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Abstract A protocol for the direct analysis of the phospho-
lipid composition in the whole body of adult soil nematode,
Caenorhabditis elegans (C. elegans), was developed, which
combined freeze-cracking of the exoskeletal cuticle and
matrix-assisted laser desorption/ionization-imaging mass
spectrometry (MALDI-IMS). Biomolecules in the m/z range
from 700 to 900 were more effectively detected in the freeze-
cracked than from simple frozen adult nematode bodies. Dif-
ferent distribution of biomolecules was observed in a nema-
tode body when the matrix was applied with a sublimation
deposition method. The whole-body IMS technique was ap-
plied on genetically deficient mutant C. elegans to combine
whole-body lipidomics and genetics, by comparing the fatty
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acid compositions, especially of the phosphatidylcholine (PC)
species, between the wild-type and fat-/ mutants, which lack
the gene encoding an n-3 fatty acid desaturase. A significant
reduction of PC(20:5/20:5) and PC(20:4/20:5) and a
marked increase of PC(20:4/20:4), PC(20:3/20:4), and
PC(20:3/20:3) were detected in the faz-/ mutants in pos-
itive ion mode. In addition, phospholipid compositions
other than PCs were analyzed in negative ion mode. A
loss of a possible phosphatidylinositol (PI) with 18:0/
20:5 and a compensative accumulation of putative
PI(18:0/20:4) were detected in the fas-/ mutants. In con-
clusion, the whole-body MALDI-IMS technique is useful
for the profiling of multiple biomolecules in C. elegans
in both intra- and inter-individual levels.

Keywords Caenorhabditis elegans - Cuticle - Exoskeleton -
Freeze-cracking - Matrix-assisted laser desorption/
ionization-imaging mass spectrometry - Phosphatidylcholine -
Phosphatidylinositol

Introduction

Recent advances in mass spectrometry have enabled the direct
analyses of biomolecules in tissue samples without any target-
specific labeling [1, 2]. Matrix-assisted laser desorption/
ionization-imaging mass spectrometry (MALDI-IMS) can be
used for the analyses of the spatial distribution of various
biomolecules, which range from small metabolites to lipids,
peptides, and intact proteins, in tissue sections [3—6]. The state
of the art MALDI-IMS technique has been used for the inves-
tigation of molecular distributions in mammalian tissues [7],
including samples of diseased human tissues [8—10]. It has
also been used for label-free non-targeted analyses of
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biomolecules in various species [11], such as microbes
[12], plants [13], parasites [14], arthropods, including
crustaceans such as the giant tiger prawn (Penaeus
monodon) [15], and insects such as the fruit fly (Dro-
sophila melanogaster) [16, 17].

The soil nematode, Caenorhabditis elegans
(C. elegans), is a common model organism and is exten-
sively used in life science research [18]. C. elegans has a
wide range of advantages for experimental research [19].
The short life span of minimally 3 days and the capability
of being frozen enable a number of iteration of experi-
mental tests in a short time [18]. These allow quick for-
ward genetics, combined with the ease of genetic manip-
ulations [20]. The body structure with multiple organs
composed of the fixed number of cells (~1000 somatic
cells) [18], with well-characterized cell fate is highly
powerful to developmental biology. Given these advan-
tages in multiple directions, C. elegans has a big potential
to provide a powerful platform for “Integrating-Omics,”
in which genetics, transcriptomics, proteomics,
lipidomics, and metabolomics are combined to find new
insights [21], opening a new era of life sciences.
C. elegans also begins to be used in applied sciences,
such as drug discovery or screening [22].

Some studies have investigated the metabolomic pro-
filing of genetically deficient mutant nematodes [23-28].
C. elegans has a balloon-like body with high osmotic
pressure that is enclosed by an exoskeleton consisting of
a tough impermeable cuticle [29]. This has hindered the
direct detection and analysis of the biomolecules
contained inside. Thus, the components of nematode
bodies have been extracted in most metabolomics anal-
yses. The very thick and rigid exoskeleton was thought
to inhibit a direct “whole-body” IMS, as the cuticle
layer of plants should be bypassed using vibratome sec-
tioning before the IMS analysis of molecules beneath
their cuticles [30]. Moreover, the cryosectioning of exo-
skeletal organisms requires special handling, which is
time-consuming and requires well-designed equipment
[16]. Thus, the development of a facile sample prepara-
tion for the analysis of the biomolecules using the
whole-body IMS of C. elegans has been desired.

Our aim was to establish a facile protocol for the whole-
body MALDI-IMS of adult C. elegans. To accomplish this,
we combined a freeze-cracking technique with MALDI-IMS
and were able to successfully analyze nematodes to vi-
sualize biomolecules in an individual nematode level.
We further combined the whole-body MALDI-IMS to
genetics through the comparison of the wild-type and
fat-1 mutants and succeeded in detecting significant dif-
ferences in the fatty acid compositions of the phospha-
tidylcholine (PC) and phosphatidylinositol (PI) species
between the two genetically different nematode lines.
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Materials and methods
Chemicals

Methanol (MeOH), ethanol (EtOH), chloroform (CHCIs), ul-
trapure water, and potassium acetate (CH;COOK) were pur-
chased from Wako Pure Chemical Industries (Osaka, Japan).
Calibration standard peptides (human bradykinin and angioten-
sin II) were purchased from Bruker Daltonics (Billerica, MA,
USA). 2,5-Dihydroxybenzoic acid (DHB) was purchased from
Bruker Daltonics (Billerica, MA, USA) or Sigma-Aldrich (St.
Louis, MO, USA). 9-Aminoacridine hemihydrate (9-AA) was
purchased from Acros Organics (NJ, USA).

Nematodes

C. elegans strains were grown at 20 °C under standard condi-
tions [18] on nematode growth medium (NGM) agar plates
(0.3 % NaCl, 0.25 % Bacto Peptone, 1.5 % agar, 0.0005 %
cholesterol, 1 mM CaCl,, 1 mM MgSQ,, 25 mM potassium
phosphate buffer [pH 6.0]), which were seeded with the OP50
Escherichia coli strain as a food source. The wild-type strain
(Bristol N2) and fat-1 mutant (BX24: fat-1(wa9) IV) of
C. elegans were obtained from the Caenorhabditis Genetics
Center (Minneapolis, MN, USA). A synchronous culture of
C. elegans was obtained by bleaching the nematodes 3 days
before observation. Only adult nematodes were used for the
MALDI-IMS and liquid chromatography-electrospray ioniza-
tion-tandem mass spectrometry (LC-ESI-MS/MS) analyses.

Sample preparation for MALDI-IMS

The nematodes that were grown on the surface of the NGM
agar plates were harvested by thoroughly washing with water
(Fig. 1a), and the live nematodes were transferred into a glass
tube using a Pasteur pipette (Fig. 1b). Subsequently, water drop-
lets containing live nematodes were transferred onto indium-
tin-oxide (ITO)-coated glass slides (Bruker Daltonics) (Fig. 1¢).
The freeze-cracking method involved covering the nematode
containing water droplets with a cover glass that was lightly
pressed with a finger to immobilize the nematodes and then to
make direct contact with their surfaces (Fig. 1d). The sample
slide was then rapidly frozen on an aluminum block at liquid
nitrogen temperature (—196 °C) (Fig. 1e). The aluminum block
allowed for a faster heat transfer, which generated a temperature
gradient across C. elegans because of their cylindrical morphol-
ogy. The cover glass was quickly detached to remove the
cracked cuticle exoskeletons (Fig. 1f). The sample slide was
then dried under vacuum for ~1 h (Fig. 1g).

To compare the freeze-cracked and simple frozen nema-
todes, water droplets containing live nematodes were trans-
ferred to the left and right sides of an ITO-coated glass slide.
The left side was used for the simple frozen nematodes,
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Fig. 1 Workflow for whole-body

MALDI-IMS analyses of adult
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glass on a nematode subset and

pressing them for freeze-cracking

(on the right side of the glass

slide). The other subset of live
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whereas the right was used for the freeze-cracked nematodes
(Fig. 1d). Simple frozen nematodes were not subjected to any
cracking treatment but were frozen and dried simultaneously
with cracked ones (Fig. 1e—g).

Scanning electron microscopy

Scanning electron microscopy (SEM) was performed as
previously reported [31, 32]. Simple frozen and freeze-
cracked nematode specimens were coated with osmium
tetroxide (OsO4) using a plasma multi coater model
PMC-5000 (Meiwa, Japan). The SEM observation of
nematodes was performed using a Hitachi S-4800 field
emission scanning electron microscope at an acceleration
voltage of 1.0 kV and an emission current of 10 pA. The

vacuum level in the observation chamber was 10 °—
1077 Pa, and the working distance was 8.0 mm.

Matrix application

DHB was chosen to detect PC in positive ion mode,
since it is most commonly used for MALDI-MS
and MALDI-IMS with high vacuum chamber [33-35]. 9-
AA was used to detect PI in negative ion mode, since
it is most common for lipid analyses in negative ion mode
of MALDI-MS and MALDI-IMS [36, 37]. To extract and
co-crystallize the analytes, the nematode samples were
spray-coated with DHB solution (50 mg/mL in 70 % MeOH
containing 20 mM CH3;COOK) for analyses in positive
ion mode, or 9-AA solution (10 mg/mL in 70 % EtOH)
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for analyses in negative ion mode on an ITO-coated glass slide
using a 0.2-mm caliber nozzle airbrush (Procon Boy FWA
Platinum; Mr. Hobby, Tokyo, Japan). Approximately 2 mL
of DHB or 3 mL of 9-AA solutions were sprayed over 15 to
20 min. The airbrush was moved right to left, top to bottom,
and vice versa, for around 1200 times, while maintaining a
distance of 10 cm between the nozzle and nematode tissue
surfaces. After the matrix application, the slide was incubated
in desiccator for around 5 min. The humidity of room was
maintained under 25 % at 23 °C. The glass slide was observed
by a microscope to confirm whether the matrix layer uniform-
ly covered the nematode sample surfaces.

The nematode samples were also subjected to matrix appli-
cation by sublimation deposition method, with 600 mg of
DHB sublimated at 170 °C for the deposition thickness to
reach 1.5 um, using iMLayer (Shimadzu, Japan).

MALDI-IMS

MALDI-IMS was performed using an ultraflex II TOF/TOF
instrument (Bruker Daltonics), equipped with a Smartbeam-II
Nd:YAG 355 nm laser, with 25 pm in raster scan pitch. The
laser frequency was 200 Hz, and the data were acquired using
an ion source voltage of 25 kV and a reflector voltage of
26.30 kV in the positive ion reflectron mode. Calibration of
the MS was performed using DHB ([M+H]", m/z 155.03),
human bradykinin fragment 1-7 ((M+H]", m/z 757.40), and
human angiotensin I ((M+H]", m/z 1046.54). In negative ion
mode, the laser frequency was 100 Hz, and the data were
acquired using an ion source voltage of 20.11 kV and a reflec-
tor voltage of 21.07 kV. The data acquisition areas, over which
the spectra were measured, were set by tracing the outline of
the well-cracked nematodes. These were characterized by the
observation of the nematode bodies and the region immedi-
ately outside them. The mass spectra were acquired by aver-
aging the signals from 500 laser pulses per sample measure-
ment point, and the mass measurement range was set to m/z
700-1000. The nematode specimens were automatically ras-
ter scanned using flexControl (ver. 3 or 3.4) and flexImaging
(ver. 2.1 or 4.0) software (Bruker Daltonics). The acquired
raw mass spectra were normalized to the total ion current
(TIC). The images of the detected molecular ions were con-
structed using the flexImaging (2.1 and 4.0) software. Six
simple frozen and six freeze-cracked nematodes were ana-
lyzed to evaluate the effectiveness of the exoskeleton removal.
Four nematodes were analyzed to examine whether biomole-
cules were retained in nematode bodies. Six wild-type and fat-
1 mutant nematodes were analyzed in positive ion mode.
Eight wild-type and fas-/ mutant nematodes were analyzed
in negative ion mode. The data were presented as plots for
each nematode and the mean of the signal intensities acquired
from the multiple samples.
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Table 1 Molecular weights of the phosphatidylcholine species in
C. elegans

PC species MW  H" Adduct K" Adduct ID
PC(20:5/20:5)  825.5  826.5 864.5 HMDBO08511
PC(20:4/20:5)  827.5 8285 866.5 HMDB08478
PC(20:4/20:4)  829.5  830.5 868.5 HMDBO08476
PC(20:3/20:4) 8315 8325 870.5 HMDBO08379
PC(20:3/20:3)  833.5 8345 872.5 HMDBO08377

http://www.hmdb.ca/spectra/ms/search

Liquid chromatography-electrospray ionization-tandem
mass spectrometry (LC-ESI-MS/MS)

Phospholipids of the harvested wild-type and fat-/ mu-
tants were extracted with Folch method [38], and they
were analyzed using LC-ESI-MS/MS with a 4000Q-
TRAP triple quadrupole linear ion trap mass spectrometer
(AB SCIEX, Framingham, MA, USA) equipped with an
ACQUITY ultra-performance liquid chromatography sys-
tem (Waters, Milford, MA, USA). An ACQUITY UPLC
BEH C18 column (2.1x50 mm, i.d., 1.7 mm particles;
Waters) was connected to a guard column (2.1x5 mm;
Waters), and the temperature of column oven was main-
tained at 40 °C [9]. The mobile phase consisted of a gra-
dient of two solvent mixtures. Solvent A was composed of
acetonitrile, MeOH, and water (19:19:2 v/v/v), containing
formic acid (0.1 vol.%) and ammonia (0.028 vol.%). Sol-
vent B was composed of isopropanol containing formic
acid (0.1 vol.%) and ammonia (0.028 vol.%). A gradient
elution using solvents A and B was performed at a flow
rate of 0.40 mL/min. To profile the molecular species of
the specific phospholipid classes, a precursor ion scanning
for the polar head groups of the PCs and sphingomyelins
(SMs) (m/z=184) was performed using the positive ion
detection mode of the 4000Q-TRAP instrument. Fragment
ions were generated through collision-induced-
dissociation (CID) [39]. The optimal collision energy
was determined by the preliminarily analysis of
PC(16:0/18:1), which was used as a standard lipid. The
PC molecular species detected were assigned using their

Fig. 2 Freeze-cracked nematode bodies yield stronger signals. a P>
Scanning electron microscopy images of simple frozen and freeze-
cracked C. elegans. Scale bars: 200 pm in low magnification (fop),
25 pm in high magnification (bottom). b, ¢ Averaged mass spectra
ranging from m/z 700 to 1000 that were detected in the whole body of
b simple frozen and ¢ freeze-cracked C. elegans. Four of the major mass
peaks at m/z 796.5, 806.5, 846.6, and 868.5 were selected to depict the
thermal color scale images. d Optical images and thermal color scale
images of the four selected molecules on the nematode bodies. Scale
bar: 200 pm. Color scale: deep blue, faint signal; red-purple, maximum
signal. e Quantitative signal intensities on nematode bodies. The data are
shown as plots for each nematode (diamonds; n=6) and mean (red line)+
SD (blue lines). The p values were calculated using a # test
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m/z values and the relative retention times of PC molecu-
lar species that were previously described [9, 34, 39], or
by referring to the online database,
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Further analyses of fatty acid compositions in the PC spe-
cies of interest were performed by a hybrid quadrupole-
Orbitrap mass spectrometer (Q Exactive; Thermo Scientific,
Waltham, MA, USA), with the mass resolution of 5 ppm.
Separation of the molecular species was carried out using
Agilent1100 series HPLC System (Agilent Technologies,
Germany) equipped with Acclaim™ 120 C18 column (2.1 x
150 mm, i.d., 3 pm particles; Thermo Scientific). The temper-
ature of the column oven was maintained at 50 °C. The injec-
tion volume was 5.0 nuL. The temperature of the sample tray
was kept at 10 °C. Solvent A was composed of water, aceto-
nitrile, MeOH (2:1:1, v/v/v), containing ammonium formate
(5 mM) and formic acid (0.1 vol.%). Solvent B was composed
of acetonitrile, isopropanol (1:9, v/v), containing ammonium
formate (5 mM) and formic acid (0.1 vol.%). A gradient elu-
tion using solvents A and B was performed at a flow rate of
0.30 mL/min for 50 min from the initial composition (A/B:
80/20, v/v) to the final composition (A/B: 0/100 vol.%) with a
linear gradient. MS and MS/MS analyses were performed in
both positive and negative ion modes. MS spectra were ac-
quired in the range of m/z 700-900. MS/MS spectra near the
peak top of interested peaks were acquired with a targeted MS/
MS method. The target mass-resolving power at m/z 200 was
set to 70,000 for both MS and MS/MS analyses. The isolation
window for MS/MS was set to 0.4m/z. The temperature of ion
source heater was set to 350 °C, and the capillary temperature
was at 250 °C. The ion spray voltage was set to 3.5 kV for
both ion modes. Maximum injection time was set to 100 ms
for both MS and MS/MS analyses. The automatic gain control
target was set to 1x10” for MS and 2x 10° for MS/MS. The
normalized collision energy for MS/MS was set to 30 %. Ex-
tracted ion chromatograms (EICs) were generated within a
theoretical value of +5 ppm for PC species of interest.

Results

Relative effectiveness of the freeze-cracking method
in the direct detection of multiple biomolecules

To evaluate the effectiveness of the exoskeleton removal, we
performed the comparative analyses of the two procedures,
simple freezing and freeze-cracking, in parallel on a glass slide
(Fig. 1). To effectively remove the exoskeletal cuticle of
C. elegans and expose the internal structures of the nema-
todes, we placed a cover slip on the nematodes and pressed
it with a finger before chilling them using a liquid nitrogen-
cooled aluminum block (Fig. 1d). We evaluated the effective-
ness of this procedure by comparing it with a simple freezing
method. We observed the condition of the samples using an
SEM. The surface of the freeze-cracked nematode bodies
looked highly scabrous with multiple wrinkles (Fig. 2a; right),
whereas the simple frozen nematodes had a highly smooth
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surface, which appeared to retain an intact exoskeletal cuticle
(Fig. 2a; left). The microscopy showed that freeze-cracking
drastically changed the surface condition of the sample
specimens.

We then analyzed the freeze-cracked nematodes using
MALDI-IMS and compared the signal intensity of the biomol-
ecules with those from the simple frozen nematodes (Fig. 2b,
c¢). The averaged mass spectra obtained from the freeze-
cracked nematodes had increased signal intensity throughout
the m/z range 700—-1000 when compared to the simple frozen
nematodes (Fig. 2b vs. Fig. 2¢). In particular, the molecular
ions that were observed between m/z 700 and 900 were de-
tected with much higher signal intensities from the freeze-
cracked nematodes than those from the simple frozen nema-
todes. We selected four molecules with m/z 796.5, 806.5,
846.6, and 868.5, respectively (arrows in Fig. 2b, c), to visu-
ally compare their signal intensities from the nematode bodies.
The signal intensities of these selected molecules increased by
>50 % of the maximum signal level (yellow-to-red colors) in
some regions of freeze-cracked nematodes, whereas those in
the simple frozen nematodes appeared near the noise level
(blue-to-cyan colors) (Fig. 2d). We performed further semi-
quantitative analyses of the signal intensities of the four mol-
ecules. In all four molecules, the signal intensities detected
from the freeze-cracked nematodes were significantly higher
than those from the simple frozen nematodes (n=6) (Fig. 2e).
These results demonstrated that the freeze-cracking method
enabled the highly effective direct detection of multiple inter-
nal biomolecules, which provided a facile whole-body
MALDI-IMS.

Molecular distribution analyses in nematode bodies
by combining the freeze-cracking method with the matrix
sublimation

The nematodes were pressed with a finger during the
freeze-cracking procedure (Fig. 1d). This has a potential
risk in that the nematode bodies could be punctured dur-
ing this process, which could result in the delocalization
or drift of intra-body ingredients from the nematode body
to the surrounding area. Thus, we evaluated whether the
biomolecules were retained in the nematode bodies. For
this evaluation, we expanded the imaging measurement
areas to include the glass surface adjacent to the nematode
bodies (Fig. 3a, b; insets) and compared the mass spectra
from regions of interest (ROIs) inside and outside of the
nematode bodies (Fig. 3a, b; insets). The averaged mass
spectrum acquired from the ROI inside of the nematode
body (Fig. 3a) has several mass peaks with m/z values
ranging from 750 to 900, whereas that taken from the
ROI outside of the nematode body had few significant
mass peaks (Fig. 3b).
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We selected four of major ion peaks, m/z values of 808.5,
832.5, 846.6, and 868.5 (arrows in Fig. 3a, b), to monitor
whether or not those effectively detectable molecules are
drifted from the worm body to the outside of body. All four
of the molecular ions showed signal intensities that increased
by >50 % of the maximum from the inside area of the nema-
tode body (yellow-to-red colors), whereas they appeared near
the background level in the area outside of nematode body
(blue-to-cyan colors) albeit slightly delocalized to the sur-
rounding glass surface (Fig. 3¢). The semi-quantitative analy-
ses of nematodes demonstrated that the averaged signal inten-
sities of all four of the molecules were significantly higher
inside than outside the nematode bodies (n=4) (Fig. 3d). The-
se results indicated that the biomolecules were retained inside
nematode bodies during the freeze-cracking process.

We further sought to analyze the distribution of biomole-
cules inside the nematode body with matrix applied via a
sublimation deposition method. The averaged mass spectrum
acquired from nematode bodies provided a number of mass
peaks (Fig. 3e). We selected three of major mass peaks at m/z
758.4, m/z 810.4, and m/z 895.6 to observe the spatial distri-
bution of those molecules in the nematode body. These three
molecules showed clearly different distribution patterns in the
nematode body: the molecule with m/z 758.4 was strongly
localized at the main body trunk (Fig. 3f; purple); the mole-
cule with m/z 810.4 was detected almost throughout the nem-
atode body, except in the head and tail regions (Fig. 3f; green);
the molecule with m/z 895.6 was strongly detected in the head
and tail regions (Fig. 3f; red).

Comparative analyses of fatty acid composition
of phosphatidylcholine in wild-type and genetically
deficient nematodes

We sought to evaluate the potential of our technique for use in
combination with nematode genetics for general versatility in
analytical biochemistry. For this, we tested the fatty acid com-
position of PC in the wild-type and genetically deficient fat-/
mutant nematodes. The fat-/ mutants lack the gene encoding
an n-3 fatty acid desaturase [23]. Before analyzing the fat-1
mutants using whole-body MALDI-IMS, we extracted their
lipids and profiled the total PC compositions of the two nem-
atode strains by precursor ion scan of m/z 184, which corre-
sponds to the head group of PC and SM, using LC-ESI-MS/
MS. We focused on PC species that contain fatty acids report-
ed to be drastically altered in the fas-/ mutant (Fig. 4a; red and
green) [23], i.e., PC(20:5/20:5), PC(20:4/20:5), PC(20:4/
20:4), PC(20:3/20:4), and PC(20:3/20:3). Figure 4b shows a
PC ion intensity map (x-axis: retention time, y-axis: m/z), in
which the PC ion “spots” from the wild-type and fa#-/ mutants
were colored red and green, respectively. This merged contour
plot showed a clear difference in the PC composition between
them (Fig. 4b). Signals at m/z 828.5 and m/z 826.5,
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Fig. 4 Fatty acid composition of phosphatidylcholine in fat-/ mutant. a P>
Fatty acid desaturation pathway modified from Watts and Browse [23].
Red: exclusively detected in the wild type [23]. Green: increased in fat-1
mutants [23]. S4 stearic acid, OA oleic acid, L4 linoleic acid, ALA alpha-
linolenic acid, GLA gamma-linolenic acid, STA stearidonic acid, DGLA
dihomo-gamma-linolenic acid, 0344 omega-3 arachidonic acid, 44
arachidonic acid, EPA eicosapentaenoic acid. b Merged contour plot
obtained by precursor ion scanning of m/z 184 on lipid extracts from
WT and fat-1: WT (red), fat-1 mutant (green), both (vellow). ¢ Merged
EICs (left column): wild-type (red) and fat-1 mutant (green). MS/MS
spectra at near peak top of picked peaks acquired by targeted MS/MS:
In positive ion mode, [M+H]" ions produced a common fragment ion at
m/z 184.074 [phosphocholine+H]" (middle panel). In negative ion mode,
[M+HCOOY] ions produced fragment ions depending on their fatty acid
composition (right panel)

corresponding to [PC(40:9)+H]" and [PC(40:10)+H]", were
almost exclusively detected in wild-type nematodes (Fig. 4b;
red). In contrast, signals at m/z 834.5 and m/z 832.5, corre-
sponding to [PC(40:6)+H]" and [PC(40:7)+H]", were selec-
tively detected in the fat-/ mutants (Fig. 4b; green). A signal
of m/z 830.5 corresponding to [PC(40:8)+H]" was detected in
comparable quantities in both strains (Fig. 4b; yellow).

We performed further LC-ESI-MS/MS analyses with a hy-
brid quadrupole-Orbitrap mass spectrometer to determine pre-
cise fatty acid compositions of the PC species. PC species were
detected as [M+H]" in positive ion mode and [M+HCOO]  in
negative ion mode [40]. Figure 4c (left column) shows merged
EICs of wild-type (red) and faz-1 mutant (green) in positive ion
mode. EICs corresponding to [M+HCOO] of each PC species
showed almost the same pattern as that of [M+H]" (see Elec-
tronic Supplementary Material (ESM) Fig. S1). MS/MS spectra
of the most major peak in EICs at each m/z in the two strains
were obtained (Fig. 4c; middle and right columns). MS/MS
spectra of minor peaks in EICs were shown in ESM Fig. S2.
Consistently with the result of the precursor ion scan, the peaks
at m/z 834.6 (36.6 min), m/z 832.6 (35.7 min), m/z 830.6
(34.6 min), m/z 828.6 (32.8 min), and m/z 826.5 (31.6 min) in
positive ion mode produced a common fragment ion at m/z
184.0736, which corresponds to [phosphocholine+H]"
(Fig. 4c; middle column). MS/MS spectra of negative ion mode
showed fragment ion peaks that corresponded to fatty acids
(Fig. 4c; right column). PC species containing eicosapentaenoic
acid (EPA), PC(20:5/20:5) and PC(20:4/20:5), were almost ex-
clusively detected in wild-type nematodes (Fig. 4¢). In contrast,
PC species that did not contain EPA, PC(20:4/20:4), PC(20:3/
20:4), and PC(20:3/20:3), were detected much more strongly in
the fat-1 mutants than wild type (Fig. 4c).

Comparative whole-body MALDI-IMS analyses
of phospholipid composition in wild-type and genetically
deficient nematodes

With the identified information for the fatty acid compositions
of PC molecules in the wild-type and faz-/ mutants, we
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performed whole-body MALDI-IMS by applying the freeze-
cracking method to both of the strains (Fig. 5a). The averaged
mass spectra between m/z 810-880 included five mass peaks
with m/z values of 864.5, 866.5, 868.5, 870.5, and 872.5
(Fig. 5b), which corresponded to the K" adducts ([M+K]")
of the following PC species: PC(20:5/20:5), PC(20:4/20:5),
PC(20:4/20:4), PC(20:3/20:4), and PC(20:3/20:3), respective-
ly. The IMS image of each PC species revealed similar PC
composition differences between the wild-type and fat-/ mu-
tants as were detected using LC-ESI-MS/MS (Fig. 5c¢).
PC(20:5/20:5) and PC(20:4/20:5) had higher intensity signals
in the wild-type (cyan-to-yellow colors in the thermal color
scale) than in the far-1 mutants (blue-to-cyan colors) (Fig. 5¢).
In contrast, PC(20:4/20:4), PC(20:3/20:4), and PC(20:3/20:3)
were more abundant in the fas-/ mutants (cyan-to-orange
colors) than in the wild type (blue-to-cyan colors) (Fig. 5c).
Semi-quantitative analyses clearly demonstrated the differ-
ences of the PC compositions between the wild-type and faz-
I mutants (n=6) (Fig. 5d), and their statistical values are given
in Table 2. The signal intensities of PC(20:5/20:5) and
PC(20:4/20:5) were higher in the wild-type than in the fas-1
mutants (p<0.01 and p<0.05, respectively, ¢ test), whereas the
signal intensities of PC(20:4/20:4), PC(20:3/20:4), and
PC(20:3/20:3) were higher in the faz-1 mutants than in the
wild type (p<0.01 for all cases, ¢ test).

We also analyzed the wild-type and fat-1 mutants in nega-
tive ion mode to test the effect of the faz-/ mutation on phos-
pholipids composition besides PCs. The averaged mass spec-
tra showed only a few peaks (Fig. S¢). The peaks at m/z 758 .4,
m/z 883.4, and m/z 885.4 were selected to obtain images of
those molecules with thermal color scale (Fig. 5f). Two mol-
ecules with m/z 883.4 and 885.4 were detected almost mutu-
ally exclusively in wild-type and fas-I mutant (Fig. 5f): a
molecule with m/z 883.4 was detected in wild type while a
molecule with m/z 885.4 being detected in far-I mutants
(»<0.005, ¢t test, n=8) (Fig. 5g). No significant difference
was detected for the molecule with m/z 758.4 (p>0.05, # test)
(Fig. 5g). These results demonstrated that our whole-body
MALDI-IMS technique was capable of being connected to
genetics by analyzing individual strains.

Discussion

We presented a procedure for the direct analysis of the lipid
compositions of the whole body of a well-established model
organism, C. elegans, without requiring lipid extraction or
target-specific labeling. We also showed that whole-body
MALDI-IMS could offer analyses of molecular distribution
in the nematode body and be combined with genetics. The
key point of our protocol was to remove the exoskeletal cuti-
cle from nematode bodies, aiming to efficiently generate co-
crystals of biomolecules and matrices.
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Fig. 5 Whole-body MALDI-IMS of genetically deficient nematodes. a P>
Scanning electron microscopy images of freeze-cracked wild-type and
fat-1 mutants. Scale bar: 25 pum. b Averaged mass spectra detected
from freeze-cracked wild-type or fat-1 mutants in positive ion mode.
Five mass peaks at m/z 864.5, m/z 866.5, m/z 868.5, m/z 870.5, and m/z
872.5 were selected to depict thermal color scale images. ¢ Thermal color
scale images of the five selected PC species. Scale bar: 250 pm. Color
scale: deep blue, faint signal; red-purple, maximum signal. d Quantitative
signal intensities of the PC species in the wild-type and faz-1 mutants. The
data are shown as plots for each nematode (diamonds; n=6) and mean
(red line)£SD (blue lines). The p values were calculated using a ¢ test. e
Averaged mass spectra detected from freeze-cracked wild-type or far-1
mutants in negative ion mode. Three mass peaks at m/z 758.4, m/z 883.4,
and m/z 885.4 were selected to depict thermal color scale images. f
Thermal color scale images of the three selected mass peaks. Scale bar:
250 pm. Color scale: deep blue, faint signal; red-purple, maximum
signal. g Quantitative signal intensities of the detected biomolecular
species in the wild-type and far-1 mutants. The data are shown as plots
for each nematode (diamonds; n=8) and mean (red line)£SD (blue lines).
The p values were calculated using a ¢ test

Before this study, two groups tried to directly analyze the
components of nematodes without using extraction. One study
detected some unidentified biomolecules in larval nematodes
using time-of-flight secondary ion mass spectrometry (TOF-
SIMS) [41]. This work also combined whole-body imaging
with genetics by comparing the molecular compositions of
the wild-type and daf-2 mutants [41]. TOF-SIMS was designed
for the analysis of molecules present near the surface of speci-
mens (within several nanometers) [42], and thus would require
the removal or bypassing of the cuticle exoskeleton to analyze
the intra-body composition. That study thus only detected mol-
ecules on the surface of the nematodes, although the cuticle of
L1 larvae is thinner than that of adult nematodes [43]. Another
study detected manganese, which is not a biomolecule, in larval
nematodes using laser ablation-inductively coupled plasma-
mass spectrometry (LA-ICP-MS) [44]. LA-ICP-MS was de-
signed for the analysis of elements such as metals, and uses a
laser that is >10 times stronger (>1 mJ) [45, 46] than those used
in MALDI-IMS (a few hundred pJ). The high-powered laser
degrades most organic compounds, although it enables the pen-
etration of the cuticle layer and the ablation of intra-body ma-
terials. Furthermore, any degraded fragments of organic com-
pounds would be completely destroyed within the ICP [47].
Thus, LA-ICP-MS is incapable of analyzing organic com-
pounds. Our whole-body MALDI-IMS technique addressed
these problems through co-crystallization of phospholipids with
a matrix in the nematode body by removing the cuticle using
freeze-cracking.

Our technique provided a lipidomic analysis of the PC
species in genetically deficient mutant nematodes. The result
of the comparative whole-body IMS between the wild-type
and fat-1 mutants is consistent with the fatty acid composi-
tions reported previously [23-25]. The lower level of EPA-
containing PCs, PC(20:5/20:5) and PC(20:4/20:5), in fat-1
mutants is consistent with the finding that they lose EPA [24].
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Table 2 Comparison of signal intensities in the wild-type and far-1
mutants

PC; m/z Mean signal intensity [a.u.] Number ¢ test
WT Sat-1 WT/fat-1
PC(20:5/20:5); 864.5 1.05+0.05 0.81+0.001  6/6 <0.01
PC(20:4/20:5); 866.5 1.00+0.04  0.87+0.002  6/6 <0.05
PC(20:4/20:4); 868.5 1.07+£0.02  1.50+0.09 6/6 <0.01
PC(20:3/20:4); 870.5 0.93+£0.01  1.34+0.008  6/6 <0.01
PC(20:3/20:3); 872.5 0.87+0.02  1.03+0.03 6/6 <0.001

WT wild type

The higher level of dihomo-gamma-linolenic acid (DGLA)-
containing PCs, PC(20:3/20:4) and PC(20:3/20:3), in fat-1 mu-
tants is consistent with the finding that DGLA is accumulated in
them [24]. These results were also self-consistent with our own
LC-ESI-MS/MS analyses. The higher level of PC(20:4/20:4) in
fat-1 mutants is also consistent with the past finding that the
amount of fatty acid (20:4) is higher in fat-/ mutants than the
wild type [24]. Given that omega-3 arachidonic acid (O3AA;
20:4n3) was the major fatty acid (20:4) in the wild type and AA
(20:4n6) was the sole fatty acid (20:4) in the faz-1 mutants [24],
PC(20:4/20:4) in the wild type could be PC(20:4n3/20:4n3),
whereas that in the faz-1 mutants could be PC(20:4n6/
20:4n6). Notably, PC(20:4/20:4) was detected at different re-
tention time in the wild-type (33.7 min) and the faz-/ mutants
(34.7 min). This highlights the caution required in data inter-
pretation of MALDI-IMS in cases where molecules with iden-
tical m/z values, but different structures, are compared, since the
ionization efficiency in MALDI-IMS seems to differ based on
molecular structure [48]. Some parts of our data might require
the caution. The molecule with m/z 868.5 assigned as PC(20:4/
20:4) in MALDI-IMS could be PC(20:3/20:5) in the wild type,
and the molecule with m/z 872.5 assigned as PC(20:3/20:3) in
MALDI-IMS could contain the fewer level of PC(20:2/20:4),
based on the LC-ESI-MS/MS data. This structure-dependent
complexity could be resolved more clearly when using IMS
by means of ion mobility mass spectrometry in the future.
Our MALDI-IMS data in negative ion mode provided a
clear difference of lipid composition between the wild-type
and fatz-1 mutants. The molecule with m/z 883.4 almost exclu-
sively detected in the wild type is highly likely to be a PI
containing EPA, PI(18:0/20:5), since PI(18:0/20:5) is the most
major PI form in normal C. elegans [49, 50]. This idea is con-
sistent with the knowledge that fat-/ mutants lose EPA [24] and
our findings that EPA-containing PCs were detected predomi-
nantly in the wild type. The molecule with m/z 885.4 is highly
possible to be PI(18:0/20:4), which is rare in normal C. elegans
[49, 50] while being normally detected and most major in mam-
malian tissues [51]. This idea is also consistent with the finding
that AA is abnormally accumulated in far-1 mutants [24] and
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our findings that PCs, PC(20:3/20:4) and PC(20:4/20:4), were
detected almost exclusively in faz-1 mutants.

Our technique could offer two additional benefits in the
metabolomics analyses of nematodes. First, the technique pro-
vides spatial information regarding the uneven distribution of
different biomolecules in individual nematode bodies. Rough
sketches of molecular distribution could be determined in
nematodes, as our IMS analyses combined with the matrix
sublimation technique provided different mutually exclusive
distribution of different molecules in a nematode body. Sec-
ond, the technique could analyze multiple individuals in a
single experiment. This has great potential for the comparison
of individual-to-individual variations in molecular composi-
tion and metabolic responses to environmental stimuli. Taken
together, our technique provides the potential to perform
multi-dimensional omics analyses including the time-
dependent alteration of metabolite levels, at both the intra-
individual and inter-individual levels.
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