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Abstract

The key moment for efficiently and accurately diagnosing dementia occurs during the early stages. 

This is particularly true for Alzheimer's disease (AD). In this proof-of-concept study, we applied 

near infrared (NIR) Raman microspectroscopy of blood serum together with advanced 

multivariate statistics for the selective identification of AD. We analyzed data from 20 AD 

patients, 18 patients with other neurodegenerative dementias (OD) and 10 healthy control (HC) 

subjects. NIR Raman microspectroscopy differentiated patients with more than 95% sensitivity 

and specificity. We demonstrated the high discriminative power of artificial neural network 

(ANN) classification models, thus revealing the high potential of this developed methodology for 

the differential diagnosis of AD. Raman spectroscopic, blood-based tests may aid clinical 

assessments for the effective and accurate differential diagnosis of AD, decrease the labor, time 

and cost of diagnosis, and be useful for screening patient populations for AD development and 

progression.
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1. Introduction

Alzheimer's disease (AD) is the most widespread type of neurodegeneration-induced 

dementia in the elderly population worldwide [1]. It is also among the most serious health 

problems in industrialized nations, including the United States[1-3]. This neurodegenerative 
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disease is progressive, incurable and lethal. More than 5.2 million Americans and 35.6 

million people worldwide suffer from AD; these numbers are expected to increase 

dramatically by the year 2050[1-3].

AD has numerous clinical manifestations, such as a gradual loss of short-term memory, 

language problems, progressive difficulty performing familiar motor tasks, temporal and 

spatial disorientation, impairments in abstract thinking, and disturbances in behavior and 

personality, including sleep disturbances, depression, anxiety, psychosis and dementia[4, 5]. 

These symptoms are associated with significant morphological alterations of the brain tissue 

that are caused by processes related to the formation of amyloid beta (Aβ) plaques and 

neurofibrillary tangles (NFTs)[5].

The destructive pathophysiological process of AD is thought to commence many years prior 

to the clinical presentation with only non-specific symptoms before the clinical diagnosis of 

AD can be made[6]. Because the differential diagnosis for dementias relies heavily on 

clinical criteria, it is often a complex and difficult process[7]. The slow initiation of AD 

during the “preclinical” phase could provide a critical opportunity for therapeutic and 

disease-modifying interventions[8]. Treatments during the early stages of the disease 

progression would be the most effective because of the possibility of interfering with 

pathological process before irreversible damage occurs and keeping patients in an 

independent functional state for as long as possible. Therefore, the early and accurate 

diagnosis of AD in at-risk patients is of a great importance.

In the early stages, many types of dementia show only non-specific symptoms. For example, 

in Parkinson's disease (PD) patients who eventually develop dementia, the symptoms start as 

mild deficits in cognitive function that are similar to those observed in AD. Both disorders 

progress over time to the symptoms that are recognizable as mild cognitive impairment 

(MCI). In advanced disease, both PD and AD are associated with severe cognitive decline, 

and it is still unclear to what extent they can become more similar functionally over time[9]. 

Still, there is no single biomarker or cognitive test that can conclusively distinguish between 

a person having PD dementia and AD. However, both PD and AD patients show many 

biological abnormalities that easily distinguish them from healthy volunteers. Thus, to 

ensure clinical relevance and applicability, researchers seeking specific markers should 

focus on the differences between the relevant psychiatric disease and other neuropsychiatric 

disease controls rather than on the differences with healthy control cohorts. Any proposed 

diagnostic test for a mental disorder will require a high degree of specificity to achieve 

substantial clinical gains[10]. Thus, the development of an efficient and selective test to 

detect the presence of an AD biomarker signature in blood would have tremendous utility.

Currently, biological psychiatry does not provide any diagnostic, biomedical tests for 

degenerative dementias in routine clinical practice. Intensive investigation by many research 

teams has explored the identification of blood-based biomarkers that can be used for a 

clinical laboratory test, including proteomic, metabolomic and lipidomic analyses[11]. 

Several chemical analytes have been investigated as potential AD biomarkers, including 

measures of oxidative stress, metabolite profiles, lipid profiles and protein-expression 
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profiles[12-19]. However, none of these has been accepted as a standalone diagnostic 

biomarker with sufficient specificity for routine diagnostic AD testing.

Such applied methods usually require substantial time, labor and financial resources and are 

thus difficult to transfer to the clinical laboratory; however, the results of these studies 

showed that potentially useful biomarkers exist. One strategy that may be able to overcome 

specificity and cost issues would be to simultaneously measure a complex chemical 

composition in terms of several classes of compounds[20, 21]. For instance, the very recent 

publication by Mapstone, M. et al shows that the lipid profile predicts AD development as 

early as the MCI stage.[18] Therefore, analyzing the panel of biomarkers allows for AD 

detection up to approximately two years prior to disease onset. Each single panel of 

biomarkers has a different sensitivity and specificity profile. A combined implementation of 

these panels can significantly improve the differentiation power of the diagnostic method. 

The emerging advances in vibrational spectroscopy and advanced statistics offer a real 

opportunity for probing multiple biochemical markers of disease through their overall 

spectroscopic signature.

In this regard, the diagnostic potential of Raman spectroscopy has recently been 

demonstrated for several diseases[22]. Raman spectroscopy has been applied to diagnose 

different types of cancer, diabetes, atherosclerosis, Alzheimer's and Parkinson's 

disease[23-26]. Raman spectroscopy provides specific information on the structure, 

conformation and composition of macromolecules, such as nucleic acids, proteins and 

lipids[27]. This information is unique to each molecule; therefore, Raman spectroscopy can 

provide “fingerprinting”-type information on the total biochemical state of blood. Raman 

spectroscopy could offer useful clinical tests that are simple, rapid and minimally invasive.

This preliminary study is focused on evaluating the selectivity of Raman spectroscopy by 

examining the spectral profiles of AD patients versus those of either subjects with other 

types of degenerative dementia or healthy control subjects. We propose that a selective 

diagnostic blood test can then be created based on a comparison of the obtained 

spectroscopic changes in the blood of the patient under evaluation with a developed library 

of Raman spectroscopic signatures for AD and other dementias.

2. Materials and methods

2.1 Clinical subjects and protocols

The cohort of subjects was recruited from neurological subspecialty clinics at the following 

academic medical centers at Albany Medical College (AMC: the Alzheimer's Center, the 

Movement Disorders Program, and the Parkinson's Disease and Movement Disorders 

Center. The cohort consisted of three groups of subjects. The first and second groups 

included unrelated patients with AD and OD, respectively. The AD group included patients 

diagnosed with Alzheimer's disease only. The OD group included patients diagnosed with 

other neurodegenerative dementias (OD): Lewy body dementia (n=5), Parkinson disease 

dementia (n=10), frontotemporal dementia (n=3) and progressive supranuclear palsy (n=2; a 

variant of frontotemporal dementia). The medical history and clinical assessments of all 

recruited patients were reviewed to determine their level of dementia. The clinical diagnoses 
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were established by a trained neurologist. Dementia was defined by a Clinical Dementia 

Rating Scale (CDR) of .5 or more for all subjects with dementia[28]. AD was diagnosed by 

the NINDS-ADRDA criteria[29]. CDR was used to determine the stage of AD; a CDR of .

5-1 was considered mild AD, and a CDR of 2 was considered moderate AD. The criteria for 

the diagnosis of Parkinson's disease included the Unified Parkinson's Disease Rating 

Scale[30, 31] and the criteria for Lewy body disease outlined by the DLB Consortium[32]. 

The criteria for the diagnosis of frontotemporal dementia (FTD) were applied as reported by 

Neary et al[33].

The third group consisted of age- and sex-matched control subjects who were free of any 

neurological and psychiatric ailments and who were in good general health with no active, 

major disease. The control volunteers were spouses of the patients, and therefore, their 

ethnic background, socioeconomic and environmental factors (e.g., age, education, race, 

religion, social and economic status), diet and everyday lifestyle were similar to those of the 

patients. All subjects were recruited at AMC during the period from 2011-2013.

The research protocol for human studies was reviewed and approved by the University at 

Albany Institutional Review Board (IRB) and the Albany Medical College IRB. The 

authorized study personal obtained written informed consent form potential study subjects 

prior to their participation. Table 1 summarizes the demographic information of the study 

subjects.

2.2 Sample preparation

A peripheral blood sample of 5 mL was collected and immediately processed into aliquots 

of anticoagulated whole blood, plasma and serum and then stored at −80°C until used in the 

analysis. EDTA was used as an anticoagulant. All blood samples were drawn and handled 

identically.

For Raman measurements, the blood serum sample was defrosted on ice and a 40-μL drop of 

the blood serum sample was placed on a microscope glass slide covered with aluminum foil 

and allowed to dry completely (within 5 min) under a gentle air flow. The aluminum foil 

was used as a substrate with a low fluorescence signal.

2.3 Raman spectroscopic measurements

The Raman spectra were collected with a Renishaw inVia confocal Raman spectrometer 

equipped with a research-grade Leica microscope and a 50x long-range objective (numerical 

aperture of 0.50) as described previously[34]. Briefly, all measurements were performed via 

automatic mapping using the lower plate of a Renishaw PRIOR automatic stage system . 

The spectra were recorded in the range of 400-1800 cm-1 under a 785 nm excitation 

wavelength with a diode laser using the WiRE 3.2 software. To avoid sample 

photodegradation, the laser power was reduced to 55 mW (50%). The excitation wavelength 

was chosen to reduce the fluorescence background from the sample. An automatic stage 

system allowed us to preprogram the mapping procedure and scan the sample within an area 

of 2x2 mm. The sequential spectra from 121 adjacent spots of a sample were measured with 

two 10 s accumulations at each point. This procedure ensures a thorough representation of 

the sample spot and accounts for the possible heterogeneity within the sample.
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2.4 Data treatment

A total of 5808 spectra were imported to MATLAB R2012a (7.14) and preprocessed. The 

Raman spectra with low signal-to-noise ratios were excluded. The fluorescent background 

was removed using the adaptive, iteratively reweighted penalized least squares (airPLS) 

algorithm[35]. All spectra were normalized by the total area and were mean centered[36].

2.5 Artificial neural networks

The classification and discrimination problems between AD, HC and OD samples were 

solved using an artificial neural network (ANN) approach. In multivariate statistics, ANNs 

are simplified mathematical models that conduct information processing functions in a 

manner similar to that of the highly interactive human brain cortex[37]. The ANN 

computing structures can be described as several layers of interconnected “neurons” or 

nodes. Each “neuron” can perform a mathematical operation on the input values and then 

connect and transfer the result to the next layer. The links between the “neurons” have an 

associated connection weight. ANNs are trained by learning algorithms to compute the final 

classification results based on the connection weights. The models can recognize patterns, 

manage data, and learn in a manner that resembles the information organization and storage 

in the human brain. The internal structure of the ANN models can be modified with respect 

to an objective function, and the parameters of the mathematical operations can be tuned by 

a training algorithm[38]. The power of ANNs is in the collective behavior of many 

interconnected computing nodes (neurons) that enables the accurate classification and 

recognition of information. ANNs have been applied to solve problems related to complex 

data sets in many areas of science, including medicine. In neurology, ANNs have been used 

to aid the clinical diagnosis of neurodegenerative disorders with extrapyramidal features[39] 

and of Alzheimer's disease via cognitive measures analysis[40] and neuroimaging data 

classification[41]. ANNs have been proposed as valid computational tools for analyzing 

spectroscopic data when solving various clinical problems[42-44].

2.6 Genetic Algorithm

A genetic algorithm (GA) is a machine-learning technique that is designed for feature 

selection and extraction to identify the most useful subsets of the measured variables for 

discrimination and classification tasks[45]. The operation of a GA is analogous to Darwinian 

natural selection and genetics in biological systems[46]. GAs are based on a general 

adaptive optimization search methodology to select the variables with the lowest prediction 

error (RMSE-CE) through simulated natural selection, the action of genetic mutations and 

the recombination of chromosomes[47, 48]. Biology describes natural selection as the 

“survival of the fittest”, where an adaptation process or the evolution from one generation to 

another occurs via the elimination of weak elements and the retention of optimal and sub-

optimal elements. In GA, a solution to a problem is a point in search space and is called a 

“chromosome”. Each chromosome represents a combination of meaningful features. By 

testing all possible solutions, the algorithm generates sets of potential solutions 

(populations) and ranks them according to the fitness function. Portions of the best of the 

identified solutions are subjected to operators such as crossover, mutation, inversion and 

recombination. The iterative computational process resembles natural reproduction. Only the 
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most fit populations are allowed to breed until acceptable results are obtained. GA can 

handle large search spaces and is thus suitable for cases where the spectral data consist of 

hundreds or thousands of variables. The spectral features with the best discriminative power 

can be identified and can carry clinically relevant information[49].

2. Results and Discussion

Blood samples were obtained from 10 healthy control, 20 AD and 18 OD subjects. In the 

AD cluster, 10 subjects were assigned to the moderate AD subgroup, while the other 10 

subjects belonged to the mild AD subgroup (see Clinical subjects and protocols). Based on 

visual inspection, Raman spectra of blood serum originated from different groups of subjects 

are almost identical. Figure 1 A shows a typical blood serum Raman spectrum, the average 

spectrum for healthy control cohort. The difference spectra obtained by subtracting average 

spectra found for various groups are shown in Figures 1 B, C, D, E, and F. The difference 

spectra are displayed along with +/- 2 standard deviations (STD) for the group spectra that 

are compared. The difference spectra lay within 2 standard deviations for each compared 

group, suggesting the necessity for advanced statistical methods to determine spectral 

variability and transform hidden characteristic features into a discriminative algorithm. In 

the next step, we employed multivariate statistical analysis on the collected data.

The initial data set was reduced by eliminating the Raman spectra with high variance due to 

additive Gaussian noise. The threshold was set to cut off 15% of the noisiest experimental 

Raman spectra. Further statistical analysis was performed for the remaining 85% of the 

Raman spectra, which were divided into four classes: healthy controls (HC), moderate AD, 

mild AD and other dementia (OD). The Raman spectra recorded with ~1 cm-1 spectral 

resolution provided more than 1000 equally spaced variables, which were highly correlated 

with each other. We used principle component analysis (PCA) to calculate the principle 

components (PCs) and to reduce the number of input variables for the subsequent advanced 

statistical analysis. Significant factor analysis (SFA) suggested that at least 6 PCs or 

significant factors were required to characterize the original spectroscopic data[50]. All 

classification methods used in this study were tested with between 5 and 20 PCs. 

Preliminary analysis demonstrated that higher classification accuracy could be obtained with 

a statistical method that can model the nonlinear relations between variables, such as 

artificial neural networks. The following machine-learning methods were applied for AD 

diagnostics: a multilayer perceptron (MLP) and a radial basis function (RBF) network.

The Neural Network Toolbox (MathWorks, Nattick) was used to model, test and validate the 

artificial neural networks. The optimal MLP architecture was determined by varying the 

number of hidden layers between one and two and varying the number of neurons in each 

layer between 10 and 600 for the first hidden layer and between 5 and 50 for the subsequent 

hidden layers. Additionally, we tested three transfer functions (linear, tangent sigmoidal and 

log sigmoidal) and five back-propagating training algorithms (Levenberg-Marquardt, 

Gradient descent, Powell-Beale conjugate gradient, Bayesian regularization, and Fletcher–

Powell conjugate gradient). The optimal RBF architecture was determined by varying the 

number of neurons between 10 and 600 and varying the radius value of the function between 

1 and 50. For each classification model, the HC, mild AD, moderate AD and OD data sets 
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were randomly split into training (70%), testing (15%) and validating (15%) data subsets. 

The performance of the calculated classification models was confirmed using the sensitivity 

(true positive rate; i.e. percentage of AD spectra identified correctly) and specificity (true 

negative rate; i.e. percentage of control spectra, either HC or OD, identified correctly) 

parameters for the classification of the testing and validating data subsets. Each type of 

network architecture was tested ten times with a new random split of data sets each time. In 

total, more than 30 000 models were built. The classification models that demonstrated 

similar performance parameters (sensitivity and specificity) for the testing and validating 

data subsets were accepted for the following considerations. If the difference in sensitivity 

(or specificity) for the testing and validating data classifications was more than 10%, the 

classification model was considered to be the result of convergence to a local minima with 

weak generalization properties. Importantly, validation is a crucial step in developing 

classification models because neural networks can frequently be over trained. For example, 

while screening ANN architectures, we observed cases in which the accuracy of 

classification was close to 100% for the training data and only ~60% for the testing and 

validating data.

Table 2 presents the best results for the selected structures of the MLP and RBF networks 

for the HC vs moderate AD classification. The third column, titled “Network structure”, 

contains network descriptors, where the first number is the number of input neurons (the 

number of PCs used), the last number represents the number of output neurons, and the other 

numbers indicate how many neurons were used in the corresponding hidden layers.

MLP networks demonstrate slightly better performance than RBF networks in terms of the 

sensitivity and specificity of the classification models (Table 2). Note the variability of these 

parameters for independent implementations of the selected neural network. For example, 

for the 5-20-20-1 MLP network (Table 2, row 1), the observed sensitivity for the correct 

classification of AD spectra ranged from 89-97% for ten independent modeling events. 

These results demonstrate the possibility of building a classification model with parameters 

that indicate high performance. The observed level of instability in the classification 

accuracy can be attributed to two main aspects of the ANN modeling process. The first 

aspect involves the intrinsic properties of the experimental data set, such as the limited size 

of the Raman data set, the detrimental contribution of noise and the high level of similarity 

in Raman data. Here, we note that the ideal (100% sensitivity and specificity) discrimination 

between groups should not be expected because only relatively minor changes in the 

biochemical composition of blood serum are likely to be associated with AD progression. 

Additionally, because of the intrinsic inhomogeneity of serum samples that is exposed by 

the applied drying process, all recorded Raman spectra will not show evidence of AD. 

Therefore, the achieved level (more than 95% for validating data sets) for an accurately 

classified single Raman spectrum is a remarkable result. The second aspect is the propensity 

of ANN algorithms to fall into local minima, yielding a reduced generalization ability[51, 

52] and leading to overtraining[53]. From a practical point of view, the ANN model with the 

highest validated classification accuracy can be accepted.

Table 3 shows the results of the RBF and MLP classification models for the Raman spectra. 

For binary models, the AD class includes a combination of the mild and moderate classes. 
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For tertiary models, the AD class was treated as two separate classes: mild AD and moderate 

AD. Every single spectrum was separated from the training set and then tested as a member 

of the test data set using the calculated model. Usually, less than 10% of the spectra from 

testing data sets were misclassified. The best achieved cross-validated sensitivity and 

specificity parameters for healthy controls were 97 and 96% (binary classification), 

respectively (Table 3, lines 1-2). Slightly lower performance parameters were obtained for 

the three-class classification model (Table 3, lines 3-5), where the moderate and mild AD 

data were treated as separate classes.

Somewhat greater sensitivity and specificity levels were obtained when the above-

mentioned three classes were treated in a pairwise manner. Table 3 presents the sensitivity 

and specificity values for the control versus mild AD (lines 6 and 7), control versus 

moderate AD (lines 8 and 9), and mild versus moderate AD (lines 10 and 11) classification. 

When considered together, these binary classifiers provided approximately 95% in the 

overall accuracy of AD stage determination.

After the ability of our classification methods to detect and separate AD spectra from HC 

spectra was established, we substituted the HC group with OD. A similar approach as above 

was used to model, test and validate the artificial neural networks for discrimination 

between AD and OD. The network with the optimal performance was able to distinguish OD 

with 97% specificity and 92% sensitivity, mild AD with 92% specificity and 95% sensitivity 

and moderate AD with 100% specificity and 93% sensitivity. The designed neural networks 

were optimized for pattern recognition and were capable of distinguishing between different 

classes with high accuracy. Additional performance parameters are presented in Table 4.

Considering the results described above, we tested the possible influence of a drug effect on 

the accuracy of the classification. The processing procedure was the same as above. All AD 

subjects were divided into groups according to their medication regimen, and the optimal 

ANN was applied. The subjects were taking various combinations of drugs rather than one 

specific drug, and the cohorts were small; thus, it was not possible to precisely identify 

which/how a specific drug can/cannot influence the ANN. Therefore, the analysis was 

performed with respect to one drug (donepezil), which was the most common among our 

subjects. All AD spectra were split into subclasses of subjects who were taking donepezil 

and those who reported no medication regimen. The ANN either could not distinguish 

between the two classes within the same AD group or was simply “blind” and misclassified 

subjects on the medication regimen as medication-free subjects. This result led to the 

conclusion that there were no significant drug effects from donepezil on the classification 

models. Most probably, other medications have insignificant effects as well. However the 

latter conclusion would require further study involving much larger cohort of patients with a 

better representation of other drugs used.

Finally, all calculations were repeated using subject-wise cross-validation. Subject-wise 

means all individual spectra that originated from a single subject were grouped to be 

separately validated as one subject at a time without mixing them with all of the other 

individual spectra that originated from that diagnostic category. The ANN architectures that 

demonstrated the best results in tests where the factor of subjects was not considered (Table 
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2) were tested with the data sets formed by consecutively eliminating all of the Raman 

spectra from each subject individually. This classification was repeated 10 times for each 

subject. Most importantly, it was always possible to attain an ANN classification model with 

more than 60% correctly classified spectra. In other words, using this number as a decision 

threshold, we can correctly categorize all subjects. Table 3 shows the minimum and 

maximum (columns 3, 5, 7, 9) percentages of correctly classified spectra for the subject-

wise cross-validation. The relatively low numbers and the wide range indicate that the 

power of the classification models depends on how the subjects were split between the 

training and testing data sets. A significant increase in the number of subjects will allow us 

to directly address the effect of population and physiological factors.

ANNs have shown that these supervised analyses can easily discriminate between all groups 

in question but cannot determine which wavenumbers in the Raman spectra are important; 

thus, they have limited use for interpreting these multidimensional spectra in biochemical 

terms. Therefore, a GA was used to determine the specific wavenumbers that can elucidate 

some characteristic biomarkers, particularly for the recently proposed blood-based 

biomarkers of AD[12-16, 18, 20]. We analyzed our data via GA using PLS toolbox 6.2 

(Eigenvector Research, Inc., Wenatchee) within the Matlab environment[36]. A single run 

was selected to have 70 chromosomes for the initial population and for each population in 

the subsequent generations. The number of generations was set to 100, and the mutation rate 

was kept at a value of 0.005. The genetic algorithm allows a consideration of all possible 

variables within the Raman spectral dataset for the serum and of their significance for the 

discrimination between classes. These factors can be considered because of the reduction of 

the original Raman spectra to a subset(s) of wavenumbers; this reduction simplifies the 

spectral information for the possible identification of meaningful information. The Raman 

bands that yielded the best results for internal cross validation were identified from the most 

informative spectral regions. These regions and bands represent spectroscopic markers for 

the datasets in the study. The most meaningful spectral regions were identified by 

comparing the AD group to the HC group (Fig. 2 A) and to the OD group (Fig. 2 B). The 

wavenumbers of the vibrational band positions were determined within these regions. The 

tentative band assignments along with the borders of the corresponding spectral region and 

the presumptive contributions of biomolecules are given in Tables 5 and 6 for the 

comparison of the AD group to HC and to OD, respectively. The GA revealed more 

differences between AD and OD than it did for AD and HC. The GA selected 9 regions (30 

bands) and 7 regions (13 bands) for the AD to OD and AD to HC comparisons, respectively. 

Interestingly, the 5 regions selected for the AD/HC comparison almost completely overlap 

with the regions from the AD/OD selections. However, one region from the AD/HC 

selection (# 4, Table 5) is not present, and three new regions appear in the AD/OD selections 

(# 2, 4, 6; Table 6). Our results are consistent with the current proteomics, metabolomics and 

lipidomics findings for AD biomarkers. Most of the biomolecules that we identified as 

contributors to the spectroscopic signature for AD have been previously reported as 

potential AD biomarkers. For example, a recent study by Mapstone et al[18] successfully 

employed lipidomic and metabolomic profiling to identify and validate a biomarker panel 

for pre-clinical AD detection. The featured phospholipids and metabolites, such as 

phosphatidylinositol, phosphatidylcholine, proline, lysine and phenylalanine, are among 
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molecules that contribute to our spectroscopic markers. Moreover, compared with the 

previous studies that used elderly volunteers without dementia as a control group, we show 

that these biomolecules contribute to the differentiation of AD from patients with other types 

of dementia as well as from the healthy control group. However, a more detailed 

interpretation of the clinical relevance of the spectroscopic signature for AD requires further 

investigation.

GAs are often used as an optimization method in the design of automatic pattern 

classifiers[45, 46, 54]. Performance optimization can strongly affect classifier design 

because the choice of features has a substantial influence on several classification aspects, 

including the accuracy of the learned classification algorithm, the time needed to learn the 

classification function and the number of examples needed for learning[46]. The accuracy of 

the classifier outcome may be enhanced by adequate GA optimization[54]. However, such 

hybrid systems usually focus on either improving the classifier capabilities or feature 

extraction that discards the GA or ANN as an artifact of the process[45]. The ultimate goal 

of this work was correct classification and meaningful feature extraction. Coupling GAs and 

ANNs will require designing a feedback mechanism for making classification decisions 

while allowing the modification and/or adaptation of the feature selector and research using 

ANNs for evolution of the GA fitness function. For practical purposes, the classification step 

and the feature selection/extraction step were considered independent stages. Future research 

should pursue the coupling of GA and effective classification techniques and evaluate the 

Raman bands selected by the GA using ANN.

3. Conclusion

This proof-of-concept study demonstrated the great potential of Raman spectroscopy as a 

selective diagnostic tool for AD detection and differentiation. The technique is sensitive and 

specific relative to other types of dementia and is noninvasive because it uses conventional 

venipuncture to obtain the blood sample. In this study, we used the combination of Raman 

spectroscopy and multivariate statistics to differentiate AD patients from patients with other 

types of dementia and from healthy elderly volunteers with an overall accuracy 95%. We 

demonstrated the high probability for single subject to be correctly assigned to the particular 

diagnostic category. The results were verified using random ten-fold subsets of individual 

spectra and subject-wise cross-validation approaches. By setting the threshold to 60% of 

classified single spectra, all subjects except one were diagnosed correctly. The Alzheimer's 

disease, healthy control and other dementia groups showed similar, but not identical, Raman 

spectral profiles. These differences can be detected by Raman spectroscopy and 

distinguished using the artificial neural network approach. Genetic algorithm variable 

analysis combined with several cross-validation methods was performed to identify 

“fingerprint” regions or spectroscopic markers for selective detection of AD. Our results are 

consistent with current AD biomarker findings. Distinctive spectral regions that are optimal 

for AD differentiation were identified. The regions correspond to particular biomolecular 

changes. The spectroscopic markers we found display Raman signals originated from the 

biomolecules that have been reported to be AD biomarkers in recent studies. This proof-of-

concept study was performed on a relatively small cohort of patients and successfully 

demonstrated the great potential of the method for Alzheimer's disease diagnostics. The 
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developed Raman spectroscopic markers of AD open potential opportunity for the early 

disease diagnostics. That is one of the main objectives for our future investigation. Also 

study on a larger cohort of patients with a better representation of drugs used to treat AD and 

other dementia is required for determining possible effects of a medication regime. As well 

as validations in large multi-centered randomized control studies will be needed to establish 

effectiveness of the method for early AD diagnostics.
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Multivariate data analysis of blood serum Raman spectra allows for the differentiation 

between patients with Alzheimer's disease, other types of dementia and healthy 

individuals.
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Figure 1. 
Average and difference Raman spectra of human blood serum.

(A) An average Raman spectrum of human blood serum obtained for healthy controls. 

Difference average spectra (purple lines) and spectral variations around the mean (+/-2 

STD) for: (B) moderate Alzheimer's dementia and other dementia; (C) moderate 

Alzheimer's dementia and healthy controls; (D) moderate and mild Alzheimer's dementia 

cohorts; (E) mild Alzheimer's dementia and other dementia; (F) mild Alzheimer's dementia 

and healthy controls.
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Figure 2. 
Raman spectral regions and bands identified by Genetic Algorithm (GA) as providing the 

highest discriminatory power between the serum samples. (A) Alzheimer's dementia versus 

healthy controls; (B) Alzheimer's dementia versus other dementias. The GA regions 

highlighted in red on the total average spectrum of the human blood serum (blue).
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Table 1

Summary of demographic information of the research subjects.

Subjects

Alzheimer's dementia, AD Healthy controls, 
HC (n=10)

Other dementias, OD 
(n=18)

Moderate stage (n=10) Mild stage (n=10) Total AD (n=20)

Age in years ± 

SD
*

76±10 72.4±8.4 74±9.3 68±11 73±7

Male (%) 40 60 50 50 78

Female (%) 60 40 50 50 22

*
standard deviation
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Table 2

Performance of the selected 9 ANN architectures in the discrimination of moderate AD from control 

spectroscopic data: a multilayer perceptron (MLP) and a radial basis function (RBF) networks.

Model # Type of network Network structure Sensitivity / % Specificity / %

1 Multilayer perceptron 5-20-20-1 97 95

2 Multilayer perceptron 5-50-10-1 96 96

3 Multilayer perceptron 5-100-1 96 95

4 Multilayer perceptron 7-200-20-1 96 94

6 Radial basis function 5-20-20-1 95 94

7 Radial basis function 5-50-10-1 96 95

8 Radial basis function 5-100-1 94 94

9 Radial basis function 7-200-20-1 94 94
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Table 3

Summary of the classification results achieved using a multilayer perceptron and a radial basis function 

networks for discrimination between Alzheimer's dementia and healthy controls.

# Class Radial basis function Multilayer perceptron

CV sensitivity / % CV specificity / % CV sensitivity / % CV specificity / %

Spectrum Subject Spectrum Subject Spectrum Subject Spectrum Subject

1 2 3 4 5 6 7 8 9

Two classes model

1 Healthy controls 95 88 92 87 97 87 96 90

2 Alzheimer's dementia 92 87 95 88 96 90 97 87

Three classes model

3 Healthy controls 89 77 92 83 92 89 93 88

4 Mild Alzheimer's dementia 85 84 94 85 92 84 95 85

5 Moderate Alzheimer's dementia 86 80 93 86 93 85 94 85

Healthy controls vs mild Alzheimer's dementia model

6 Healthy controls 96 90 89 87 95 92 91 91

7 Mild Alzheimer's dementia 89 87 96 90 91 91 95 92

Healthy controls vs moderate Alzheimer's dementia model

8 Healthy controls 96 86 95 85 97 85 96 88

9 Moderate Alzheimer's dementia 95 85 96 86 96 88 97 85

Mild vs moderate Alzheimer's dementia model

10 Mild Alzheimer's dementia 93 87 93 84 93 87 94 87

11 Moderate Alzheimer's dementia 93 84 93 87 94 87 93 87
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Table 4

Summary of the classification results achieved using a multilayer perceptron method for discrimination 

between Alzheimer's dementia and other dementias.

# Class Multilayer perceptron

CV sensitivity / % CV specificity / %

Two classes model

1 Other dementias 95 98

2 Alzheimer's dementia 96 95

Three classes model

3 Other dementias 92 97

4 Mild Alzheimer's dementia 95 92

5 Moderate Alzheimer's dementia 93 100

Other types of dementia vs mild Alzheimer's dementia model

6 Other dementias 91 94

7 Mild Alzheimer's dementia 84 82

Other types of dementia vs moderate Alzheimer's dementia model

8 Other dementias 96 95

9 Moderate Alzheimer's dementia 92 99
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Table 5

A tentative assignment of the most important regions in the Raman spectrum of blood serum for the 

discrimination between AD and HC, as determined by the genetic algorithm (GA).

# GA spectral 
region 
(cm−1)

Peak position 
(cm−1) +/− 5

Tentative band assignment [22, 23, 27, 
55]

Contributions [22, 23, 27, 56, 57]

1 400-467 415, 419, 455 υ
 (C-C), 

υ
 (S-S), 

δ
 (C-C) aliphatic chains

Proteins (amino acids: histidine, tryptophan, lysine, 
proline); lipids (fatty acids, triglycerides, cholesterol); 
carbohydrates (fructose, lactose, citric acid, 
galactosamine, N-acetyl-glucosamine); riboflavin; 
phosphatidylinositol; phosphoenolpyruvate

2 505-523 509, 519, 526 υ
(S-S)

Proteins (amino acids: glycine, glutamate, 
phenylalanine, tryptophan, tyrosine); carbohydrates 
(fructose, galactosamine, N-acetyl-glucosamine); 
coenzyme A; phosphatidylinositol; phosphatidylserine; 
acetoacetate; glutathione

3 993-1011 1003 υ
(C-C), 

υ
 (C-O), Aromatics ring 

breathing vibration

Proteins (amino acids: phenylalanine, lysine, 
glutamate); carbohydrates (fructose, lactose, 
galactosamine, N-acetyl-glucosamine); acetoacetate

4 1030-1049 1031, 1050 υ
(C-C), 

υ
(C-O)

Proteins (amino acids: valine, arginine, phenylalanine, 
proline, glycine, lysine, tryptophan, tyrosine); 
carbohydrates (fructose, lactose, mannose); fatty acids; 
phosphoenolpyruvate; coenzyme A

5 1218-1237 1207, 1235 υ
(C-C), 

υ
(C-H), 

υ
(C=S), (CH2) wagging 

vibrations

Proteins (β sheet, Amid III, tryptophan, tyrosine, 
lysine, phenylalanine, glycine, proline); pyruvate

6 1444-1462 1448 δ
 (CH2), 

δ
(CH2OH), 

δ
 (CH3), 

υ
(C-C)

Proteins (amino acids: valine, phenylalanine, 
tryptophan, lysine, proline); fatty acids; carbohydrates 
(fructose, galactosamine); phosphoenolpyruvate; 
acetoacetate; β-carotene; glutathione

7 1537-1556 1553 υ
(N=N), 

υ
(C=C), 

υ
(C-(NO2))

Guanine; tryptophan; proline; palmitic acid; N-acetyl-
glucosamine

υ
stretching mode;

δ
bending mode;
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Table 6

A tentative assignment of the most important regions in the Raman spectrum of blood serum for the 

discrimination between AD and OD, as determined by the genetic algorithm (GA).

# GA spectral 
region 
(cm−1)

Peak position 
( cm−1) +/− 5

Tentative band assignment [22, 23, 27, 
55]

Contributions [22, 23, 27, 56, 57]

1 410-672 415, 419, 455, 477, 
509, 519, 526 545, 
567, 585, 605, 621, 
643, 662

υ
(C-C), 

υ
(C-S) aliphatic chains 

δ
(C-C) 

aliphatic chains

Proteins (amino acids: histidine, tryptophan, 
proline, lysine, glycine); lipids (fatty acids, 
triglycerides); carbohydrates (fructose, lactose, 
citric acid, galactosamine, N-acetyl-
glucosamine); riboflavin; phosphatidylinositol; 
phosphoenolpyruvate

2 710-784 718, 744, 757 υ
(C-S) aliphatic chains 

υ
(N+(CH3)3) 

υ
(C-

C-N+)

Proteins (amino acids: valine, glutamate, 
phenylalanine, tryptophan); phospholipids; 
phosphatidylcholine; phosphoenolpyruvate; 
acetoacetate; coenzyme A; acetyl coenzyme A; 
D-fructose-6-phosphate; riboflavin; glutathione

3 973-1010 1003 υ
(C-C), 

υ
(C-O), Aromatics ring breathing 

vibration

Proteins (amino acids: phenylalanine, lysine, 
glutamate); carbohydrates (fructose, lactose, 
galactosamine, N-acetyl-glucosamine); 
acetoacetate

4. 1086-1122 1083, 1104, 1126 υ
(C-C), (O-P-O), 

υ
( C-O-C), 

υ
(C-S) 

aromatic

Proteins (phenylalanine, glycine, valine, 
glutamate, arginine, histidine, proline); 
carbohydrates (β glucose, galactosamine, N-
acetyl-glucosamine); acetyl coenzyme A; 
acetoacetate; D-fructose-6-phosphate; 
phosphoenolpyruvate; phospholipids

5 1199-1235 1207,1235 υ
(C-C), 

υ
(C-H), 

υ
(C=S), (CH2) wagging 

vibrations

Proteins (β sheet, Amid III, tryptophan, 
tyrosine, phenylalanine, glycine, proline); 
pyruvate

6 1311-1348 1317, 1338 υ
(C-(NO2)), 

υ
(C-(SO2)-C)

Proteins (phenylalanine, tryptophan, glycine, 
valine, serine, glutamate, histidine, proline, 
lysine, adenine, α helix); carbohydrates 
(lactose, N-acetyl-glucosamine); 
phosphoenolpyruvate; glutathione; 
phospholipids

7 1424-1498 1448 δ
(CH2), 

δ
(CH2OH), 

δ
(CH3), 

υ
(C-C)

Proteins (amino acids: valine, lysine, 
phenylalanine, tryptophan, proline); fatty acids; 
carbohydrates (fructose, galactosamine); 
phosphoenolpyruvate; acetoacetate; β-carotene; 
glutathione

8 1537-1611 1553, 1586 υ
(N=N), 

υ
(C=C), 

υ
(C-(NO2)) NH3

+ Guanine; tryptophan; proline; lysine; palmitic 
acid; N-acetyl-glucosamine

9 1649-1800 1657 υ
(C=C), 

υ
(C=O)

Proteins; amide I; α helix; phospholipids

υ
stretching mode;

δ
bending mode;
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