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Copyright © 2015 Yury E. Garćıa et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Epidemic outbreak detection is an important problem in public health and the development of reliable methods for outbreak
detection remains an active research area. In this paper we introduce a Bayesianmethod to detect outbreaks of influenza-like illness
from surveillance data. The rationale is that, during the early phase of the outbreak, surveillance data changes from autoregressive
dynamics to a regime of exponential growth. Our method uses Bayesian model selection and Bayesian regression to identify the
breakpoint. No free parameters need to be tuned. However, historical information regarding influenza-like illnesses needs to be
incorporated into the model. In order to show and discuss the performance of our method we analyze synthetic, seasonal, and
pandemic outbreak data.

1. Introduction

An important issue in public health is timely epidemic out-
break detection. Outbreak surveillance and monitoring are
usually done by gathering official data reported by hospitals
and clinics through medical consultation. One of the most
frequent causes of medical consultation in all countries
is influenza-like illness (ILI) or acute respiratory infection
(ARI) [1–3]. ILI are responsible for substantial morbidity and
mortality each year [3]. Seasonal influenza occurs throughout
the world, and it is ranked as a leading cause of death for
people below 4 and above 65 years of age and it is among the
10 top causes of death in almost all age groups [4, 5].

Early outbreak detection is necessary in order to take
suitable control measures. Outbreaks correspond to break-
points in surveillance data sets. Substantial research efforts
have been devoted to this topic, inspired by a variety of sta-
tistical techniques including regression methods, time-series
models, and statistical process control approaches and exten-
sions to those fields that involve space-temporal studies and
multivariate methods or techniques that include Bayesian
inference [6, 7]. Comprehensive reviews of the field are
presented by Unkel et al. [8], Sonesson and Bock [9], Brook-
meyer and Stroup [10], and Watkins et al. [11]. Each of these
papers presents a classification of methods used for outbreak

detection. In general, outbreak methods use threshold values
or threshold intervals to signal an alert, all based on historical
data.

There are methods based on linear regression with model
selection using criteria like AIC or BIC. However, outbreak
detection is made under uncertainty, as noise is present in
early signals of influenza surveillance [12]. Statisticalmethods
that ignore this uncertainty may result in overconfident
predictions. Bayesian methods provide a way to account
for uncertainty in both data and model selection [13]. In
this paper we introduce a Bayesian outbreak detection using
regression models with model selection based on Bayes fac-
tors; see Hoeting et al. [13] for a review. Examples of Bayesian
model comparison in linear models are [14, 15]. Smith and
Spiegelhalter [16] present a review of selection criteria for lin-
ear models in terms of Bayes factors. Guo and Speckman [17]
examine consistency of Bayes factors in the comparison prob-
lem for linear models. One key difference from most other
methods is that the method introduced in this paper is not
based on historical data alone, but rather on the exponential
nature of an epidemic outbreak. For the purposes of this
paper, prior information regarding influenza-like illnesses
was used to build prior distributions which in turn are useful
to estimate the Bayes factors for model selection.
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Figure 1: 𝑆𝐼𝑅 epidemic model. Parameter 𝛽 is the contact rate, 𝛾
is the recovery rate, and 𝜂 accounts for infections due to imported
cases. No births or deaths are taken into account given the time
frame of an epidemic outbreak (few months for ILI).

The paper is organized as follows. Section 2 describes the
results that lead to the outbreak detection method proposed
in this paper. Section 3 applies the proposed method to syn-
thetic and real data sets. Section 3.3 discusses the feasibility of
our approach. Finally, Section 4 summarizes our findings and
offers some perspectives.

2. Materials and Methods

Let us consider the epidemic process outlined in Figure 1. Let
𝑆(𝑡), 𝐼(𝑡), and𝑅(𝑡) denote the number of susceptible, infected,
and recovered individuals at time 𝑡 and the population size
𝑁(𝑡) = 𝑆(𝑡)+𝐼(𝑡)+𝑅(𝑡).The deterministic 𝑆𝐼𝑅model, without
imported infections, that is, 𝜂 = 0, is defined through the
following ODE system [18]:

𝑑𝑆 (𝑡)

𝑑𝑡
= − 𝛽

𝐼

𝑁
𝑆,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽

𝐼

𝑁
𝑆 − 𝛾𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛾𝐼.

(1)

𝛽 is the per capita contact rate between susceptible and
infected individuals and 𝛾 is the infection recovery rate. At
the onset of an epidemic outbreak the number of infected
individuals is small (relative to𝑁); that is, 𝐼(𝑡

0
) = 𝐼
0
≈ 0 and

𝑅(𝑡
0
) = 0 at initial time 𝑡

0
. Therefore 𝑆(𝑡

0
) ≈ 𝑁 and

𝑑𝐼

𝑑𝑡
= 𝛽

𝐼

𝑁
𝑆 − 𝛾𝐼 ≈ (𝛽 − 𝛾) 𝐼 (2)

for 𝑡 ≈ 𝑡
0
; consequently

𝐼 (𝑡) ≈ 𝐼
0
exp (𝛽 − 𝛾𝑡) = 𝐼

0
exp (𝛾 (𝑅

0
− 1) 𝑡) . (3)

Here 𝑅
0
= 𝛽/𝛾 is the basic reproductive number, which

is defined as the expected number of secondary infections
caused by an infectious individual in a totally susceptible
population during the time the individual spends in the infec-
tious compartment. An epidemic may occur if 𝑅

0
is greater

than one, while a basic reproductive number smaller than
one will not sustain an epidemic; see [18]. Of note, the basic
reproductive number does not change if 𝜂 ̸= 0.

In the remainder of the paper we writeΔ𝑅
0
= 𝑅
0
−1.Thus

𝐼(𝑡) ≈ 𝐼
0
exp(𝛾Δ𝑅

0
𝑡) and therefore

log (𝐼 (𝑡)) ≈ log (𝐼
0
) + 𝛾Δ𝑅

0
𝑡. (4)

That is, the logarithm of the number of infected individuals
is linear in 𝑡 during an epidemic outbreak.

On the other hand, outside epidemic outbreaks we expect
that the number of infected reported cases varies around a
background level, either around zero or an average number of
reports as it is the case in influenza-like illnesses (ILI reports,
examples to be analyzed in Section 3). By chance, the number
of infected persons reportsmay vary around the average, with
temporary runs going up (or down). In such a case wemay fit
a linear model in the original scale; namely,

𝐼 (𝑡) ≈ 𝑎 + 𝑏𝑡. (5)

The basis for our approach is to compare models (4) and (5),
with a short run of reports, using the machinery of Bayesian
model selection (see Section 2.1). If the exponential (i.e.,
linear in log scale) model is selected, it will signal the possible
start of an epidemic outbreak. It will be crucial to properly
code in the prior distribution forΔ𝑅

0
and 𝑏 a clear separation

between the two models, since for small values of Δ𝑅
0
both

modelsmay be quite similar (since 𝑒𝑥 ≈ 1+𝑥, for small 𝑥).We
explain the model selection and prior selection in the follow-
ing sections.

2.1. BayesianModel Comparison. Given a data set of reported
cases 𝐼(𝑡

𝑖
), 𝑖 = 1, 2, . . . , 𝑘 at times 𝑡

𝑖
, we consider a sliding

window of 𝑛 consecutive reports 𝐼(𝑡
𝑖
) to compare the statis-

tical models defined by expressions (4) and (5). Before the
outbreak, a linear model explains better the reported cases.
On the other hand, during the early phase of the epidemic
outbreak the number of infected individuals grows exponen-
tially; thus the exponential model should be selected by the
Bayes factors and the onset of the outbreak detected. Next
we present an outline of Bayes factors and Bayesian model
comparison and the basis for our approach.

Given two hypotheses 𝐻
1
and 𝐻

2
corresponding to the

alternative models𝑀
1
and𝑀

2
for data 𝐷 and parameters 𝜃

1

and 𝜃
2
, the posterior distribution in each case is 𝑓(𝜃

𝑗
| 𝐷) =

𝑝(𝜃 | 𝐻
𝑖
)𝑝(𝐷 | 𝜃,𝐻

𝑖
)/𝑝(𝐷 | 𝐻

𝑖
), 𝑗 = 1, 2. Here 𝑝(𝜃

𝑗
| 𝐻
𝑖
)

and 𝑝(𝑦 | 𝜃
𝑗
, 𝐻
𝑖
) are the prior and likelihood for model 𝑖 and

𝑝 (𝐷 | 𝐻
𝑖
) = ∫𝑝 (𝜃 | 𝐻

𝑖
) 𝑝 (𝑦 | 𝜃,𝐻

𝑖
) 𝑑𝜃 (6)

is the normalization constant in each case. The basis of
Bayesianmodel selection is thatwe can calculate the posterior
distribution that each model, or each hypothesis, 𝐻

𝑖
, is true.

Namely, from Bayes’s theorem we have

𝑝 (𝐻
𝑖
| 𝐷) =

𝑝 (𝐷 | 𝐻
𝑖
) 𝑝 (𝐻

𝑖
)

𝑝 (𝐷 | 𝐻
1
) 𝑝 (𝐻

1
) + 𝑝 (𝐷 | 𝐻

2
) 𝑝 (𝐻

2
)
,

(7)

where 𝑝(𝐻
𝑖
) is the prior probability assigned for model 𝑖. The

Bayes factor (𝐵
1,2
) comparing these twomodels is given by the

odds ratio of model𝑀
1
versus model𝑀

2
; that is,

𝐵
1,2
=
𝑝 (𝐻
1
| 𝐷)

𝑝 (𝐻
2
| 𝐷)

=
𝑝 (𝐷 | 𝐻

1
) 𝑝 (𝐻

1
)

𝑝 (𝐷 | 𝐻
2
) 𝑝 (𝐻

2
)
. (8)
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Table 1: Model parameters summary of parameters used for both synthetic data generation and outbreak detection method.

Parameter Value Dimension Description
𝜂 100 Days Infection importation rate
𝛾 7 Days Infection recovery time
𝑛 3 Reporting interval Length of the window used to compare the models
𝑝 2 Parameter index

Intuitively, the Bayes factor provides a measure of whether
data 𝐷 have increased or decreased the odds on 𝐻

1
versus

𝐻
2
. Thus 𝐵

1,2
> 1 signifies that𝐻

1
(or𝑀

1
) is relatively more

probable than𝐻
2
(or𝑀

2
) given𝐷 [19]. The optimal decision

is therefore to choose the model with the highest posterior
probability, that is, model 1 if 𝐵

1,2
> 1 andmodel 2 otherwise.

Note that Bayes factors do not make sense when using
improper priors (due to unspecified constants) and are
sensitive to vague or default a priori distributions; see [20].
However, in this paper we use strong and informative (and
indeed proper) priors aimed at distinguishing both models.
Therefore the mentioned issues, thoroughly discussed in the
Bayesian literature, should be of no concern in the current
setting.

Let us denote by𝑀
1
the exponential model in (4) and𝑀

2

the linear model given in (5). Let𝐷 be the data at hand, either
𝐼(𝑡
𝑖
) for model 1 or log 𝐼(𝑡

𝑖
) for model 2, 𝑖 = 1, 2, . . . , 𝑘. Then

we assume

𝐷 ∼ 𝑁
𝑛
(𝑋𝜃, 𝜎

2
𝐼
𝑛
) . (9)

Thats is,𝐷 ∈ R𝑛 follows a normal distribution with mean𝑋𝜃
and covariance matrix 𝜎2𝐼

𝑛
, where 𝐼

𝑛
is the identity matrix;

𝑋 ∈ R𝑛×2 and 𝜃 ∈ R2 are the designmatrix and the parameter
vector, respectively. We will require a different design matrix
𝑋 and prior distributions, for each model𝑀

𝑖
.

To perform a standard conjugate Bayesian analysis on
this linear model [19, 21, 22] we proceed as follows; please
see Appendix A for more details. We use the Normal-Inverse
Gamma (NIG) prior distribution:

𝜃, 𝜎
2
∼ NIG (𝜃

0
, Σ
0
, 𝛼
0
, 𝛽
0
) ; (10)

𝜃
0
corresponds to the location parameter,Σ

0
is the covariance

matrix (for 𝜃 | 𝜎
2
∼ 𝑁
2
(𝜃
0
, 𝜎
2
Σ
0
)), and 𝛼

0
and 𝛽

0
denote

the parameters of the Inverse-Gamma distribution (for 𝜎2 ∼
InvGa(𝛼

0
, 𝛽
0
)), in the usual way. The posterior distribution

results in a NIG(𝜃
𝑛
, Σ
𝑛
, 𝛼
𝑛
, 𝛽
𝑛
), where

𝜃
𝑛
= (Σ
−1

0
+ 𝑋
𝑇
𝑋)
−1

(Σ
−1

0
𝜃
0
+ 𝑋
𝑇
𝐷) , (11a)

Σ
𝑛
= (Σ
−1

0
+ 𝑋
𝑇
𝑋)
−1

, (11b)

𝛼
𝑛
= 𝛼
0
+
𝑛

2
, (11c)

𝛽
𝑛
= 𝛽
0
+
1

2
[𝜃
𝑇

0
Σ
−1

0
𝜃
0
+ 𝐷
𝑇
𝐷 − 𝜃

𝑇

𝑛
Σ
−1

𝑛
𝜃
𝑛
] . (11d)

The normalization constant in (6), required by the Bayes
factor, is

𝑝 (𝐷) = ∬𝑝(𝐷 | 𝜃, 𝜎
2
) 𝑝 (𝜃, 𝜎

2
) 𝑑𝜃 𝑑𝜎

2

=
(2𝜋)
−(𝑛+𝑝)/2

Γ (𝛼
𝑛
)

(2𝜋)
−𝑝/2

Γ (𝛼
0
)

𝛽
−𝛼
𝑛

𝑛
√
Σ𝑛



𝛽
−𝛼
0

0
√
Σ0



(12)

(see Appendix A for more details).
From (4) and (5) it is clear that the design matrices𝑋 are

(

1 0

1 𝛾

1 2𝛾

) , (

1 0

1 1

1 2

) (13)

for the log-linear (exponential) and linear models, with 𝜃
𝑇

equal to (log(𝐼
0
), Δ𝑅
0
) and (𝑎, 𝑏), respectively.

Other relevant parameters are explained and set in
Table 1. In the following sectionwe discuss and establish prior
distributions for each model, setting the hyperparameters of
the prior NIG distribution.

2.2. PriorDistributions. Asmentioned in Section 2.1, it is cru-
cial to separate both models through a prior distribution that
distinguishes clearly the exponential growth from a linear
fluctuation.The basic reproduction number𝑅

0
plays a central

role in the prior information. Here, prior information of our
approach is set for influenza-like illnesses; other prior specifi-
cations could be attempted for another type of epidemic out-
breaks. It is known that for seasonal influenza 𝑅

0
is approx-

imately 1.5 [23]; therefore prior expectation for Δ𝑅
0
will be

centered at 0.5. Moreover, in calibrating our models we have
found that the bigger the population size 𝑁 the sharper the
prior needed, where the prior variance should decrease as
1/𝑁. This rule is in agreement with standard hypothesis in
physics; in a well mixed system the amplitude of fluctuations
scales like the square root of the system size [24].

For each data window, we first subtract its corresponding
mean, for either the logged or the original data, and center
the prior linear model around 0. Consequently, the hyperpa-
rameters 𝜃

0
and Σ

0
for the NIG prior are set to

(

0

1

2

) , (

log (10)2 0

0
1

𝑁

) , (
0

0
) , (

10
2
0

0 2
) , (14)

for the log-linear (exponential) and linear models, respec-
tively. The outbreak detection method introduced here is
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robust to other reasonable settings for these hyperparameters.
The only critical value is the variance forΔ𝑅

0
, which, as men-

tioned above, needs to be adjusted with the population size
as 1/𝑁.

The remaining hyperparameters are set to 𝛼
0
= (1/2)(𝑛 −

𝑝) and 𝛽
0
= (1/2)(𝑛−𝑝)�̂�

2, where �̂�2 is the observed variance
in the data window, for either the logged or the original data.
Thus, the prior variance is centered near the observed vari-
ance for each model.

Indeed, in a pure inference scenario it is questionable to
use data driven prior distributions. However, in the current
setting it is desired to distinguish between the linear and
exponential models and not in fact the estimation of the
regression parameters themselves, which are regarded as nui-
sance. By subtracting the mean and centering the prior of 𝜃

1

(either to Δ𝑅
0
or to 𝑏) to 0 and by setting a priori 𝐸(𝜎2) ≈ �̂�2

we are helping the inference of the regression parameters in
each case (and equally for both models). This is a key feature
of the proposed approach, since we will use a small window
of three consecutive reports, and uncentered priors would
blur the relative weight of each model, rendering the model
comparison useless. Overall, the prior distribution selection
at this stage should be regarded as a pragmatic approach to
making the outbreak detection procedure work.

Once the outbreak is detected wemay then try to estimate
𝑅
0
using the data window at hand. Again, since the data

set is very small, we will use a noninformative prior (see
[19]) and use the marginal posterior for the regression
parameters of the log-linear (exponential) model to estimate
𝑅
0
. The corresponding marginal posterior for the whole 𝜃 =

(log(𝐼
0
), Δ𝑅
0
)
𝑇 parameter is St

𝑝
(𝜃, 0.5(𝑋

𝑇
𝑋)(𝑛−2)𝛽

−1

𝑛
, 𝑛−2),

where 𝜃
𝑛
= (𝑋
𝑇
𝑋)
−1
𝑋
𝑇
𝐷 and 𝛽

𝑛
= 0.5(𝐼 − 𝑋𝜃

𝑛
)
𝑇
𝐷 (indeed,

𝐷 is the logged data).Themarginal distribution of any one of
the entries of 𝜃 is a univariate Student 𝑡 distribution. We are
interested in 𝜃

2
(corresponding to Δ𝑅

0
); thus 𝜃

2
∼ St((𝜃

𝑛
)
2
,

𝑠
2
(𝑋
𝑇
𝑋)
22
, 𝑛 − 𝑝). We will use the posterior expected value,

𝜃
2
= (𝜃
𝑛
)
2
, of this posterior marginal to estimate 𝑅

0
; namely,

�̂�
0
= 𝜃
2
+ 1. Also, since 𝛾 is fixed an estimator for 𝛽 can be

produced with 𝛽 = (𝜃
2
+ 1)𝛾.

In Section 3 we compute 𝐵
12

over a moving window of
four consecutive data points, that is,𝑁 = 4, to decide whether
changes are due to data oscillations (linear model is selected
and 𝐵

12
< 1), or the onset of exponential growth occurs (the

exponential model is selected and 𝐵
12
> 1) and an epidemic

outbreak is expected.

3. Results

We have tested the predictive capacity of the outbreak detec-
tion method proposed in this paper with real and synthetic
data sets. The real data sets used are from the Spanish
influenza outbreak in San Francisco, USA, in 1918 (see [25])
and data of the acute respiratory illnesses (ARI) fromSan Luis
Potośı, México (see Noyola and Arteaga-Domı́nguez [26]).

Outbreak information and model relevant parameters
like the infection rate (𝛽), the basic reproductive number
(𝑅
0
), and the week of outbreak were estimated. In each figure,

Table 2: Estimates obtained for the detected outbreak.

𝑁 �̂�
0

Week of outbreak 𝛽

5000 1.23 2 0.17
10000 1.36 7 0.19
500000 1.91 8 0.27
1000000 1.35 14 0.19

red dots indicate three consecutive points in which the
exponential model is selected over the linear model; that is,
𝐵
12
> 1. Grey points indicate one single four-point window in

which 𝐵
12
> 1. As explained in the previous section, once the

outbreak is detected we use the log-linear model, with a
noninformative prior, to produce estimators for both 𝑅

0
and

𝛽.

3.1. Synthetic Data Analysis. To create synthetic data we have
avoided committing an “Inverse Crime” [27]. Synthetic data
was produced with a closely related but different model to
the one assumed in (4) or (5) to be producing the infectious
reports. Namely, we use the Gillespie algorithm to make a
realization of the 𝑆𝐼𝑅 epidemic model with demographic
stochasticity [28]. Initially all individuals are susceptible
and the epidemic outbreak is due to imported cases. The
frequency of imported cases is controlled with parameter 𝜂;
see Figure 1. Of note, the deterministic model (1) is the mean
field equation of this stochastic 𝑆𝐼𝑅model.Moreover, in a real
scenario data is accumulated over the reporting time frame
(daily, weekly, etc., reports for infected persons). We then
accumulate the simulated data over the reported time frame
to produce the synthetic infectious reports 𝐼(𝑡

𝑖
). Also, a

linear autoregressive process is added to the synthetic data to
simulate a background of diseases caused by other agents, as it
is the case of influenza-like illness. Simulations have𝑅

0
= 1.5,

𝛾 = 1/7 (days); the rate of imported cases is 𝜂 ∈ [10−7, 10−4]
depending on the population size 𝑁. Reports are accumu-
lated weekly. Some examples are presented in Figure 2 and
the estimates for 𝑅

0
and 𝛾 are presented in Table 2.

3.2. Real Data Analysis. Real surveillance data sets account
for medical consultation cases. These numbers represent
infected persons seeking medical attention at health centers.
For influenza, it is estimated that as low as 17% of the infected
population seekmedical consultation and approximately 75%
of people with seasonal or pandemic influenza do not exhibit
symptoms [29]. However, under normal circumstances
reports are proportional to the actual number of infected
people and exponential growth in the number of infected
people will be shown as such in the reported cases. In the
following examples we do not explicitly model subreporting,
obtaining good results in all cases.

The Spanish influenza of 1917-18 was a pandemic consid-
ered among the most devastating ones in history [30, 31].
Figure 3 shows a data set corresponding to San Francisco,
USA, spanning from September 24th to November 24th.

Our detection method identifies an outbreak on October
10th.The estimated parameters associated with this epidemic
are 𝛽 = 0.53 and �̂�

0
= 3.7. Both the estimated 𝑅

0
and
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Figure 2:Outbreak detection for population sizes of (a)𝑁= 5,000, (b)𝑁= 10,000, (c)𝑁= 500,000, and (d)𝑁= 1,000,000. Datawas generated
with a realization of a 𝑆𝐼𝑅 model with demographic stochasticity and imported cases. Outbreaks detection improves as the population size
grows.

outbreak day are comparable with the values calculated by
Chowell et al. [23].

Data of acute respiratory infections (ARI) in San
Luis Potośı, México, are available in Noyola and Arteaga-
Domı́nguez [26]. Here, we analyze ARI weekly reports from
thewinter seasons of 2000 to 2008. Reports refer to epidemio-
logical weeks, for which week 1 is week 25 of the calendar year
(i.e., mid June). Data for 2002-2003 and 2003-2004 winter
seasons are plotted in Figure 4 along with outbreak detection
results. In this series of data sets the seasonal outbreak is
consistently detected between epidemiological weeks 13 and
15 with 𝑅

0
between 1.3 and 2.5; see Table 3.

Of note, other questions from ARI surveillance may
be addressed; for instance, when do the weekly reports of

ARI exceed the historical mean? However, in this paper we
limit ourselves to the introduction of the detection method
and leave other questions of disease surveillance for future
research.

3.3. Discussion. We have introduced an outbreak detection
method based on Bayesian linear regression and Bayes
factors. Our method performs correctly in real and synthetic
examples. Undoubtedly a key component of this method is
the structure of the prior information used to distinguish the
exponential from the linear model. In the above examples we
have focused on influenza-like illness (ILI) or acute respira-
tory infection (ARI). Consequently, the prior expectation for
𝑅
0
was set equal to 1.5. We anticipate that other diseases may
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Figure 3: Spanish influenza in San Francisco, USA, 1918. Population
550000. Outbreak spanned from September 24th toNovember 24th.
Method detected outbreak on the 17th day of the outbreak (October
10th). Estimated parameters are 𝛽 = 0.53 and 𝑅

0
= 3.7.

Table 3: Parameters of acute respiratory infection records from San
Luis Potośı 2000–2009. Population is approximately 2,000,000.

Year �̂�
0

Week of outbreak 𝛽

2000-2001 1.57 8 0.22
2001-2002 1.29 7 0.18
2002-2003 1.34 7 0.19
2003-2004 1.37 8 0.19
2004-2005 1.59 8 0.23
2005-2006 1.32 8 0.19
2006-2007 1.42 8 0.20
2007-2008 2.5 11 0.36

be modeled correctly using previous reports of the expected
value of the basic reproductive number. We have learned that
the prior variance for Δ𝑅

0
needs to reduce as 1/𝑁, where 𝑁

is the population size. This choice may be justified recalling
that in a well mixed physical system fluctuations scale like the
square root of the system size.

In the examples presented above the outbreak is detected
in the presence of underreporting. The good performance of
the method is explained considering the fact that the method
is based on detecting a qualitative feature of the surveillance
data instead of a quantitative threshold. Methods based on
historical thresholds may have difficulties in detecting an
outbreak happening within or below average historical report
levels. Of note, our method uses historical data to calibrate
prior distributions; for example, historical data is used to
model how much we allow surveillance data to oscillate
while in the autoregressive regime. Moreover, the method
introduced in this paper allows us to estimate important
parameters like infection rate (𝛽) and the basic reproductive

number (𝑅
0
) which provide valuable information regarding

outbreak behavior. The estimation of these quantities was
made using a sliding window of three consecutive reports.

Bayesian outbreak detection was applied to two types of
real data sets. It consistently succeeded in making an early
detection and the estimated 𝑅

0
and 𝛽 values were in agree-

ment with values reported in the literature.
A Python-Scipy implementation of our approach may be

downloaded from http://www.cimat.mx/jac/software; a user
friendly interphase is available at request from the authors.

4. Conclusions

Outbreak detection is an important problem in surveillance
of infectious diseases.The development of robust methods of
early outbreak detection remains an active research area.

In this paper we use Bayes factors to detect a breakpoint
that characterizes the onset of an epidemic outbreak in influ-
enza-like illness surveillance data. The breakpoint character-
izes the change from an autoregressive regime to exponential
behavior of reported cases at the beginning of an epidemic
outbreak. The detection method was successfully used on
synthetic and real data sets. The resulting algorithm is
straightforwardly implemented. The mathematical methods
behind the algorithm are simple but contrast with other pro-
posedmethodswhich are based on calculating thresholds and
control charts. Of note, our approach has no free parameters
to tune.

The prior distributions used arise from coding informa-
tion available for influenza-like illness. It is apparent that the
method may be applied to surveillance data of other infec-
tious diseases, for example, acute diarrheal diseases, provided
enough prior information about the disease of interest is
available.

Certainly, it is important to detect outbreaks before they
have fully developed, that is, when the number of cases is
still low. Our outbreak detection method seems to be able to
achieve an early detection of influenza-like illness outbreaks,
when synthetic and real data are analyzed. Furthermore, it
allows us to make quantitative estimations for important
parameters regarding the epidemic. The estimated parame-
ters in the data sets analyzed are in agreement with previously
published values.

Some features like the optimal number of reports
required to identify an outbreak, optimal number of consec-
utive Bayes factors required to call an outbreak, and so forth
are left as subject of further research.

Appendix

A. Details on the Prior and
Posterior Distributions and Obtaining
the Normalizing Constants

Let us denote by𝑀
1
the linear model 𝐼(𝑡) = 𝑎 + 𝑏𝑡, modeling

the background data, and𝑀
2
the exponential model given by

log(𝐼(𝑡)) = log(𝐼
0
) + 𝛾Δ𝑅

0
𝑡, modeling the early outbreak. Let
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Figure 4: ARI reports from SLP, Mexico, winter seasons of (a) 2000-2001, 𝛽 = 0.22, �̂�
0
= 1.57, outbreak detected at epidemiological week 8,

and (b) 2003-2004, 𝛽 = 0.19, �̂�
0
= 1.37, outbreak detected at epidemiological week 8.

𝐷 be the data, either 𝐼(𝑡
𝑖
) for model 1 or log(𝐼(𝑡

𝑖
)) for model

2. Then, we assume

𝐷 ∼ 𝑁
𝑛
(𝑋𝜃, 𝜎

2
𝐼
𝑛
) ; (A.1)

that is, 𝐷 ∈ R𝑛, follows a normal distribution with mean 𝑋𝜃
and covariance matrix 𝜎2𝐼

𝑛
, where 𝐼

𝑛
is the identity matrix,

and𝑋 ∈ R𝑛 and 𝜃 ∈ R2 are the design matrix and the param-
eter vector, respectively. The following details may also be
found in [22].

A.1. The NIG Prior. To perform a standard conjugate
Bayesian analysis on this linear model, we use the Normal-
Inverse Gamma (NIG) prior distribution as follows:

𝜃, 𝜎
2
∼ NIG (𝜃

0
, Σ
0
, 𝛼
0
, 𝛽
0
) . (A.2)

This two-dimensional NIG distribution signifies that

𝜃 | 𝜎
2
∼ 𝑁
2
(𝜃
0
, 𝜎
2
Σ
0
) , (A.3)

where 𝜃
0
correspond to the a priori location parameter andΣ

0

the a priori covariance matrix for 𝜃 and 𝛼
0
and 𝛽

0
denote the

hyperparameters for the a priori Inverse-Gammadistribution
for 𝜎2; consider

𝜎
2
∼ IG (𝛼

0
, 𝛽
0
) . (A.4)

The functional form of this prior distribution is given by

𝑝 (𝜃, 𝜎
2
)

= 𝑝 (𝜃 | 𝜎
2
) 𝑝 (𝜎

2
) = 𝑁

2
(𝜃
0
, 𝜎
2
Σ
0
) × IG (𝛼

0
, 𝛽
0
)

=
𝛽
𝛼
0

0

(2𝜋)
𝑝/2 Σ0



1/2
Γ (𝛼
0
)

(
1

𝜎2
)

𝛼
0
+𝑝/2+1

× exp [− 1

𝜎2
{𝛽
0
+
1

2
(𝜃 − 𝜃

0
)
𝑇
Σ
−1

0
(𝜃 − 𝜃

0
)}]

∝ (
1

𝜎2
)

𝛼
0
+𝑝/2+1

× exp [− 1

𝜎2
{𝛽
0
+
1

2
(𝜃 − 𝜃

0
)
𝑇
Σ
−1

0
(𝜃 − 𝜃

0
)}] ,

(A.5)

where Γ(⋅) represents the Gamma function and the IG(𝛼
0
, 𝛽
0
)

prior density for 𝜎2 is given by

𝑝 (𝜎
2
) =

𝛽
𝛼
0

0

Γ (𝛼
0
)
(
1

𝜎2
)

𝛼
0
+1

exp(−
𝛽
0

𝜎2
) ,

𝜎
2
> 0, 𝛽

0
> 0, 𝛼

0
> 0.

(A.6)

A.2. The Likelihood. The likelihood function for each model
is defined as the joint probability of observing the data viewed
as a function of the parameters; consequently

𝑃 (𝐷 | 𝜃, 𝜎
2
)

= 𝑁(𝑋𝜃, 𝜎
2
𝐼
𝑛
)

= (
1

2𝜋𝜎2
)

𝑛/2

× exp {− 1

2𝜎2
(𝐷 − 𝑋𝜃)

𝑇
(𝐷 − 𝑋𝜃)}

(A.7)

viewed as a function of 𝜃 and 𝜎2 and fixing𝐷.

A.3. The Posterior NIG Distribution. The posterior distribu-
tion is defined as 𝑝(𝜃, 𝜎2 | 𝐷) = 𝑝(𝜃, 𝜎

2
)𝑝(𝐷 | 𝜃, 𝜎

2
)/𝑝(𝐷),

where 𝑝(𝐷) = ∫𝑝(𝜃, 𝜎
2
)𝑝(𝐷 | 𝜃, 𝜎

2
)𝑑𝜃 𝑑𝜎

2 is the marginal
distribution of the data.
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We have that

𝑝 (𝜃, 𝜎
2
| 𝐷)

=

NIG (𝜃
0
, Σ
0
, 𝛼
0
, 𝛽
0
) × 𝑁 (𝑋𝜃, 𝜎

2
𝐼
𝑛
)
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∝
𝛽
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0
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)
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+
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−
1
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1
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)

𝛼
0
+(𝑝+𝑛)/2+1

⋅ exp {−1
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+
1
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0
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𝑇
Σ
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𝑇
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(A.8)

Using the identity

𝑢
𝑇
𝐴𝑢 − 2𝛼

𝑇
𝑢 = (𝑢 − 𝐴

−1
𝛼)
𝑇

𝐴(𝑢 − 𝐴
−1
𝛼) − 𝛼

𝑇
𝐴
−1
𝛼

(A.9)

we may write

1

𝜎2
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0
+
1

2
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0
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𝑇
Σ
−1

0
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where

𝜃
𝑛
= (Σ
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0
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−1

0
𝜃
0
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Therefore,

𝑝 (𝜃, 𝜎
2
| 𝐷)

= (
1

𝜎2
)

𝛼
0
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[𝛽
𝑛
+
1

2
(𝜃 − 𝜃
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𝑇
Σ
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𝑛
(𝜃 − 𝜃

𝑛
)]} ,

𝑝 (𝜃, 𝜎
2
| 𝐷) ∝ NIG (𝜃

𝑛
, Σ
𝑛
, 𝛼
𝑛
, 𝛽
𝑛
) .

(A.12)

A.4. The Normalization Constant. This is the constant
required by the Bayes factor. We need to compute the distri-
bution 𝑝(𝐷 | 𝜎

2
) by integrating out 𝛽 and subsequently

integrate out 𝜎2 to obtain 𝑝(𝐷). Accordingly,

𝑝 (𝐷 | 𝜎
2
)

= ∫𝑝 (𝐷 | 𝜃, 𝜎
2
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Here thematrix identity |𝐴+𝐵𝐷𝐶| = |𝐴||𝐷||𝐷−1+𝐶𝐴−1𝐵|
was applied to obtain
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𝑋
𝑇
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) . (A.14)
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Now, the marginal distribution of 𝑝(𝐷) is obtained as
follows:

𝑝 (𝐷) = ∫𝑝 (𝐷 | 𝜃, 𝜎
2
) 𝑝 (𝜃, 𝜎

2
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2
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2
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(A.15)

In more detail, we have
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Thus, the posterior distribution is

𝑝 (𝜃, 𝜎
2
| 𝐷) =

𝑝 (𝜃, 𝜎
2
) × 𝑝 (𝐷 | 𝛽, 𝜎
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)
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(𝑋𝜃, (𝛽
0
/𝛼
0
) (𝐼 + 𝑋Σ

0
𝑋𝑇))

,

(A.17)

which indeed reduces (after some algebraic manipulation) to
the NIG(𝜃

𝑛
, Σ
𝑛
, 𝛼
𝑛
, 𝛽
𝑛
) density.

The marginal distribution of any one of the entries of 𝜃
𝑛

is a univariate Student 𝑡 distribution. This is used and the
correct parameters are described in Section 2.2 to estimate𝑅

0

and infection rate (𝛽).
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