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ABSTRACT

Persistent homology has been advocated as a new strategy for the topological simplification
of complex data. However, it is computationally intractable for large data sets. In this work,
we introduce multiresolution persistent homology for tackling large datasets. Our basic idea
is to match the resolution with the scale of interest so as to create a topological microscopy
for the underlying data. We adjust the resolution via a rigidity density-based filtration. The
proposed multiresolution topological analysis is validated by the study of a complex RNA
molecule.
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Recently, persistent homology has emerged as a new approach for topological simplification of

complex data (Patrizio and Claudia, 1999; Vanessa, 1999; Edelsbrunner et al., 2002; Zomorodian and

Carlsson, 2005). The essential idea is to create a family of slightly different ‘‘copies’’ for a given dataset

through a filtration process so that the topology of each copy can be analyzed. The copies are made different

in the filtration process either by the systematic increase in the radius of each sphere of a point cloud data or

by the systematic change of the isovalue of volumetric data. During the filtration process, the ‘‘birth’’ and

‘‘death’’ of topological invariants (i.e., Betti numbers) of the underlying copies can be tracked by using either

persistent diagrams or barcode representation (Ghrist, 2008). Appropriate mathematical apparatus has been

devised to organize simplicial complexes generated via the filtration process into homology groups

(Edelsbrunner et al., 2002; Zomorodian and Carlsson, 2005). As such, persistent homology is able to provide

a one-dimensional (1D) topological description of a given dataset, in contrast with the zero dimensional (0D)

description of the traditional topology and the high dimensional description of geometry. Therefore, per-

sistent homology introduces a geometric measurement to topological invariants, further bridging the gap

between geometry and topology. However, most successful applications of persistent homology are focused

on topological characterization identification and analysis (CIA).

Recently, we have introduced persistent homology for mathematical modeling and prediction of nano-

particles, proteins, and other biomolecules (Xia and Wei, 2014; Xia et al., 2015). We have proposed the

molecular topological fingerprint (MTF) to reveal topology–function relationships in protein folding and

protein flexibility (Xia and Wei, 2014). We have employed persistent homology to predict the stability of

proteins (Xia and Wei, 2014) and the curvature energies of fullerene isomers (Xia et al., 2015; Wang and

Wei, 2014). More recently, we have proposed objective-oriented persistent homology to proactively extract

desirable topological traits from complex data, based on variational principle (Wang and Wei, 2014). Most

recently, we have developed multidimensional persistent homology to achieve better characterization of
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biomolecular data (Xia and Wei, 2015b). Persistent homology is found to provide an efficient approach for

resolving ill-posed inverse problems in cryo-EM structure determination (Xia and Wei, 2015a).

The direct application of persistent homology analysis to large biomolecules, such as the HIV virus

capsid, which has more than four million atoms, is unfeasible at present. One of obstacles is the use of a

uniform resolution in the filtration and cross-scale filtration at a high resolution, which is prohibitively

expensive in the present persistent homology algorithms. Therefore, there is pressing need for innovative

topological methods to deal with excessively large data sets.

The objective of the present work is to introduce multiresolution persistent homology (MPH). Our basic

idea is to match the scale of interest with appropriate resolution in the topological analysis. In contrast with

the original persistent homology that is based on a uniform resolution of the point cloud data over the

filtration domain, the proposed MPH provides a mathematical microscopy of the topology at a given scale

FIG. 1. Multiresolution geometric analysis of RNA 4QG3. At various resolutions, rigidity–density profiles empha-

sizing on different scales of RNA 4QG3 structure are shown. Panels (a)–(d) are RNA surfaces extracted from density

profiles generated with resolutions g = 0.7, 1.0, 2.0, and 4.0 Å, respectively. It can be seen from (a) that the rigidity–density

map focuses on the atom-and-bond scale. The pentagon and hexagon rings in the base and sugar part are well-captured.

More global information begins to reveal when the resolution parameter increases in (b). The RNA double-helix string

pattern is visible in (c). The minor grove and major grove can be identified and the loops formed by the helix string are

revealed. Further increase in resolution value smears most of the local information, leading to only the intrinsic loop.
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through a corresponding resolution. MPH can be employed to capture the topology of a given geometric

scale and applied as a topological focus of lens. MPH becomes powerful when it is used in conjugation with

the data that has a multiscale nature. Generally, to perform our MPH analysis, we need to introduce an FRI-

based density model with an adjustable resolution parameter. The systematic adjustment of this resolution

parameter will lead to a multiresolution representation, which incorporates a full spectrum of resolution

scales. The detailed method is presented below.

Flexibility–rigidity index (FRI) (Xia et al., 2013; Opron et al., 2014) was originally invented for the

flexibility analysis of biomolecules. It provides an excellent prediction of macromolecular Debye–Waller

factors or B-factors. The essential idea of FRI is to construct flexibility index and rigidity index by certain

kernel functions, and further use them to describe the topological connectivity of protein structures. In the

present work, we generalize the FRI method for characterizing the rigidity and flexibility of arbitrary data

sets, such as networks, graphs, etc. The generalized FRI method facilitates the multiresolution geometric

and topological description of biomolecules. Generally, the rigidity function of the data can be expressed as

l(r) =
P

j wjF(k r - rj k; g), where rj is the coordinate of j-th pseudo-atom, wj is a weight, and F(k r - rj k;
g) is a kernel function. We use an exponential function F(rij; g) = e - (rij=g)2

in our simulation. The resolution

parameter g is systematically changed to generate a series of structures with various resolutions. To

construct a filtration process, we linearly rescale all the rigidity function values to the region [0,1] using

formula ls(r) = 1 - l(r)
lmax

, where l(r) and ls(r) are the original and rescaled rigidity density value respec-

tively, and lmax is the largest density value in the original data. The rescaled density value is then used as

the filtration parameter.

A complex RNA molecule 4QG3 is used to demonstrate the utility of the present multiresolution

topology analysis for biomolecules. To prepare the structural data, we remove the protein and all ions in

the biomolecules, and retain only the RNA part. To construct the rigidity density function, first we take

into consideration atom types by setting wj in the FRI correlation function to be their element numbers.

Additionally, we vary the FRI resolution g from 0.3 to 4.0 Å to deliver a full ‘‘spectrum’’ of geometric

FIG. 2. Multiresolution topological analysis of RNA molecule extracted from RNA–protein complex 4QG3. (a–f)

Persistent barcodes for RNA 4QG3 density profiles generated at resolutions g = 0.3, 0.5, 0.7, 1.0, 2.0, and 4.0 Å,

respectively. Top and bottom panels are for b0 and b1 barcodes, respectively. The horizontal axes denote the rescaled

rigidity–density value. It can be seen that, at various resolutions, the persistent barcodes give a clear demonstration of

various scales existed in the structure. In (a), only the atomic information can be seen. Local pentagon and hexagon ring

structure appears in (b). Global topological invariants emerge in (c) and gradually become dominant in (d) and (e).

Further increase in the resolution value eliminates most transitional local topological invariants, leaving two largest

intrinsic loops as demonstrated in (f). It is obvious that, when the resolution parameter reaches a certain limit, all

topological invariants will be gone and the density map of the whole RNA molecule will melt into a featureless body.

MULTIRESOLUTION TOPOLOGICAL SIMPLIFICATION 889



resolution in our rigidity density map. The RNA molecule extracted from RNA-protein complex 4QG3

has 1723 atoms and large loops in its structure. Since small grid spacing can be prohibitively expensive

for this system, we use a grid spacing of 0.3 Å in our study. As a result, some detailed local topological

structures may not be fully resolved and may even appear as noise in our persistent barcodes. Therefore,

in our barcode results, we removed all the bars with persistent length less than 0.05 with respect to a total

length of 1.

The rigidity density maps generated by various resolutions have dramatically different physical impli-

cations. The isosurfaces extracted from these maps give a good explanation of the present multiresolution

analysis. Figure 1 demonstrates four isosurfaces from density data generated by g = 0.7, 1.0, 2.0, and 4.0Å,

respectively. It can be seen that with the increase of g value, isosurfaces gradually shift from a local type of

scale to a global type of scale. More specifically, when g is smaller than 0.7Å, generated density maps focus

on the scale of atom and atom-bond. When g is increased to around 1.0Å, nitrogenous base or five-carbon

sugar scale dominates. The further increase of g to around 2.0Å leads to the major groove and minor groove

scale. Finally, when g goes beyond 4.0Å, rigidity map of the RNA gradually ‘‘melt’’ into a single gigantic

body. This resolution shifting generates the corresponding topological changes as can be clearly observed

from our persistent barcodes. In our multiresolution persistent homology analysis, we systematically

change g from 0.3Å to 4.0Å.

As demonstrated in Figure 2, total PBNs in b0 panels gradually decrease from 1723 to 4 and will finally

dwindle into 1 if we increase the g value further. This phenomenon indicates the inverse relationship

between the topological complexity and the resolution value. Additionally, there are 79 b0 bars that appear

much more earlier in the filtration process. These bars are due to 79 phosphorous atoms in the RNA

structure, as they have a much larger element number. For b1 bars, more intriguing patterns can be

observed. Originally there were 205 b1 bars, that is, the total number of PRs and HRs in local nitrogenous

bases and five-carbon sugar rings. The number of b1 bars soars up when more global topological invariants

are captured. However, the further increase in the resolution parameter results in the loss of local topo-

logical invariants, and thus the PBNs gradually decline. By increasing the resolution parameter, we are able

to identify more intrinsic global topological properties in the structure.

It should be noticed that, due to the limited computation resource, the grid spacing in this case is set to be

0.3Å, the smallest resolution value. The results from this resolution may not be accurate enough to capture

all the detailed topological properties. For instance, in Figure 2 a and b, if the grid spacing is small enough,

the b0 barcodes should have more steep curves to divide them into several discernable regions corre-

sponding to the atomic types of C, O, P, and N, as they have different atomic numbers thus different density

values. However, in this grid spacing, we are still able to maintain the accuracy to distinguish individual

atoms, and even tell the difference between phosphor atom and the rest ones.

In summary, we have introduced multiresolution persistent homology through a rigidity density-based

filtration. The geometric resolution of the rigidity density is controlled by a resolution parameter, which is

appropriately chosen to match the scale of interest. The resulting multiresolution persistent homology is

able to handle massive biomolecular datasets that are intractable with conventional persistent homology.
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