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Oxygen is transferred from air to
mitochondria in sequential steps by means
of diffusion and convection. The theoretical
ceiling for whole body aerobic uptake may
be determined by any factor influencing
the O2 transport and utilization chain.
The dispute considered here is whether
peripheral O2 diffusion from microvessels,
particularly capillaries, into active skeletal
muscle fibres limits/regulates maximal
oxygen uptake (V̇O2max) in healthy humans.

Peripheral O2 diffusion does not limit V̇O2max

V̇O2max is experimentally determined by
the levelling off in O2 uptake observed
with increasing workload during dynamic
exercise involving more than half of total
muscle mass (e.g. running, cycling) (Levine,
2008). This indicates that, empirically,
V̇O2max is limited, i.e. primarily restricted
prior to peak muscle activation. Moreover,
such limitation is attributed to a finite
oxygen supply to muscle given that
mitochondrial oxidative capacity exceeds
that of oxygen delivery at V̇O2max (Boushel
et al. 2011). Thus, any factor related to the
transport of O2 into the mitochondria might
limit V̇O2max. In this regard, there is sound
evidence that V̇O2max is proportionally
modified in accordance with acute changes
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in blood O2-carrying capacity and content
(Calbet et al. 2006a). In contrast, a
decrease in arterial O2 partial pressure,
and thereby reducing the driving force
for O2 diffusion, does not affect maximal
O2 uptake if O2 delivery to the exercising
limbs at the same time remains preserved
(Calbet et al. 2003, 2009). Importantly,
these observations were not associated with
any particular individual’s fitness status.
Accordingly, at V̇O2max in healthy individuals
there must be a physiologically relevant
reserve in muscle O2 diffusing capacity,
which also precludes that V̇O2max is limited
by peripheral O2 diffusion from capillary
into muscle.

Does muscle O2 diffusion regulate V̇O2max?

While peripheral O2 diffusion does not
limit V̇O2max, the question arises as to
whether V̇O2max could be influenced by
muscle O2 diffusing capacity in healthy
individuals. This would be entirely refuted
if O2 were fully extracted from capillaries
supplying active muscle fibres. However,
such level of resolution for O2 extraction
within human muscle fibres is beyond
reach with current methods (Koga et al.
2014). Instead, the large body of empirical
evidence derives from O2 measures in
venous blood exiting the active limb (Rud
et al. 2012), in which a 100% O2 extraction
seems unachievable considering temporal
and spatial characteristics (Heinonen et al.
2015). For instance, the high intra-
muscular pressure generated during the
contraction phase partly diverts blood
flow toward less metabolically active tissue
(Clark et al. 2000). Also, the perfusion of
active muscle fibres is inherently inefficient
as regards O2 delivery, since micro-
vascular units (i.e. terminal arteriole and
downstream capillaries) are not spatially
coordinated with individual motor units
and this may result in the overperfusion
of inactive fibres (Emerson & Segal, 1997).

In addition, O2 extraction may be a
function of the physiological distribution
of blood flow among active/inactive
muscle fibres and other tissues (Kalliokoski
et al. 2001, 2005; Calbet et al. 2006b).
Of note, blood flow distribution is
determined by the complex interplay
of factors including the sympathetic
drive, concentration of vasoactive sub-
stances, arterial dilator/constrictor function
and microvascular structure. Therefore, a
perfect matching between leg O2 delivery
and metabolic demand during exercise is
not expected even if neglecting the pre-
viously mentioned temporal and spatial
intrinsic constraints; here, blood flow
distribution is improved and O2 extraction
enhanced within exercising muscles in
long-term trained individuals (Kalliokoski
et al. 2001). Ignoring or trivializing this
fact may have distorted the contribution
of muscle O2 diffusion to the limitation
V̇O2max (Piiper, 2000; Koga et al. 2014). Yet
O2 extraction across the leg commonly rises
to 85% or more at V̇O2max in untrained and
trained individuals (Lundby et al. 2006; Rud
et al. 2012), attaining an astonishing 97%
in some elite athletes (Calbet et al. 2005). It
follows that for muscle O2 diffusing capacity
to contribute to the limitation of V̇O2max, an
average of approximately 85% or more of leg
blood flow should be continuously perfusing
active muscle fibres.

If leg O2 extraction, and thus V̇O2max,
were regulated by leg muscle O2 diffusing
capacity, any increase in diffusion capacity
would be reflected, at least to a degree,
in an augmented leg O2 extraction. In
this respect, one-leg training studies have
provided compelling evidence because the
impact of peripheral adaptations on V̇O2max

may be isolated from central haemodynamic
adaptations (Gleser, 1973; Saltin et al. 1976;
Klausen et al. 1982; Rud et al. 2012). All
these studies have shown marked increases
in one-legged cycling peak blood flow, O2

diffusing capacity, and uptake in individuals
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who, before training, had V̇O2max in the
normal range (Gleser, 1973; Saltin et al.
1976; Klausen et al. 1982; Rud et al. 2012).
However, peak O2 uptake during two-legged
cycling (i.e. V̇O2max) remained unaltered
in the presence of unchanged maximal
cardiac output (Q̇ max) following one-legged
training (Gleser, 1973). In line with this,
the increase in V̇O2max following two-legged
training was reverted to the baseline level
after negating the training-induced gain in
Q̇ max by means of phlebotomy (Bonne et al.
2014). Likewise, V̇O2max was identical prior
to and after one-legged training despite the
fact that blood flow, O2 extraction and
uptake were enhanced during two-legged
cycling in the trained versus control leg
(Rud et al. 2012). This strongly suggests
that two-legged O2 extraction (�85%) was
maximized relative to blood flow at V̇O2max,
irrespective of any training adaptation in
muscle O2 diffusing capacity. Overall, these
data indicate that V̇O2max is not modulated
by muscle O2 diffusing capacity. Rather,
V̇O2max seems to be governed, in a tyrannical
manner, by the amount of blood flowing
into the exercising limbs.

Several canine studies have been aimed
aet examining the contribution of muscle
O2 diffusing capacity to O2 extraction
(Schumacker et al. 1985; Barclay, 1986;
Hogan et al. 1989, 1991; Richardson et al.
1998). In these, blood flow or haemoglobin
O2 affinity (P50) have been manipulated
while maintaining O2 delivery constant to
contracting muscle. Hence a regulatory role
for O2 diffusion from capillary into muscle
in O2 extraction could be pinpointed,
provided that O2 delivery to active muscle
fibres is not influenced by blood flow or
P50 (Schumacker et al. 1987). Regardless,
the majority of the evidence comparing
experimental versus control conditions
indicates that muscle O2 uptake is uniquely
dependent on O2 delivery (Schumacker
et al. 1985, 1987; Barclay, 1986; Richardson
et al. 1998). Furthermore, the presence of
statistical procedures raising the likelihood
for type I errors to occur (i.e. the probability
of making false discoveries) in divergent
findings is noteworthy (Hogan et al. 1989).
Taken together, the proposed regulatory
role for O2 diffusion from capillary into
muscle during exercise (Wagner, 1992)
cannot be induced from the above animal
experiments, let alone extrapolating it to
humans exercising at V̇O2max, in which, as
a matter of fact, such a role is empirically
absent (Calbet et al. 2003; Lundby et al.
2006).

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief (250 word) comment.
Comments may be submitted up to 6 weeks after
publication of the article, at which point the
discussion will close and the CrossTalk authors
will be invited to submit a ‘Last Word’. Please
email your comment, including a title and a
declaration of interest to jphysiol@physoc.org.
Comments will be moderated and accepted
comments will be published online only as
‘supporting information’ to the original debate
articles once discussion has closed.
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