by patients 3 and 6. In the absence of the outliers, correlation for PS increases to 

0.71.

Recall that our objective is to discriminate malignant lesions from normal ROIs using the 

CTp characteristics. Classification approaches predominantly evaluate possible class 

assignments for each classification target (in our case each ROI) independently of 

neighboring targets. However, as we have shown above, the CTp characteristics from 

neighboring ROIs within the same patient are highly correlated due to common vasculature. 

Next, we will develop a Bayesian probabilistic framework for simultaneous supervised 

classification to incorporate the interdependence among ROIs.

3. Multivariate Model

Let N denote the total number of patients in the study. For i = 1, …, N, let ni denote the total 

number of ROIs and  the number of ROIs of type z contributed by the ith patient. Let 

represent the m × 1 observable vector corresponding to the jth ROI of type z, and 

 denote the CT characteristics (observables) from ROIs of type z for 

the ith patient. We use z = 0 to denote normal ROIs and z = 1 for tumor ROIs in the CTp 

binary setting. The general case can be extended without loss of generality to accommodate 

multiple class labels z ∈ {0, 1, …, k − 1}. For patient i, we assume that

(1)

where  denotes a vector of ones of length , μz a m × 1 vector of mean parameters, 

 and Σz: m × m positive definite matrices, and ⊗ the Kronecker product. We 

further assume that measurements from different class are independent. Assuming 

independence across class facilitates sensitivity to inter-class heterogeneities in mean and 
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covariance, which for CTp provide the vascular morphologic signatures that differentiate 

tissue types.

Covariance matrix Σz pertains to observables within the same ROI, and  controls inter-

ROI correlation, thereby facilitating separable correlation structure. The Kronecker product 

of the covariance matrix is unidentifiable since  for any non-

zero value a. Thus, we restrict the first diagonal element of  to be 1. The assumption of 

separability reduces the degrees of freedom in the covariance from  to 

. Thus, separable covariance models are parsimonious. Yet, by 

imposing structure on , the model may accommodate various types of inter-region 

correlation. Below we consider several options for specifying , that are relevant to 

classification problems. Brown et al. (2001) considered a more flexible model by relaxing 

the structure of the parameters and only requiring that the hyper-parameter in the prior 

distribution has the Kronecker product structure. However, this model requires balance 

(fixed number of ROIs) which will be violated for the CTp data because the dimension of 

, varies in relation to the number of ROIs contributed by each patient.

3.1 Compound Symmetry

For multivariate data, intra-class compound symmetric correlation may be imposed through 

the Kronecker product by assuming

(2)

where  denotes the  identity matrix. The diagonal vector of  is , inducing 

common marginal covariance among observables from the same class and region. 

Correlations between any two units within the same subject are scaled by parameter ρz.

In our CTp example, (2) assumes that the extent of interdependence among CTp 

characteristics acquired in neighboring regions is equivalent for all regions of the same 

tissue type. Hereafter, when referring to compound symmetry we assume a common inter-

region correlation multiplier, ρz = ρ, thereby enhancing efficiency. This assumption was 

assessed through preliminary analysis of sample correlation and model criticism using 

deviance information criterion (DIC) (Spiegelhalter et al., 2002).

3.2 Spatial Dependence

For many biomedical imaging applications, the extent of correlation among measures of 

biological function may depend on their spatial proximity or relative location to a landmark 

within an organ, thereby violating the assumption of compound symmetry. Spatial-temporal 

processes are often assumed separable as the product of a spatial covariance and temporal 

covariance (Ma, 2003). In this section we extend the model to accommodate multivariate 

prediction of targets that exhibit spatial dependence.

Let djj′ denote the distance between two regions j and j′. Inter-class spatial correlation with 

separable covariance assumes
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(3)

where c(djj′; ρ) is the correlation function such that c(0; ρ) = 1 and ρ denotes the correlation 

parameter. We’ll abuse our notation slightly and allow the dimension and parameter space 

of ρ to vary by spatial model. Several correlation functions have been studied in the spatial 

literature (see e.g. Stein, 1999). In this article, we consider two commonly used models. 

Denoting the distance between two regions by d ∈ [0, ∞), the power family assumes that 

correlation between ROIs decays monotonically with increasing distance,

(4)

where the scale parameter ϕ controls the rate of decay. The well known exponential and 

Gaussian covariance functions follow as special cases of the power family with p = 1 and p 

= 2, respectively. The more flexible spherical correlation function is defined as

(5)

where ϕ has the interpretation as a scale parameter and controls the range of dependence. 

Two regions with distance exceeding ϕ are assumed independent.

Regardless of which correlation function used, the element in the jth column and j′th row of 

the inter-region correlation matrix (1) is defined as . Notice that the 

compound symmetric model is a special case where c(d) ≡ ρ for any d > 0. Heretofore, we 

have considered correlation functions that are isotropic, or homogenous as a function of 

distance. Notice that the model may be easily extended to accommodate anisotropic models 

using the correlation function c(sj − sj′; ρ) (Haskard et al., 2007), where sj and sj′ are spatial 

locations for region j and j′, respectively.

The choice of covariance should be informed by the application and data. However, 

conventional Bayesian model selection techniques, such as DIC, log-marginal pseudo-

likelihood(LMPL) (see Geisser and Eddy, 1979; Gelfand and Dey, 1994), and so forth can 

be used to augment the choice of  in the presence of the data. In the case study in liver 

perfusion presented in Section 5, we compare DIC among three choices of covariance. 

Before presenting the classification method, hereafter we provide expressions for the 

likelihood and marginal likelihood functions. Notice that the derivations presented in 

Sections 3 and 4 apply to a general  and thus pertain to any spatial correlation structure.

3.3 Likelihood and posterior distribution

The processes for conducting posterior inference and predictive classification are universal 

under the varied inter-region correlation structures. In this section, we describe the 
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likelihood and derive the posterior under the assumption of compound symmetry, where it is 

tractable.

Let  denote the set of observables with known classes, and θ = {μz, Σz, ρ} the collection of 

model parameters. Let the inverse, trace and determinant of a matrix be denoted by (·)−1, 

tr(·) and | · |, respectively. Under model (1), the likelihood function is

(6)

where  and etr{A} represents the exponential of the trace of the 

matrix A. Define ỹz, S̃z to be functions of unknown inter-region correlation parameter ρ, 

where  is the summation of the jth column of ,

(7)

(8)

The likelihood function is equivalently expressed as

(9)

The details of this derivation are provided in Section A.1 of the supplemental material.

We assume the widely used prior for the mean and covariance parameters μz and Σz

(10)

where Ωz is the m × m matrix scale hyperparameter of the inverse Wishart distribution, δ the 

shape hyperparameter, and h(δ, Ωz) is a normalization constant, such that

(11)

This prior is flat for μz and inverse Wishart distribution for Σz. The shape hyperparameter δ 

is fixed to be δ = m − 1 in order to provide maximum entropy. Specification of the scale 
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hyperparameter Ωz, which is class dependent, will be addressed in Section 4. The prior 

distribution for the correlation parameter ρ will be case specific.

The posterior distribution for our model parameter θ is derived as follows. Using the 

quadratic form of the likelihood function in (9), it is straightforward to show that the 

marginal likelihood of  conditional on ρ is

(12)

Notice that for the compound symmetric correlation, . For the spatial 

correlation structures, the value of  depends on the distance between regions and assumed 

spatial structure.

The posterior distribution for ρ, π(ρ| ), is proportional to the product of the marginal 

likelihood (12) and prior for ρ, that is, π(ρ| ) ∝ p( |ρ)π(ρ). Moreover, given the prior 

distribution (10), the posterior distribution of μz and Σz conditional on ρ is

(13)

which are Gaussian and inverse Wishart, respectively. Integrating over the posterior for ρ 

therefore yields the posterior distribution for μz and Ωz,

4. Predictive Density and Classification

The objective of this paper is to develop a probabilistic classification framework that 

leverages intra-patient, inter-region interdependence to facilitate simultaneous classification 

of multiple ROIs contributed by a new patient. Denote the observables provided by the new 

patient by YN+1 = [yN+1,1, …, yN+1,nN+1] and let zN+1 = (zN+1,1, …, zN+1,nN+1) denote the 

unknown class indicator for each ROI. Thus, the goal is to predict the class index vector 

zN+1. In this section, we describe the predictive density for the model presented in Section 3 

and corresponding method for classification.

4.1 Predictive Density

The conditional predictive density of the observed collection of random variables for the 

new patient conditional on a fixed value of the inter-ROI correlation parameter ρ is
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(14)

where  denotes the number of ROIs of type z for the new patient, and  is the 

weighted sample covariance (8) with summation upper bound replaced by N +1. Derivation 

of this result is provided in Section A.2 of the supplemental material.

We may conduct full Bayesian inference by specifying a prior distribution for ρ, π(ρ). The 

predictive density under full Bayesian implementation is

(15)

eluding analytical tractability. When ρ is unit dimensional, implementation of numerical 

approximation using Riemann Sum is possible to avoid sampling-based computation of the 

predictive density. This approximate, unconditional predictive density may be expressed as 

the following weighted sum

(16)

where ρ1, …, ρK is a sequence of equally spaced points in the domain of ρ.

Remark 1—When there is no correlation among intra-patient regions, the predictive 

density reduces to

(17)

where  is the sample covariance for regions of tissue type z.

Alternatively, one may circumvent this computation by adopting an empirical Bayesian 

(EB) approach that proceeds with inference using the conditional predictive density (14) 

with ρ fixed at its marginal maximum likelihood estimate (MMLE). The marginal likelihood 

(12) is maximized at

(18)

Derivation of this result is provided in Section A.3 of the supplemental material. Thus, the 

MMLE for ρ satisfies
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(19)

EB inference typically “underestimates” variability in θ, since posterior uncertainty in ρ̂ is 

ignored. However, our case and simulation studies yield comparable results with the full 

Bayesian approach.

4.2 Classification

When classifying nN+1 ROIs simultaneously, the total number of possible class 

configurations is 2nN+1. Let  = {d1, …, d2
nN+1} denote the set of all the possible class 

configurations. The posterior classification probability for a class configuration is

(20)

where Pr(zN+1 = dk) denotes the prior probability for class configuration dk. Generally, we 

use the binomial prior class probabilities Pr(zN+1 = dk) = pl(1 − p)nN+1−l, where l is the 

number of tumor ROIs given by dk. Hyperparameter p is fixed at the estimated rate of tumor 

incidence in the presence of the training data. The predictive density p(YN+1| , zN+1 = dk) is 

given by (16) for the full Bayesian inference and (14) for empirical Bayesian with the value 

of ρ fixed at (19).

We select as the simultaneous Bayesian classifier, the class configuration that minimizes the 

Bayesian risk, R(z), over z ∈ ,

(21)

where L(dk, z) is the loss function specifying the penalty attributed to decision z when the 

true class set is dk. Our application uses weighted 0–1 loss

(22)

where I{·} denotes the indicator function, and weight α characterizes the relative cost of 

false negative versus false positive errors. When α = 0.5, Lα(dk, z) corresponds to the total 

number of misclassifications, inducing equal cost. When α > 0.5, higher cost is assigned to 

false negative. The choice of α is always driven by the application. We present classification 

results with α = 0.2, 0.5, and 0.8 in the case study for conceptual illustration. However, in 

the context of diagnosing metastatic cancer, false negative classification would usually 

incite a higher penalty. Thus, the scenario with α = 0.8 is best suited to the motivating 

application.
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Remark 2(a)—While conventional Bayesian classification requires a prior probability for 

each class label, our simultaneous classification necessitates prior specification for each 

possible class configuration.

Remark 2(b)—For single region classification at equal cost (α = 0.5), the Bayesian 

classifier is also the maximum a posteriori (MAP) classifier. This is not necessarily true in 

our simultaneous classification. Consider the case with 2 regions and 4 possible class 

configurations {d1 = (0, 0), d2 = (0, 1), d3 = (1, 0), d4 = (1, 1)}, and posterior probability q1, 

…, q4, respectively. Assume that z = d3 is the MAP classifier. When q1 + q2 > q3 + q4, 

simple calculation yields R(z = d1) < R(z = d3), thereby d3 is not the Bayesian classifier.

5. Case Study

In this section we discuss application of the proposed simultaneous classification method to 

the CT perfusion dataset presented in Section 2. Specifically, we consider classification 

based on minimizing Bayesian risk (MBR) and maximizing a posteriori (MAP) probability. 

Three structures are implemented to accommodate the inter-region correlation: compound 

symmetric, exponential (power correlation with p = 1), and spherical. The centroid distance 

were extracted from the CTp images in order to model the spatial dependence. For all the 

three structures, the correlation parameter assumed a uniform prior over a reasonable range 

of values given the extent of observed distances between ROIs. Specifically, for compound 

symmetry we assumed a uniform prior with ρ ∈ [0, 1), while ρ ∈ (0, 12) was used for power 

spatial correlation, and ρ ∈ (0, 20) for spherical spatial correlation. The range of ρ was 

chosen such that inter-region correlation fully spanned the parameter domain [0, 1) for the 

domain of inter-ROI distances presented in the liver perfusion data. For the compound 

symmetric structure, the posterior mean of inter-correlation was 0.735, while for exponential 

and spherical, the correlations between regions with the average distance (50mm) were 

0.782 and 0.787, respectively. More results of the posterior inference are provided in Section 

B of the supplemental materials. Non-uniform priors for ρ were also considered, the results 

for which are provided in Section C of the supplemental materials. Generally, classification 

performance was robust to the choice of prior for ρ. Results are compared to linear 

discriminant analysis (LDA, implemented using R function lda provided in the package 

“MASS”), quadratic discriminant analysis (QDA, implemented using R function qda in 

“MASS”), and Bayesian quadratic discriminant analysis (BDA). Implementation of the 

BDA method follows Brown et al. (2001), with prior given in (10) and the scale 

hyperparameter Ωz fixed to maximize the marginal likelihood function, which yields Ωz = 

δSz, where Sz denotes the sample covariance of tissue type z and δ is the shape 

hyperparameter in (10). This value of Ωz is also used in the full Bayesian approach of the 

MBR method. For the empirical Bayesian approach, Ωz is estimated jointly with ρ, which is 

given in (18).

Three different values of the weight α were used to evaluate simultaneous Bayesian risk for 

the MBR method. Recall that larger value of weight α assigns higher penalty to false 

negative errors, thus preferring sensitivity over specificity. Therefore, the MBR classifier 

under α = 0.8 yields higher true positive and false positive rates when compared to α = 0.2. 

We also evaluated the extent to which performance was impacted by excluding CTp 
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characteristics, and found that it was not necessary to use all five. Rather, arguably the best 

trade-off was obtained using four (excluding BV). However, generally leveraging an 

additional perfusion characteristic improved classification performance up to four. In what 

follows, we present results based on all five characteristics. Section D of the supplemental 

materials presents additional results for various combinations of CTp characteristics.

The true positive rate (TPR) and the false positive rate (FPR) are used in this paper to 

summarize the classification results. The TPR is defined as the number of tumor ROIs 

classified as tumor divided by the total number of tumor ROIs, and the FPR is the number of 

normal ROIs classified as tumor divided by the total number of normal ROIs. The results are 

summarized in Table 2. We considered leave-one-patient-out cross-validation (LOOCV) 

using the following implementation. At each step, the observables from a single patient are 

omitted from the training set, while posterior inference is implemented using data from the 

remaining 15 patients. Thereafter, ROIs contributed by the omitted patient are classified 

using each method, and the results are compared with each region’s true status.

Results in Table 2 demonstrate that our simultaneous methods outperform the existing 

methods that fail to leverage correlation between ROIs. Moreover, the simultaneous 

methods with spatial dependence structure mostly outperform the compound symmetric 

structure with slightly lower FPR. The gain in specificity is primarily attributed to 

classification for one patient presenting only 2 ROIs, 1 tumor and 1 normal, with distance 

0.39cm. Inference using the compound symmetric structure, which yields an estimated inter-

region correlation of 0.76 regardless distance, designates both regions as tumor. By way of 

contrast, the spatially dependent classifiers weigh inter-region correlation in relation to ROI 

proximity which imparts additional sensitivity for discriminating between nearby regions. 

Specifically, both spatial models estimate that regions of a common tissue type at a distance 

of 0.39cm should exhibit correlation of approximately 0.85, which is much higher than the 

extent of interdependence evident for the ROIs in question. Therefore, through incorporation 

spatial dependence, the approach resulted in proper classification of these two regions, 

thereby improving performance overall.

Differences between the two spatial models were not evident. This is likely due to the fact 

that each patient contributes a relatively small number of ROIs. Increasing the weight α 

yields a corresponding increase in FPR and TPR. Among the three correlation structures we 

have considered, compound symmetry yielded the smallest DIC, with the spherical model 

the highest, and the exponential model slightly smaller than spherical. Generally, results for 

the empirical Bayesian approach are quite comparable with full Bayesian implementation. 

Note that the computation time for one patient is less than 1 second for the empirical 

Bayesian approach while about 84s for the full Bayesian approach when the predictive 

density (16) is approximated by 500 samples.

6. Simulation Study

Simulation was used to further investigate the performance of the proposed simultaneous 

classification methods. The first simulation uses resampled data from the actual CT 

perfusion dataset. For each replication, a subsample of 10 patients is selected randomly and 
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used for LOOCV classification. The average true positive rate (TPR), false positive rate 

(FPR), and misclassification rate (MCR) over 200 replicates are provided in Table 3. The 

proposed simultaneous classification methods outperform the conventional methods, 

yielding both higher sensitivity and specificity. The TPR increased as much as 17%, and the 

FPR and MCR dropped as much as 15% and 12%, respectively. Note that large values of α 

deliver higher sensitivity at the cost of diminished specificity for the minimizing Bayesian 

risk method.

Our second simulation augments the first, by investigating the impact of the difference 

between group means and the extent of correlation cross regions. For all the scenarios, data 

are randomly generated from model (1), with parameter values varying by scenario. We 

mimic the real CT perfusion data by fixing the covariance matrices for each group to be 

their posterior mean estimates. The mean for normal group is also fixed at its posterior mean 

μ̂
0 under the compound symmetric structure. The mean for tumor group are specified to 

reflect a Δ% shift from normal: μ̂
0(Δ + 1). Three values of Δ are considered: 0, 0.5, and 1. 

Higher values of Δ yield more separated classes. When Δ = 0, the two classes have identical 

means. When Δ = 1, the group mean vectors match closely with the posterior means for the 

actual CT perfusion data. We also considered three values of the cross-region correlation ρ, 

reflecting no correlation (ρ = 0), weak correlation (ρ = 0.4), and strong correlation (ρ = 0.8).

In the first scenario, the number of ROIs for each patient is randomly sampled from integers 

{1, 2, 3, 4} with equal probability for both tumor and normal groups. Figure 3 (a) plots the 

misclassification, true positive, and false positive rates averaged over 200 replicates. 

Empirical Bayesian implementation of MBR and MAP yields similar results to full 

Bayesian, and thus is omitted. LDA fails to discriminate in the absence of mean difference 

due to the assumption of common covariance structure across classes (shown to yield MCR= 

50% in the first column of Figure 3 (a)). BDA and QDA generally perform better than LDA 

in the presence of the heterogeneous covariance structure across classes. Line segments 

(solid for simultaneous MBR and dotted for LDA, QDA, and BDA) illustrate trends for 

increasing interdependence among intra-patient ROIs. In the absence of correlation among 

ROIs (ρ = 0), simultaneous MBR yields similar performance with QDA and BDA. As 

correlation increases, BDA and QDA yield static true and false positive rate at 0.80 and 

0.10, respectively, due to their inability to utilize interdependence among regions when 

evaluating class assignments. On the other hand, improvements for all classification 

properties are evident for the simultaneous methods. Moreover, when ρ = 0.8, the 

simultaneous MBR yields true positive rates as high as 0.98 and false positive rates as low 

as 0.03. As the mean difference between classes increases (shown in the second and third 

columns in Figure 3), the groups become more separable, thus yielding improved 

performance for all considered methods.

In the second scenario, the number of normal ROIs is selected randomly to be either 3 or 4 

while the number of tumor ROIs is chosen randomly to be either 1 or 2. Thus, on average 

70% of measurements are derived from normal ROIs. Results for this scenario are presented 

in Figure 3 (b). Generally, results follow the same trend across mean differences and 

correlations, which demonstrates that our proposed simultaneous MBR method consistently 
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performs well even in the presence of imbalanced numbers of classes and/or regions. In 

addition, implementation of the simulations using N = 50 patients yielded similar results.

We also used simulation to investigate sensitivity to misspecification of inter-region 

correlation. Specifically, we evaluated the extent to which classification performance is 

diminished for simultaneous classification using compound symmetry, when the true 

underlying correlation structure exhibits spatial dependence with exponential decay. 

Classifiers were simulated under three true values of ϕ reflecting weak, moderate, and 

strong average spatial dependence. The results are presented in Section E of the 

supplemental materials. In the absence of strong spatial dependence, performance for 

simultaneous classification using compound symmetry is robust to the misspecification 

(with average difference less than 0.5%). When both nearby regions are strongly 

interdependent and distant regions are weakly interdependent, the assumption of compound 

symmetry for the MBR classifier with α = 0.5 resulted in a 1.8% decease in the true positive 

rate, 1.6% increase in the false positive rate, and 1.8% increase in the misclassification rate 

when compared to exponential. However, generally results for the simultaneous approaches 

outperform conventional methods in the presence of increasing inter-region correlation 

regardless of the assumed inter-region correlation.

7. Discussion

In this paper, we described a Bayesian probabilistic framework for simultaneous supervised 

classification of multivariate correlated objects with separable covariance. The extent to 

which classification performance may be improved by the proposed simultaneous approach 

depends on the extent of interdependence among classification targets. We demonstrated 

that in the presence of strong correlation, simultaneous classification may yield dramatic 

gains in predictive accuracy when compared to conventional approaches to discriminant 

analysis, which treat the targeted units as independent.

The approach was motivated within the realm of biomedical functional imaging wherein 

classification performance may be improved by leveraging intra-class interdependence 

among collections of correlated measurements of biological function. In the considered liver 

CTp setting, our Bayesian approach facilitates classification via multivariate synthesis of 

correlated perfusion characteristics (biomarkers for tumor angiogenesis) across neighboring 

interdependent hepatic regions, yielding a probabilistic basis for detecting the presence of 

malignant tissues using all of the available information. In addition, the method 

accommodates unequal misclassification costs and offers seamless incorporation of 

subjective prior class probabilities that could be adjusted in relation to reader discretion 

regarding the extent to which morphological features associated with malignancies are 

conspicuous. The assumption of separability provides interpretability and dramatically 

reduces the degrees of freedom of the covariance, thereby avoiding high dimensional matrix 

inversion. However, separable covariance may be inappropriate for data that exhibits region 

by variate heteroscedasticity, and thus should be assessed (Mitchell et al., 2006). Moreover, 

the proposed empirical Bayesian implementation was shown to reduce computation time by 

a factor of 84, with minimal impact to classification performance, facilitating scalability in 

the presence of a large set of classification targets.
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Figure 1. 
Left: Reference CT image in a patient with neuroendocrine metastases to liver with 

corresponding ROIs: aorta (1, light blue), portal vein (2, dark blue), tumors (3 and 4, 

purple), and normal liver tissues (13 and 21, green); Right: Maps for blood flow (first row), 

blood volume (second row), MTT (third row), PS (fourth row), and HAF (fifth row) at 

acquisition durations of 30, 160, 220, and 590 seconds (left to right columns, respectively). 

Blood flow is expressed in mL/min per 100 g; blood volume, in mL/100 g; MTT, in 

seconds; and PS, in mL/min per 100 g. The color scales are identical for each row. Figures 

are reproduced with permission from Ng et al. (2013) Figures 2b and 2c.
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Figure 2. 
Top: Scatterplots of the log scaled CTp measurements: “*” represents tumor ROI and “○” 

represents ROI in normal liver. The variables names and values displayed in each subplot 

are given by the diagonal line. For example, the northwest subplot displays BF (x-axis) 

versus HAF (y-axis). Bottom: Graphical illustrations of intra-patient inter-region correlation 

for each CTp characteristic. The horizontal axes represents CTp values obtained in the left 

lobe, while the vertical axes represent right lobes. The label for each point reflects an 

anonymized patient identifier, with tissue type indicated by color: black for normal regions 

and red for tumor.
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Figure 3. 
Misclassification rate (top row), true positive rate (middle row) and false positive rate 

(bottom row) when (a) number of ROIs is randomly selected among {1, 2, 3, 4} for both 

tumor and normal groups; (b) number of normal ROIs is chosen randomly either 3 or 4 and 

the number of tumor ROIs is either 1 or 2. Results for the simultaneous classification by 

minimizing Bayesian risk (MBR with α = 0.5, shown by “*”, solid line), and conventional 

classification using quadratic Bayesian discriminant analysis (BDA, shown by “◇”, dashed 

line), quadratic discriminant analysis (QDA, shown by “○”, dotted dash line), and linear 

discriminant analysis (LDA, shown by “▽”, dotted line) are provided. As the correlation 

between ROIs increases, simultaneous MBR yields increasing true positive rate and 

decreasing false positive rate, while the conventional methods are static.

Wang et al. Page 18

Biometrics. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 19

T
ab

le
 1

(a
):

 S
am

pl
e 

co
rr

el
at

io
ns

 a
m

on
g 

in
tr

a-
re

gi
on

 C
T

p 
m

ea
su

re
m

en
ts

 in
 n

or
m

al
 (

lo
w

er
 tr

ia
ng

le
) 

an
d 

tu
m

or
 (

up
pe

r 
tr

ia
ng

le
) 

R
O

Is
. (

b)
: S

am
pl

e 
co

rr
el

at
io

ns
 

am
on

g 
id

en
tic

al
 C

T
p 

m
ea

su
re

m
en

ts
 a

cr
os

s 
ne

ig
hb

or
in

g 
R

O
Is

 w
ith

 c
om

m
on

 ti
ss

ue
 ty

pe
.

B
F

B
V

M
T

T
P

S
H

A
F

B
F

0.
95

−
0.

57
0.

60
−

0.
09

B
V

0.
85

−
0.

32
0.

76
−

0.
13

M
T

T
−

0.
74

−
0.

34
0.

19
−

0.
21

PS
−

0.
41

−
0.

10
0.

62
−

0.
29

H
A

F
0.

48
0.

11
−

0.
57

−
0.

73

(a
) 

In
tr

a-
re

gi
on

 c
or

re
la

tio
n

B
F

B
V

M
T

T
P

S
H

A
F

0.
88

0.
86

0.
72

0.
16

0.
90

(b
) 

In
te

r-
re

gi
on

 c
or

re
la

tio
n

Biometrics. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 20

T
ab

le
 2

C
la

ss
if

ic
at

io
n 

re
su

lts
 u

si
ng

 le
av

e-
on

e-
pa

tie
nt

-o
ut

 c
ro

ss
-v

al
id

at
io

n 
(L

O
O

C
V

) 
fo

r 
th

e 
C

T
 p

er
fu

si
on

 d
at

as
et

 w
ith

 5
2 

re
gi

on
s 

co
nt

ri
bu

te
d 

by
 1

6 
pa

tie
nt

s.
 

R
es

ul
ts

 a
re

 s
ho

w
n 

fo
r 

th
e 

fo
llo

w
in

g 
m

et
ho

ds
: m

ax
im

iz
in

g 
a 

po
st

er
io

ri
 (

M
A

P)
, m

in
im

iz
in

g 
B

ay
es

ia
n 

ri
sk

 (
M

B
R

),
 B

ay
es

ia
n 

qu
ad

ra
tic

 d
is

cr
im

in
an

t 

an
al

ys
is

 (
B

D
A

),
 li

ne
ar

 d
is

cr
im

in
an

t a
na

ly
si

s 
(L

D
A

),
 q

ua
dr

at
ic

 d
is

cr
im

in
an

t a
na

ly
si

s 
(Q

D
A

).
 T

he
 f

ir
st

 r
ow

 in
di

ca
te

s 
th

e 
co

rr
el

at
io

n 
st

ru
ct

ur
e 

be
in

g 
us

ed
. 

Fo
r 

th
e 

M
A

P 
an

d 
M

B
R

 m
et

ho
ds

, t
he

 to
p 

ro
w

s 
pr

ov
id

es
 th

e 
em

pi
ri

ca
l B

ay
es

ia
n 

re
su

lt 
(E

B
),

 a
nd

 s
ec

on
d 

ro
w

s 
th

e 
fu

ll 
B

ay
es

ia
n 

re
su

lt 
(F

B
).

C
S

E
xp

on
en

ti
al

Sp
he

ri
ca

l

m
et

ho
d

T
P

R
F

P
R

T
P

R
F

P
R

T
P

R
F

P
R

M
A

P
(E

B
)

0.
96

0.
07

0.
96

0.
04

0.
96

0.
04

(F
B

)
0.

96
0.

07
0.

96
0.

04
0.

96
0.

04

M
B

R

α
 =

 0
.2

(E
B

)
0.

92
0.

04
0.

92
0.

00
0.

92
0.

00

(F
B

)
0.

88
0.

04
0.

88
0.

00
0.

88
0.

00

α
 =

 0
.5

(E
B

)
0.

96
0.

07
0.

96
0.

04
0.

96
0.

04

(F
B

)
0.

96
0.

07
0.

96
0.

04
0.

96
0.

04

α
 =

 0
.8

(E
B

)
0.

96
0.

15
0.

96
0.

15
0.

96
0.

15

(F
B

)
0.

96
0.

11
1.

00
0.

19
1.

00
0.

19

B
D

A
0.

76
0.

18

L
D

A
0.

88
0.

15

Q
D

A
0.

84
0.

22

L
og

it
0.

80
0.

15

Biometrics. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 21

T
ab

le
 3

Si
m

ul
at

io
n 

w
ith

 r
es

am
pl

in
g 

fr
om

 th
e 

C
T

 p
er

fu
si

on
 d

at
as

et
 u

si
ng

 m
ax

im
iz

in
g 

a 
po

st
er

io
ri

 (
M

A
P)

, m
in

im
iz

in
g 

B
ay

es
ia

n 
ri

sk
 (

M
B

R
),

 li
ne

ar
 d

is
cr

im
in

an
t 

an
al

ys
is

 (
L

D
A

),
 q

ua
dr

at
ic

 d
is

cr
im

in
an

t a
na

ly
si

s 
(Q

D
A

),
 a

nd
 q

ua
dr

at
ic

 B
ay

es
ia

n 
di

sc
ri

m
in

an
t a

na
ly

si
s 

(B
D

A
).

 F
or

 th
e 

M
A

P 
an

d 
M

B
R

 m
et

ho
ds

, b
ot

h 
th

e 

em
pi

ri
ca

l B
ay

es
ia

n 
ap

pr
oa

ch
 (

E
B

) 
an

d 
th

e 
fu

ll 
B

ay
es

ia
n 

ap
pr

oa
ch

 (
FB

) 
ar

e 
pr

es
en

te
d.

m
et

ho
d

T
P

R
F

P
R

M
C

R

M
A

P
(E

B
)

0.
92

0.
13

0.
11

(F
B

)
0.

91
0.

12
0.

11

M
B

R

α
 =

 0
.2

(E
B

)
0.

86
0.

08
0.

11

(F
B

)
0.

84
0.

08
0.

12

α
 =

 0
.5

(E
B

)
0.

92
0.

12
0.

10

(F
B

)
0.

91
0.

12
0.

11

α
 =

 0
.8

(E
B

)
0.

95
0.

18
0.

12

(F
B

)
0.

94
0.

19
0.

13

B
D

A
0.

78
0.

20
0.

21

L
D

A
0.

80
0.

16
0.

18

Q
D

A
0.

79
0.

23
0.

22

Biometrics. Author manuscript; available in PMC 2016 September 01.


