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Neuroscience

Key points

® Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS)
followed by activation of a regulatory volume increase (RVT).

e In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane
depolarization responsible for a release of Ca** from intracellular pools.

e Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich
kinase (SPAK).

e TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a
slower membrane depolarization, a diminished Ca*t response, a smaller RVI response, a
decrease in SPAK phosphorylation and defective muscle function.

® We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle
cell depolarization and allows the subsequent Ca’* release from the sarcoplasmic reticulum,
activation of the Na™—K*—Cl~ cotransporter by SPAK, and the RVI response.

Abstract Increased plasma osmolarity induces intracellular water depletion and cell shrinkage
followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is
accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible
for a release of Ca** from intracellular pools. We observed that both hyperosmotic shock-induced
Ca’" transients and RVI were inhibited by Gd’*, ruthenium red and GsMTx4 toxin, three
inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle
fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor
potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP
isoform susceptible to heterotetramerization with TRPV2. The release of Ca** induced by hyper-
osmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an
inhibitor of TRPV?2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced
membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation
triggers the release of Ca®" from the sarcoplasmic reticulum by depolarizing TTs. RVI requires
the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCCl1,
a Na™—K*—Cl~ cotransporter, allowing ion entry and driving osmotic water flow. In fibres
overexpressing TRPV2-DN as well as in fibres in which Ca’>* transients were abolished by the
Ca** chelator BAPTA, the level of P-SPAK®®™”* in response to hyperosmotic shock was reduced,
suggesting a modulation of SPAK phosphorylation by intracellular Ca’*. We conclude that TRPV2
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is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated
NKCC1.
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protein kinase, with-no-K (lysine) protein kinase.

Introduction

Increased plasma osmolarity is observed in several physio-
logical and pathological conditions such as food ingestion,
exercise, hyperglycaemia and dehydration (Foster, 1974;
Bratusch-Marrain & DeFronzo, 1983; Sjogaard et al. 1985;
Haussinger et al. 1993; Watson et al 1993). Hyper-
osmolarity induces intracellular water depletion and cell
shrinkage (CS) followed by activation of a compensatory
mechanism that restores cell volume, a process called
regulatory volume increase (RVI).

The RVI subsequent to CS requires activation of
NKCC1, a Nat-K"-Cl~ cotransporter, allowing ion
entry and driving osmotic water flow (Sitdikov et al
1989; Drewnowska & Baumgarten, 1991; Russell, 2000).
In hyperosmotic conditions, activation of with-no-K
(lysine) (WNK) protein kinase leads to the activation of
STE20/SPS1-related proline/alanine-rich kinase (SPAK)
and oxidative stress-responsive kinase 1 (OSR1) through
phosphorylation of threonine/serine residues, which in
turn phosphorylate and activate NKCC1 (Kahle et al. 2005;
Richardson & Alessi, 2008).

Hyperosmolarity-induced CS and subsequent RVI
occur in skeletal muscle. Due to its proportional mass
in the body, skeletal muscle potentially plays an important
role in whole body water balance. Its activity is also a
source of perturbation. Indeed, intense exercise causes
muscle to lose osmolytes such as lactate and K*, which
are released into the circulation. As a consequence of the
increased blood osmolarity, non-contracting muscles lose
water but the hyperosmolarity-induced NKCC1 activation
counteracts the net loss of water from these cells and helps
maintain their function (Gosmanov et al. 2003).

Related to the activation of the NKCC1 transporter in
skeletal muscle, CS has been shown to induce a membrane
depolarization of about 10-15 mV (van Mil et al. 1997;
Geukes Foppen, 2004) and a subsequent increase in cyto-
solic Ca?t concentration ([Ca?T];) (Chawla et al. 2001;
Wang et al. 2005; Weisleder & Ma, 2006; Martins et al.
2008).

The major source of Ca*" in skeletal muscle is the
Ca’" released from the sarcoplamic reticulum (SR)
(Clausen et al. 1979; Bruton, 1989). This is controlled
by voltage-sensitive L-type channels, the dihydropyridine
receptors (DHPRs), located in the transverse tubules
(TTs). Through a conformational coupling, muscle
depolarization leads to the opening of ryanodine receptor
1 (RyR1) and Ca’* release from the SR (Melzer et al.
1995; Dulhunty 2006). If sufficient, increased cytosolic
Ca’" in response to electrical stimulation induces muscle
cell contraction, a process named excitation—contraction
coupling (Klein et al. 1996).

How muscle fibres sense osmotic changes and/or
CS is not yet clear. It has been shown that hyper-
osmotic shock-induced CS is accompanied by trans-
verse tubule (TT) dilatation (Apostol ef al. 2009). WNK
might constitute an osmosensor by itself (Zagorska et al.
2007), but the present study was designed to investigate
the possible additional involvement of mechanosensitive
channels, in particular channels belonging to the transient
receptor potential (TRP) family.

The TRP channel superfamily constitutes a large and
diverse class of proteins that are expressed in many
tissues and cell types. This superfamily is composed by
six subfamilies in mammals among which four have
homology of structure in the transmembrane domains:
classical (TRPC), vanilloid (TRPV), melastatin (TRPM)
and ANKTM1 (TRPA). They are composed of six trans-
membrane domains, the pore being located between
the fifth and the sixth domain. All subfamilies of TRP
channels are permeable to cations and most of them to
calcium with a ratio Pc,/Pn, varying between 0.3 and
10 (Vassort & Fauconnier, 2008). Several TRP channels
present mechanosensitive properties, including TRPC1
and TRPC6, TRPV2 and TRPV4, TRPM3, TRPA1 and
TRPP2 (Arnadottir & Chalfie, 2010). Skeletal muscle
expresses TRPC, TRPV and TRPM isoforms (Brinkmeier,
2011; Gailly, 2012). However, we previously showed
that TRPCI is not responsible for mechanosensitivity in
skeletal muscle (Zanou et al. 2010). Several arguments
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suggest a role of TRPV2 or TRPV4 in the detection of
mechanical stimuli in skeletal muscle. Indeed, TRPV2,
a Ca’*-permeable channel simultaneously discovered by
two groups (Caterina et al. 1999; Kanzaki et al. 1999),
has been shown to constitute a component of osmotically
sensitive cation channels in smooth muscle (Muraki
et al. 2003). In skeletal muscle, it partially localizes in
the intracellular membrane compartments but trans-
locates to the plasma membrane when the membrane
is stretched (Iwata et al. 2003). TRPV2 seems to be
implicated in the pathophysiology of Duchenne muscular
dystrophy. Indeed, in mdx mouse, a murine model
of the disease, TRPV2 is mainly found in the plasma
membrane where it constitutes an important Ca*"-entry
route leading to a sustained increase of [Ca’"]; leading
to muscle degeneration (Iwata et al. 2009). The entry
of Ca*" and/or Na™ through TRPV2 also seems to be
responsible of the characteristic sensitivity of dystrophic
muscle to eccentric contraction (Zanou et al. 2009).
Recently, TRPV4 was also demonstrated to contribute
to mechanosensitivity in mouse skeletal muscle fibres
(Ho et al. 2012).

As hypertonic challenge induces TT dilatation and
cell depolarization, we investigated whether it could
activate TRPV channels, contributing to Ca’* and/or Na™
entry and muscle cell depolarization. For this purpose,
we investigated the response to hyperosmotic shock in
normal muscle fibres and in muscle fibres expressing
a dominant negative mutant of the TRPV2 channel
(TRPV2-DN). Our results clearly show an impairment of
osmosensation in TRPV2-DN cells. Indeed, these fibres
presented a slower membrane depolarization, and loss
of the Ca’" transient and RVI in response to hyper-
osmotic shock. This was accompanied by a decrease in
SPAK phosphorylation and defective muscle function. We
suggest that TT dilatation in response to hyperosmotic
shock induces TRPV2 activation, which accelerates muscle
cell depolarization and allows the subsequent Ca** release
from the SR, activation of NKCC1 and RVI.

Methods

Ethical approval

All the procedures used in this study were approved by
the Animal Ethics Committee of the Université catholique
de Louvain. A total of 52 C57BL6 male adult mice,
among which were 18 TRPV2-DN mice, were deeply
anaesthetized by intraperitoneal injection (10 ml kg™!)
of a solution containing ketamine (10 mg ml~!') and
xylazine (1 mgml™!) in order to preserve muscle perfusion
during dissection. Depth of anaesthesia was assessed by the
abolition of eyelid and pedal reflexes. After dissection, the
animals were killed by cervical dislocation.

© 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society

Osmosensation in TRPV2 dominant negative expressing cells

3851

Generation of TRPV2-DN mice

Generation of TRPV2-DN transgenic mice expressing
the haemagglutinin (HA)-tagged E604K mutant TRPV2
channel under the control of the a-skeletal actin promoter
in skeletal muscle has been described previously (Iwata
et al. 2009). All experiments were conducted on 12- to
16-week-old, sex-matched TRPV2-DN and their control
mice.

Isolation of adult skeletal muscle fibres

The flexor digitorum brevis (FDB) muscles were incubated
for 38 min at 37°C in an oxygenated ‘Krebs-Hepes’
solution (see composition below) containing 0.2%
collagenase type IV (Sigma-Aldrich Corp., St Louis, MO,
USA). Muscles were then washed twice in Dulbecco’s
modified Eagle’s medium (DMEM)/HAM F12 (Sigma)
supplemented with 2% fetal bovine serum (Sigma) and
mechanically dissociated by repeated passages through
fire-polished Pasteur pipettes of progressively decreasing
diameter. Dissociated fibres were plated onto tissue culture
dishes coated with Matrigel (BD Bioscience, San Jose, CA,
USA) and allowed to adhere to the bottom of the dish for
2 h. For Ca*t measurements, cells were plated on circular
glass coverslips. Culture dishes were kept in an incubator,
with 5% CO, at 30°C.

Measurements of cytosolic [Ca?*] and volume change

Muscle fibres were maintained in a Krebs-Hepes solution
containing (mm): NaCl 135.5, MgCl, 1.2, KCl 5.9,
glucose 11.5, Hepes 11.5, CaCl, 1.8 (pH 7.3, osmolarity
adjusted to 310 mosmol 17!). For some experiments,
CaCl, was omitted and replaced by 200 um Na-EGTA.
Fibres were loaded for 1 h at room temperature
with the membrane-permeant Ca**-indicator Fura-2/AM
1 puM. They were alternately excited (1 Hz) at 340
and 380 nm using a Lambda DG-4 ultra high speed
wavelength switcher (Sutter Instrument, Novato, CA,
USA) coupled to a Zeiss Axiovert 200 M inverted
microscope (20x fluorescence objective) (Zeiss Belgium,
Zaventem, Belgium). Images were acquired with a
Zeiss Axiocam camera coupled to a 510 nm emission
filter and analysed with the Axiovision software. Ca**
concentration was evaluated from the ratio of fluorescence
emission intensities excited at the two wavelengths using
a calibration previously described (Vandebrouck et al.
2002). Fibre diameter was measured with Axiovision
software. Fibres were submitted to a hyperosmotic shock
by rapidly changing the normal Krebs solution to the same
solution supplemented with 120 mM mannitol (osmolarity
adjusted to 430 mosmol 17!). Images were collected every
2 s for 4 min (during the diameter decrease) and thereafter
every 30 s for 45 min. Diameter measurements (xm) were
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performed on each fibre in the basal iso-osmotic (iso)
condition (Dy), after 1 min (D) in hyperosmotic medium
inducing a cell shrinkage (CS), and after 30 min (Dsy), i.e.
at the end of the RVI period. A relative volume recovery
was then calculated as (Dy — Dso)/(Dy — D)) expressed as
a percentage.

Muscle fibre detubulation

Muscle fibres were detubulated using a procedure
established by Kawai et al. (1999) on cardiac myocytes.
Briefly, fibres were bathed for 15 min in a Krebs-Hepes
solution made largely hypertonic with 1.5 M formamide.
Cells were then rapidly returned to control Krebs-Hepes
solution. In order to check the procedure, cells
were labelled with di-8-aminonaphtylethenylpyridinium
(di-8-ANNEPS, Molecular Probes) 2 uM for 2 min, rinsed
three times, and imaged using 480 nm excitation light and
detection at 640 nm. This procedure allowed us to keep
detubulated fibres intact (no change in the morphology,
fibres staying in a relaxed state, and [Ca’"]; staying
low). Measurements of cytosolic [Ca*"] using Fura-2
(see above) were performed on fibres not stained with
di-8-ANNEPS to avoid any interference.

Electrophysiological experiments

Single fibres were current or voltage clamped using
the silicone clamp technique as previously described
(Pouvreau et al. 2007). Briefly, the major part of a single
fibre was electrically insulated with silicone grease and
a micropipette was inserted into the fibre through the
silicone layer to current or voltage clamp the portion
of the fibre free of grease (50-100 um length) using a
patch-clamp amplifier (Bio-Logic RK-400, Claix, France)
in the whole-cell configuration. Command current pulse
generation and data acquisition were done using the
pCLAMPY software (Axon Instruments Inc., USA) driving
an A/D converter (Digidata 1322A, Axon Instruments).
Analog compensation was systematically used to decrease
the effective series resistance. Membrane voltages were
acquired at a sampling frequency of 100 Hz. Cell
capacitance was determined by integration of a current
trace obtained with a 10 mV hyperpolarizing pulse from
—80 mV in the voltage clamp configuration.

Muscle mechanics

Soleus muscles were dissected as mentioned above and
were bathed in a 1 ml horizontal chamber continuously
superfused with oxygenated Krebs solution (95% O,—5%
CO,) containing (mM): NaCl 118, NaHCO; 25, KCI 5,
KH,PO, 1, CaCl, 2.5, MgSOy 1, glucose 5, maintained
at a temperature of 20 £ 0.1°C. One end of the muscle
was tied to an isometric force transducer and the other
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end to an electromagnetic motor and length transducer.
Stimulation was delivered through platinum electro-
des running parallel to the muscles. Muscle length was
carefully adjusted for maximal isometric force using
0.35 s maximally fused tetani. Force was recorded on
a high-speed pen recorder (Sanborn model 320) and
digitized at a sampling rate of 1 kHz with a peripheral
component interconnect 6023E in/out card (National
Instruments, Brussels, Belgium). Muscles were stimulated
maximally for 300 ms at 125 Hz in isosmotic medium
for 15 min to check the stability of force production in
these conditions; then perfused medium was replaced by
hypertonic medium and muscles were further stimulated
for 45 min.

Western blot analysis

Soleus and FDB muscles were harvested, frozen in liquid
nitrogen and kept at —80°C until use. Muscles were
suspended in 500 pllysis buffer containing (mm) Tris-HCl
50, EDTA 1, EGTA 1, B-glycerophosphate 10, KH,POy 1,
NaVO3 1, NaF 50, NaPPi 10, and a protease inhibitor
cocktail containing (mg ml™') pancreas extract 0.02,
pronase 0.005, thermolysin 0.0005, chymotrypsin 0.003
and papain 0.33 (Roche, Complete, Mini) and NP40 05%,
homogenized with pipette tips for cells or Ultraturax
for muscles (IKA-Labortechnik, Staufen, Germany) and
incubated for 10 min at 4°C. Nuclei and unbroken cells
were removed by centrifugation at 10,000 g for 10 min at
4°C. Samples were incubated with Laemli sample buffer
containing SDS and B-mercaptoethanol for 3 min at
95°C and electrophoresed on 10% SDS-polyacrylamide
gels, transferred on nitrocellulose membranes. Blots
were incubated with rabbit anti-phospho-SPAK®7?
and anti-GAPDH (Cell Signaling, Danvers, MA, USA)
(1/1000 and 1/2000 respectively). After incubation with
the secondary antibody (anti-rabbit IgG) coupled to
peroxidase (Dako, Glostrup, Denmark), peroxidase was
detected with ECL+ (Amersham, Diegem, Belgium) on
ECL hyperfilm. Protein expression was quantified by
densitometry.

Immunohistochemistry

Muscles were dissected, fixed in 4% paraformaldehyde on
ice for 4 h, embedded in paraffin, and sectioned. Sections
of 5 um were deparaffinated, rehydrated and blocked using
a 0.5% bovine serum albumin / 5% normal goat serum
solution in phosphate buffered saline (PBS) during 1 h
at room temperature. Sections were then incubated at
4°C overnight with rabbit anti-TRPV2 antibody PC 421
(1:20, Calbiochem, San Diego, CA, USA) or rabbit anti-HA
tag antibody (1:800, Bethyl, Montgomery, TX, USA),
both diluted in blocking solution. Primary antibodies

© 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
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were detected by applying a goat anti-rabbit biotinylated
second antibody (1:200, Vector Laboratories, Burlingame,
CA, USA) for 2 h. Then, the sections were incubated
in avidin—Texas red solution (1:100, Vector Laboratories,
Burlingame, CA, USA) washed in PBS-BSA 2% solution
and mounted in Vectashield (Vector Laboratories). Images
were acquired using a 40x objective on a Zeiss S100
inverted microscope equipped with Axiocam camera.

Reagents

The GsMTx4 toxin, isolated from Grammostola spatulata
spider (Suchyna et al 2000), was obtained from
PeptaNova (Sandhausen, Germany); SFK-96365 (1-[f-
[3-(4-methoxyphenyl)propoxy]-4-methoxyphenetyl]-1
H-imidazole) from Alexis Corp. (Lausen, Switzerland);
2-aminoethoxydiphenyl borate (2-APB) from Alexis;
Fura-2/AM from Invitrogen (Molecular Probes); and
Tranilast and cannabidiol from Tocris (Bristol, UK). All
other reagents were purchased from Sigma.

Osmosensation in TRPV2 dominant negative expressing cells
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Statistics

Data are presented as means =+ standard error of the mean
(SEM). ANOVA or Student’s t test was used to determine
statistical significance except for membrane potential
measurements for which a non-parametric analysis was
used (the Kolmogorov—Smirnov test).

Results

Hyperosmotic shock induces a Ca?* transient and a
regulatory volume increase in skeletal muscle fibres

FDB muscle fibres were exposed to hyperosmotic medium
(430 mosmol 17! obtained by addition of mannitol) and
fibre diameter and [Ca®*]; were monitored. As shown in
Fig. 1A, and quantified in Fig. 1B, hyperosmotic shock
induced a rapid cell shrinkage (CS), with fibre diameter
decreasing from 100 £ 5.4% to 89.4 + 1.2%, followed
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Figure 1. Hyperosmotic shock induces cell shrinkage and RVI accompanied by Ca?* transient in muscle
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A, control (CTRL) fibres loaded with Fura-2 (excited at a wavelength of 380 nm and observed at 510 nm) and
challenged with hyperosmotic medium (430 mosmol I=! by addition of mannitol) exhibit a fast CS followed by
a slow RVI. Bar represents 50 um. B, quantification of data presented in A. Results expressed as means + SEM,
*P < 0.05 vs. iso; §P < 0.05 vs. CS; one-way ANOVA followed by Tukey's multicomparison test (n = 10). C,
cytosolic Ca?* transient induced by a hyperosmotic shock in CTRL fibres (mean 4 SEM, n = 37). D and E, Ca’**
and RVI responses to hyperosmotic challenge in muscle fibres treated or not with BAPTA-AM and submitted
to hyperosmotic shock. D, A[Ca®*]i is the difference between the peak amplitude and the resting [Ca®*]i. E,
relative RVI (expressed as a percentage) is calculated as the ratio (Dp — D30)/(Do — D1), where Do, D1 and D3p
are the diameters of fibres submerged in a hyperosmotic medium for 0, 1 and 30 min, respectively. *P < 0.05,
**P < 0.01 vs. CTRL; Student’s t test (n = 5).

© 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
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by a long lasting regulatory volume increase (RVI), the
diameter recovering to 95.1 &+ 0.6% (n = 16, P < 0.05),
corresponding to a relative recovery of 54%. This was
accompanied by a transient [Ca’"]; increase peaking at
a maximal amplitude of 216 £+ 30 nM (n = 37; Fig. 1C).
Chelation of intracellular Ca*" by BAPTA-AM decreased
the amplitude of [Ca®"]; in response to hyperosmolarity
(A[Ca*T];, the difference between the peak amplitude
and the resting [Ca’"];, of 105 £ 22 nM compared to
172 + 13 nM in control conditions (n = 5, P < 0.05;
Fig. 1D) and, interestingly, prevented the RVI (relative
recovery of only 6% compared to 54% in control fibres,
n =5, P < 0.05; Fig. 1E). These results suggest a role of
Ca’* in the RVI process.

Response to hyperosmotic shock was altered
in TRPV2-DN expressing cells

To investigate whether mechanosensitive ion channels
were involved in the mechanism of RVI, we treated muscle
fibres with different inhibitors of these channels: Gd>™,
GsmTx4 toxin and ruthenium red (RR). In response to
hyperosmotic shock, these treatments largely inhibited
Ca’* transients and the relative RVI (Fig. 2A and B),
suggesting the participation of mechanosensitive channels
in the process.

We therefore investigated osmosensation in muscle
fibres overexpressing a dominant negative mutant form
of TRPV2 (Iwata et al. 2009). Interestingly, hyperosmotic
shock-induced Ca?* transients were drastically inhibited
in TRPV2-DN fibres compared to control fibres (A[Ca " ];
of 24 + 3 nM, n =37, vs. 196 & 18 nM, n =29, P < 0.001;
Fig. 3A and B). In these fibres, RVI was abolished (n = 8,
P < 0.01; Fig. 3C).

The osmosensor and/or its effectors are localized
in transverse tubules

Results described above clearly point to arole of the TRPV2
ion channel in the hyperosmolarity-induced [Ca’**];
transient and RVI. However, the source of Ca?T was not
identified. To test the extra- or intracellular origin of Ca*",
we first investigated hyperosmotic response in a medium
devoid of Ca*" and found that muscle cells displayed
similar Ca*" response (data not shown), suggesting that
Ca’* is released from intracellular stores during the
process. In skeletal muscle, the main intracellular source
of Ca** is the SR, and Ca’* release occurs upon cell
depolarization, a process that involves a physical coupling
between the DHPR present in transverse tubule (TT)
membranes and RyR1 localized in the SR. We therefore
detubulated muscle fibres and investigated the response
to hyperosmotic shock. We checked by staining of the
membranes with the lipophilic marker di-8-ANNEPS that
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TTs were indeed disconnected by the procedure (Fig. 4A).
In these fibres, both Ca’" response and RVI were almost
abolished (Fig. 4B and C), suggesting the presence of the
osmosensor and/or its effectors in the T'Ts.

These results prompted us to investigate the localization
of TRPV2 in skeletal muscle cells. Immunostaining of
TRPV?2 using a TRPV?2 antibody showed a striated pattern
indicating the presence of TRPV2 in or near the TT
and SR membranes (Fig. 5A). Using an anti-HA anti-
body, we also observed a striated staining pattern in
cells overexpressing the HA-TRPV2-DN fusion protein.
As expected, no staining was detected in control fibres
(Fig. 5B).

We then treated muscle fibres with dantrolene,
a specific inhibitor of Ca*" release through RyRI
during excitation—contraction coupling in skeletal
muscle. Ca’" transients in these fibres were almost
completely inhibited to 57 £ 25% (n = 5;
P < 0.001), suggesting the requirement of muscle
depolarization and excitation—contraction coupling

250 1
200 1

150 1

il B i

CTRL Gd3+ GsMTx4 RR

A[Ca?*); (nM)

80 ;
60 1
40 1

20 - Hk .

CTRL Gd3+ GsMTx4

Relative RVI (%)
o

RR

Figure 2. Modulation of Ca?* transients and RVI by
mechanosensitive channel inhibitors

A[Ca?t]i (A) and relative RVI (B) in fibres pre-treated with 50 um of
Gd3+ for 15 min, 5 um of GsMTx4 toxin for 15 min and 40 um of
ruthenium red (RR) for 15 min. *P < 0.05, **P < 0.01 and

*4P < 0.001 vs. CTRL; one-way ANOVA followed by Tukey’s
multicomparison test (n = 5).

© 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
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during hyperosmolarity-induced Ca®" release. Inter-
estingly, tranilast, an inhibitor of TRPV2, decreased
[Ca®*]; transients by twofold and cannabidiol, an activator
of TRPV2 potentiated the response by about threefold,
the latter effect being largely inhibited by dantrolene
and tranilast (n > 5 fibres in each condition, P < 0.05;
Fig. 6).

TRPV2 participates in muscle cell depolarization
during hyperosmotic shock

A series of electrophysiological experiments were
performed in order to determine whether the strong
reduction in the hyperosmotic shock-induced Ca’"
transients in TRPV2-DN muscle fibres resulted from
an impaired depolarization of muscle fibres. At rest,
measurement of the transmembrane current flowing in
response to voltage pulses applied from —80 to —90 mV
under voltage clamp conditions indicated that the mean
resting membrane conductance was significantly higher in
control fibres (295 4 34 S F~!, n = 16) as compared to
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TRPV2-DN fibres (135 & 25 S F~!, n = 15), suggesting
that channels are partially open in these conditions.
Figure 7 shows the mean changes in membrane potential
induced by a hyperosmotic shock in TRPV2 control
and TRPV2-DN current clamped fibres. On average
TRPV2-DN fibres depolarized to a maximal voltage level
of 10.8 & 3 mV (n = 11), which was not significantly
different from the voltage level of 9.7 £ 1.5 mV
(n = 15) reached by the control fibres. However, hyper-
osmotic shock led to a rapid depolarization of control
fibres while TRPV2-DN fibres were first slightly hyper-
polarized and then depolarized at a much slower rate
as compared to control fibres. It has to be noticed
that in 4 out of 12 TRPV2-DN fibres tested, hyper-
polarization was not followed by depolarization, whereas
a depolarizing response was always observed in control
fibres. A Kolmogorov—Smirnov test (a non-parametric
test) was used to compare the changes in membrane
potential as a function of time induced by mannitol
in control and mutant fibres. All the fibres, including
fibres that did not depolarize, were included in the data
analysis. The Kolmogorov—Smirnov statistic quantifies a
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Figure 3. CaZ* transients and RVI in control and TRPV2-DN fibres
Ca?t transients (mean + SEM) (A), quantification of A[Ca2*]i (B) and relative RVI (C) in CTRL vs. TRPV2-DN fibres
in response to hyperosmolarity. Results expressed as means &+ SEM, **P < 0.01 vs. CTRL; Student’s t test (n > 8).
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distance between the empirical cumulative distribution
functions of the two fibre populations. The results show
that the distribution of the control cells significantly differs
from that of the mutant cells (D = 0.572, P < 0.0001).
NKCC1 has been reported to participate to hypertonic
shock-induced depolarization. We therefore investigated
whether the slow depolarization observed in TRPV2-DN
fibres was sensitive to furosemide, an inhibitor of NKCCl1.
We observed that furosemide 500 M reduced by 35 & 5%
the depolarization induced by the hyperosmotic shock in
TRPV2-DN fibres (n=9).

NKCC1 cotransporter activation is impaired in
TRPV2-DN expressing cells

NKCC1 is a key player in the RVI process, allowing Na™,
K" and 2 Cl™ entry into the cell, which is accompanied by
osmotic water movement. It has been reported that WNK
constitutes an osmosensor that activates NKCC1 through
the intermediate activation of SPAK and OSR1 (Vitari et al.
2005, 2006; Rafiqi et al. 2010; Grimm et al. 2012). Inter-
estingly, the phosphorylation of SPAK on both threonine
(P-SPAK™1233) and serine (P-SPAKS®>73) residues is well
correlated with the activation of NKCC1 (Sid et al. 2010).
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We therefore indirectly investigated the activity of NKCC1
by quantifying by imunoblot the phosphorylation time
course of SPAK on serine 373 residue. A progressive
phosphorylation of SPAK>™7® was observed in response
to hyperosmotic shock in both soleus (slow twitch) and
FDB (mixed fast and slow twitch) muscles, peaking after 5
and 10 min, respectively (Fig. 8A). To investigate whether
the phosphorylation of SPAK was Ca’"t dependent,
we measured hyperosmolarity-induced P-SPAK>™7® in
control muscles pre-treated or not with BAPTA-AM
for 3 h. Interestingly, we observed a drastic decrease
in P-SPAK®™7 in those muscles compared to their
control ones (Fig. 8B), indicating a modulation of SPAK
phosphorylation by intracellular Ca?*. In TRPV2-DN
expressing cells, the level of P-SPAK>™73 in response to
hyperosmotic shock was reduced to 40.3 £ 13.3% in soleus
and to 17.8 £ 5.4% in FDB muscles in comparison to
control muscles (n=6, P < 0.05; Fig. 9A and B), suggesting
an involvement of TRPV?2 in the process.

Defect of force production in TRPV2-DN expressing
muscle fibres exposed to hyperosmotic shock

The role of RVI in muscle function is still unknown.
We therefore measured force production during
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Figure 4. [Ca?t]i and RVI responses in detubulated fibres

A, control or detubulated isolated muscle fibres are stained with 2 im di-ANNEPS for 2 min. Bar represents 10 um.
B, A[Ca%*]i response and (C) relative RVI after hyperosmotic shock in CTRL fibres and detubulated fibres. Results
expressed as means + SEM, **P < 0.01, ***P < 0.001 vs. non-detubulated CTRL; Student’s t test (n = 6).
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hyperosmotic shock. Soleus muscles were stimulated
maximally every 3 min in isoosmotic medium for
15 min to verify the stability of force production in these
conditions and for 45 min in a hyperosmotic medium.
Isoosmotic medium did not alter muscle force production
under tested conditions either in control or in TRPV2-DN

A

Negative control CTRL

TRPV2

HA

Figure 5. Localization of TRPV2 in muscle fibres

muscles. Hyperosmotic challenge induced a rapid force
drop to a similar level in control and TRPV2-DN muscles
(20% of first tetanus). Interestingly, this was accompanied
by a long lasting force recovery in control muscles whereas
TRPV2-DN muscles did not recover (n = 6, P < 0.05;
Fig. 10).

TRPV2-DN

Immunohistochemistry of TRPV2 (A) and HA tag in CTRL and TRPV2-DN expressing fibres using anti-TRPV2 and
anti-HA antibodies. Negative control corresponds to staining without the primary antibody (but with the secondary
antibody). Representative images of three different stainings. Bar represents 50 um.
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Figure 6. Modulation of Ca?t responses to hyperosmotic shock in fibres treated with vehicle or
dantrolene 30 um for 10 min, with tranilast 100 um for 15 min or with cannabidiol 10 xm for 5 min
Results are expressed as a percentage of [Ca2*]i peak observed in the presence of the vehicle. *P < 0.05, **P < 0.01,
*4P < 0.001 vs. CTRL non-treated fibres; two-way ANOVA followed by Tukey’s multicomparison test (n > 5).
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Discussion

In skeletal muscle, hyperosmolarity-induced cell
shrinkage activates NKCC1, which allows Na®, KT
and Cl™ influx into the cell. Consequently, osmolytes
are retained within the cell and volume can recover
(Gosmanov et al. 2003). This is accompanied by a
transient increase in [Ca®"]; inside the cell. If the role of

-70 -

-75 =

Em (mV)

-80 =

Ca’*" in the mechanisms of regulatory volume decrease
(RVD) is well established, Ca?* -induced RVI has not been
thoroughly investigated (Chawla e al. 2001; Hoffmann
& Hougaard, 2001; Wehner et al. 2003; Martins et al.
2008). Besides, the sources of [Ca?*]; transients observed
during the RVD and the RVI processes are different and
the possible link between [Ca’*]; increase and the RVI
process has not been elucidated (Marino & La Spada,

—a— CTRL
—@— TRPV2-DN

10s

Hyperosmotic Shock

Figure 7. Effects of a hyperosmotic shock on membrane potential in CTRL and TRPV2-DN fibres

Muscle fibres were current clamped using the silicone clamp method and resting membrane potential was brought
to —80 mV by injection of a constant negative current. Each data point corresponds to the mean membrane
potential recorded every second in 16 TRPV2 and 12 TRPV2-DN fibres.
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Figure 8. Modulation of P-SPAK¢"373 by BAPTA-AM
A, immunoblot showing the time course of P-SPAK>¢"373 in

soleus and FDB muscles from CTRL mice incubated in iso-
(0 min) and hyperosmotic solutions (2, 5 and 10 min). B,

B
Soleus FDB
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P-SPAK®e373 measured in muscle fibres pre-treated or not for

3 h with BAPTA-AM (30 um, 3 examples presented, from 3
different mice) and challenged with hyperosmotic medium

GAPDH —— —— -

during 5 min (soleus) and 10 min (FDB). GAPDH was used as a

loading control.
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2007; Wormser et al. 2011). Some studies have indicated
that the [Ca**]; increase in response to hyperosmolarity
is due to NKCC1 activity, which allows membrane
depolarization (van Mil et al. 1997; Geukes Foppen, 2004;
Hattori & Wang, 2006; Pickering et al. 2009).

In the present study, different observations indicate
that hyperosmotic shock activates the TRPV2 channel,
which induces membrane depolarization, which in turn
triggers Ca’>™ release from SR stores. First, Ca*" release
from the SR was abolished by dantrolene, an inhibitor
of depolarization-induced RyR1 opening, suggesting that
the release of Ca®" induced by hypertonic stimulation
essentially results from membrane depolarization (Ellis

Osmosensation in TRPV2 dominant negative expressing cells
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& Bryant, 1972; Ellis & Carpenter, 1972; Ikemoto et al.
2001; Szentesi et al. 2001; Zhao et al. 2001). Second, the
response also decreased after pretreatment of the fibres
with RR, GsmTx4 and Gd’*, suggesting an involvement
of a TRPV channel. The response was almost abolished
in fibres expressing TRPV2-DN, implicating the TRPV2
channel itself or a channel able to multimerize with
the TRPV2-DN isoform. Note that the TRPV4 channel
was recently shown to contribute to muscle mechano-
sensitivity (Ho et al. 2012); we cannot exclude that it
may heteromultimerize with TRPV2. Third, Ca*" release
was increased after pretreatment with cannabidiol and
decreased after pretreatment with tranilast, pointing to
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Figure 9. Modulation of P-SPAK>¢"373 jn TRPV2-DN X< g0 80 |
muscles % o .
A, immunoblot showing P-SPAK®¢373 in TRPV2-DN soleus 2y 907 60 1
and FDB muscles submitted 5 and 10 min, respectively, to 5T 40 T 40 -
hyperosmotic shock. GAPDH was used as a loading control. XL 20 L3
B, quantification of P-SPAKS®"373 in CTRL and TRPV2-DN 1 20 1
muscles submitted to hyperosmotic shock. *P < 0.05 vs.
CTRL; Student’s t test (n = 6). CTRL TRPV2-DN CTRL TRPV2-DN
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Figure 10. Muscle force production under hyperosmotic shock
Soleus muscles from CTRL and TRPV2-DN mice were maximally stimulated every 3 min for 15 min in isoosmotic
solution and for 45 min in hyperosmotic solution. *P < 0.05 vs. CTRL, one-way repeated measure ANOVA (n = 6).
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a role of TRPV2 itself. Fourth, control cells showed a
rapid depolarization in response to hyperosmolarity that
was impaired in TRPV2-DN. Interestingly, in these cells a
depolarization was still observed, but it occurs at a slower
rate rendering it inefficient in triggering EC coupling. The
slow residual depolarization might be due, as mentioned
above, to NKCC1 activation itself, as it is partially inhibited
by furosemide, but also to other mechanisms such as a
decrease in K™ permeability (Van Mil et al. 1997). We
observed that the TRPV2 ion channel is localized in or
near the TTs. We therefore suggest that TRPV2 might
be activated directly or indirectly by membrane stretch
when TTs are dilated in response to osmotically driven cell
shrinkage (Apostol et al. 2009).

Activation of NKCC1 upon hypertonic challenge
involves the activation of WNK, which phosphorylates
SPAK and OSRI1, which in turn phosphorylate and
activate NKCC1 (Richardson & Alessi, 2008). The pre-
sent paper shows that the phosphorylation of SPAK
is largely dependent on [Ca’*"]; increase. Indeed, in
the presence of the Ca’" chelator BAPTA or in
TRPV2-DN fibres that do not increase their [Ca’*t];
in response to a hyperosmotic challenge, SPAK stayed
less phosphorylated, and as a consequence RVI did
not occur. We therefore conclude that TRPV2 channels
participate in the depolarization induced by the hyper-
tonic challenge and that the consecutive increase in [Ca® " ];
controls SPAK activation and RVI. A second pathway
activating NKCC1 is the PKC/ERK axis in response
to agonists or EGF stimulation. Crosstalk between the
WNK/SPAK/OSR1 and PKC/ERK pathways has been
described. Indeed, phosphorylation of NKCC1 by SPAK
and OSRI1 kinase may operate downstream of ERK (Kahle
et al. 2010). Moreover, EGF and/or agonist-mediated
PKC/ERK activation and NKCC1 phosphorylation are
described as a Ca’"-dependent process (Wang et al.
2011). This pathway seems to be involved in the response
to hyperosmolarity in tracheal epithelial cells (Liedtke
& Cole, 2002), suggesting a role of Ca**-dependent
PKC/ERK activation in SPAK/OSR1 phosphorylation and
NKCCI1 activation during hyperosmotic shock. Another
Ca’*-dependent pathway that can modulate NKCC1
activity involves calcium-binding protein 39 (Cab39), a
scaffolding protein distantly related to armadillo proteins
that facilitates the activation (T-loop phosphorylation)
of SPAK/OSR1 and consequently of NKCCI without
WNK involvement (Ponce-Coria et al. 2012). In either
of these cases, the SPAK/OSR1 axis seems important
for Ca**-mediated NKCCI activation. Thus, in hyper-
osmotic conditions, TRPV2-mediated intracellular Ca’*
increase may directly or indirectly control SPAK/OSR1
phosphorylation and NKCC1 activation.

Control muscles submitted to a hyperosmotic shock
presented a rapid force drop that recovered after a period
of about 12 min. TRPV2-DN muscles presented a similar

N. Zanou and others
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force drop, but did not recover after a period of up to
45 min. Such force drop has been previously attributed
to three phenomena (Hermsmeyer et al. 1972; Wildenthal
et al. 1975; Willerson et al. 1975; Gulati & Babu, 1986):
(i) decreased muscle fibre volume induces a restriction
of contractile apparatus space that makes difficult the
interaction between actin and myosin filaments; (ii) cell
depolarization maintains muscle in a refractory period
that prevents contractile response upon stimulations;
and (iii) the increase in intracellular ion concentration
alters actin and myosin cross bridges. The two latter
hypotheses are unlikely since (i) depolarization observed
in TRPV2-DN fibres is slower and weaker than that
observed in control fibres; and (ii) control muscles reached
normal force a few minutes later despite the maintenance
of the hypertonic medium, excluding a direct role of
ionic concentration increase in the alteration of force
development. We therefore propose that muscle force drop
in response to hyperosmotic shock is related to spatial
hindrance. In agreement with this hypothesis, control
muscles that recovered cell volume also recovered muscle
force.

In conclusion, our results show that TRPV?2 is involved
in osmosensation in skeletal muscle fibres, acting in
concert with P-SPAK-activated NKCC1. Dysregulation
of osmosensation observed in TRPV2-DN mice has
deleterious consequences on skeletal muscle function
but could also alter whole body water balance during
pathological processes such as dehydration.
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