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Abstract

Genome-scale metabolic network reconstructions and constraint-based analysis are powerful 

methods that have the potential to make functional predictions about microbial communities. 

Current use of genome-scale metabolic networks to characterize the metabolic functions of 

microbial communities includes species compartmentalization, separating species-level and 

community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale 

modeling, and others. There are many challenges inherent to the field, including a need for tools 

that accurately assign high-level omics signals to individual community members, new automated 

reconstruction methods that rival manual curation, and novel algorithms for integrating omics data 

and engineering communities. As technologies and modeling frameworks improve, we expect that 

there will be proportional advances in the fields of ecology, health science, and microbial 

community engineering.

Microbial communities represent a gargantuan force of nature that exerts influence on global 

geochemical cycles1, agriculture2, human health3, food preparation4, and a host of relevant 

aspects of life on earth5,6. Traditional microbiology has made great strides over the last 

century in describing and categorizing these microscopic neighbors. More recently, 

advances in sequencing technologies have provided the first glimpses at the composition of 

natural microbial communities, including insights into the physiology of non-culturable 

microbes7. Databases are filling with mountains of genomic fragments, gene and protein 

expression data, and other such large-scale “–omics” information, all describing the content 

of diverse microbial communities8,9. Despite the plethora of data, we yet lack true 

understanding of the mechanisms that cause communities to function and interact with their 

environments10. Considering the importance of microbial communities to many global 

ecosystems, health, and various industries, there is a great need to move beyond a 
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descriptive ‘parts list’ approach of the field, and transition to more functional, predictive 

models of microbial community structure and function.

Predictive community models have the potential to engender many beneficial technologies 

including: rational probiotic design for restoring a diseased intestinal microbiota11, efficient 

chemical-producing consortia12, or optimal bioremediation communities13. Furthermore, 

predictive models will allow novel exploration of basic questions in microbial ecology14,15, 

leading to new insights into the development and evolution of microbial communities10 

(Figure 1). All of these potential applications will require improvements in the mathematical 

toolbox used to represent biochemical networks and their interactions.

Genome-scale metabolic network reconstructions (GENREs) have been successfully applied 

to the representation, study, and engineering of single microbes16 (Figure 2). The last decade 

has seen extensive tool development for the analysis of models encompassing single strains 

up to complex microbial communities10,17–22. Since the first published community model in 

2007 of a mutualistic microbial community, the accumulating body of work has highlighted 

many unique challenges related to microbial community modeling23. In this review, we 

discuss the existing frameworks that have been developed using GENREs for community 

analysis (Figure 3 and Table 1), the types of questions that can be addressed, and challenges 

in the field that present opportunities for progress.

Current State of the Field

Genome-Scale Metabolic Reconstructions: What they are and what they can do

GENREs are an organized collection of the metabolic reactions that can occur within a 

biological system (the system generally being a cell). This collection of reactions is inferred 

from genome annotations, and the resulting gene-to-protein-to-reaction mapping allows 

genotype-phenotype predictions (Figure 2). The heart of a GENRE is the stoichiometric (S) 

matrix, which consists of the stoichiometric coefficients for each reaction represented in the 

network reconstruction. Mass and charge are balanced for every reaction. This simple 

representation can be used to explore the space of possible biochemical conversions that can 

be carried out by the set of reactions in the GENRE. Optimization techniques such as flux 

balance analysis (FBA) are used to estimate optimal yields given a particular metabolic 

environment and GENRE24. The reconstruction and analysis of GENREs for single 

organisms have been reviewed extensively16,25.

The basic principles for the generation and analysis of GENREs learned from studies of 

single organisms have been extended in innovative ways to represent the interactions 

between multiple species within communities. Each of these extensions provides a unique 

approach to a set of field-specific questions:

1. Structure: How should species models be “linked” together? Should there be an 

unbiased, wholesale sharing of metabolites, essentially ignoring species 

boundaries? Or should metabolite sharing be restricted to only those compounds for 

which there is empirical evidence? Should species models be linked to the 

environment/host? And if so, how?

Biggs et al. Page 2

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Analysis: Should optimization be used to estimate optimal species yield or optimal 

community yield? Is there tension between these two objectives in silico or in 

vitro? What optimization strategies lead to the most useful analyses?

3. Refinement: How much curation effort should go into the individual species-level 

reconstructions?

4. Validation: What kind of experimental data can be used to validate model 

predictions?

5. Applications: Given the model structure and analysis, how informative are the 

model predictions? How can the model be used to answer impactful questions or 

inform engineering design choices?

The answers to these questions depend entirely on the purpose of the study, and the 

questions being asked. We review the various efforts to understand microbial communities 

using GENREs, and describe each modeling framework utilized to-date.

Compartmentalization

The first framework devised for linking GENREs together is an extension of the 

compartmentalization approach used for eukaryotic GENREs26 (Figure 3A). In eukaryotic 

models, organelles and other compartments are divided, and reactions specific to each 

compartment are separated by transport reactions26. Along the same lines, multiple species-

level GENREs are incorporated into a large “meta-stoichiometric matrix” and transport 

reactions are explicitly added to enable metabolite flux between species compartments, often 

with an extracellular compartment inserted as a representation of the local environment.

The first community GENRE was developed to represent the mutualistic interaction between 

Desulfovibrio vulgaris and Methanococcus maripaludis23. The species GENREs consisted 

only of reactions in central metabolism and were linked using a compartmentalization 

approach, with shared byproducts and exchange reactions flowing through a shared 

compartment. FBA was used to estimate optimal growth rate and metabolite fluxes, where 

the objective function was chosen to be a linear, weighted combination of the biomass 

functions for each species (with the weights based on experimentally determined species 

biomass ratios in active communities). Several results highlight the types of questions that 

can be addressed using this modeling framework. First, FBA results were closest to 

experimental results during the active-growth phase, where there were no limiting 

nutritional conditions, which is consistent with the explicit assumption of pseudo-steady-

state growth in FBA. Next, simulated flux patterns of primary metabolites matched 

experimental measurements, such as the large flux in D. vulgaris from lactate (the sole 

carbon substrate) to acetate, with some CO2 and formate production, and production of a 

reduced compound, either hydrogen or formate. Flux through M. maripaludis showed 

consumption of acetate or CO2, and production of CH4. Further, in silico simulations offered 

insight into the amount of non-productive ATP hydrolysis required to match experimentally-

measured biomass. This study highlights strengths of the compartmentalization and 

optimization-based approach. It allowed the exploration of theoretical limits on growth and 

nutrient fluxes as a function of the metabolic networks.
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Other studies have successfully utilized the same compartmentalization approach. In one 

study, this approach was used to computationally design media conditions that induce 

commensalism or mutualism between microbe pairs27. In another, three GENREs 

(Bacteroides theaiotamicron, Eubacterium rectale, and Methanobrevibacter smithii) were 

used to explore the impact of the gut microbiome on host metabolism28. To accomplish this, 

two optimization frameworks were defined which are referred to as the α-problem and β-

problem. The α-problem is used to predict the uptake and secretion of metabolites when the 

diet and species abundances are known. The β-problem is the inverse, where the model 

predicts species abundances when metabolite uptake and secretion rates are known. The 

results from this novel analytical approach are validated using experimental data from 

gnotobiotic mice. Finally, a host-pathogen interaction between Mycobacterium tuberculosis 

and an alveolar macrophage was simulated using this compartmentalization strategy29. The 

GENRE for M. tuberculosis was included as a compartment within the macrophage model, 

effectively representing a specific metabolic state that M. tuberculosis can inhabit during 

infection29. Several other groups have published models that utilize this 

compartmentalization approach, summarized in Table 1.

The compartmentalization framework is an intuitive and simple way to represent microbial 

interactions. This approach has been used more frequently than any other, providing 

mechanistic insight into community metabolism and good agreement with experiment. 

However, the compartmentalization strategy may limit the types of analyses that can be 

performed. First, this representation of a community inherently forces an assumption of 

balanced growth making it difficult to account for metabolite accumulation in the 

environment because of steady-state constraints in FBA. Second, single-level optimization-

based analyses of compartmentalized models often assume that each species in the 

community is growing optimally (i.e. the objective function in FBA is often assumed to be a 

combination of the objective functions for each species). Third, species abundance is 

assumed to be fixed, rather than allowing for changes in abundance as interactions unfold. 

These and other limitations are addressed in more recent analytical frameworks.

Community Objectives

The OptCom approach is an extension of the basic compartmentalization strategy that 

allows for a community-level objective function30 (as opposed to only considering the 

species-level objective functions as described above23) (Figure 3A). A nested, bi-level 

optimization framework enables the simulation of several classes of metabolic interactions, 

including mutualism, synergism, commensalism, parasitism, or competition. For example, a 

mutualistic interaction can be represented by setting the outer optimization problem to 

maximize the biomass of two interacting community members, subject to the inner 

optimization conditions for each species. The inner optimization conditions can be 

customized, and may include maximization of biomass production or alternative objective 

functions and steady-state constraints. However, a parasitic interaction may be better 

represented by setting the community objective function to only maximize parasite network 

biomass production30. Beyond the flexibility to represent many qualitatively different types 

of interactions, OptCom offers a powerful way to think about community interactions: as a 

result of competing objectives between all community members.
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Given the bi-level structure of OptCom, a distinct advantage of this framework is the ability 

to explore trade-offs between individual and community objectives. A hypothetical example 

could be that two species maintain suboptimal metabolic states allowing them to catabolize 

disparate carbon sources and share the resulting byproducts. OptCom is an excellent tool for 

exploring and explaining such trade-offs between individual metabolic states and 

community-level optimality. In summary, by altering the community objective and the 

constraints on interspecies fluxes as part of the outer problem, OptCom can be used to 

explore many types of communities, and the reasons for observed interactions with respect 

to trade-offs between objectives.

In a representative study, OptCom was used to simulate the interaction between two gut 

bacteria—Bifidobacterium adolescentis, an acetate producer, and Faecalibacterium 

prausnitzii, an acetate consumer and butyrate producer31. Flux variability analysis (FVA) 

was utilized to explore the possible range of flux values for shared metabolites (such as 

acetate)31. OptCom is computationally expensive and not appropriate for some optimization 

solvers due to the non-linear constraints31. In addition, the analysis is sensitive to the user-

defined optimization functions and flux constraints. Therefore, OptCom may be less suitable 

for poorly defined communities where the metabolic interactions are less well known. 

Studies that have used OptCom are summarized in Table 1.

Dynamic Analysis

Standard FBA results in a set of fluxes—or metabolite consumption/production rates—

across a GENRE during pseudo-steady state conditions. In dynamic FBA (dFBA) these 

fluxes are integrated over time (using standard numerical integration techniques)32. With 

dFBA, it is possible to simulate changes to initial conditions over time, including the 

consumption and production of metabolites, changes in biomass, and shifts in metabolism in 

response to environmental changes. dFBA provides an entire time course, as opposed to a 

single snapshot from standard FBA. Kinetic parameters, particularly relating to uptake rates 

of limiting metabolites (such as glucose and oxygen)33,34, are required for the 

implementation of dFBA. Challenges with the implementation of dFBA include an 

increased computational load and a paucity of the required kinetic parameters for some 

systems (Figure 3B).

In relation to community modeling, dFBA enables the linkage of metabolic models 

implicitly rather than explicitly through the shared metabolite compartment. In this 

framework, metabolites are free to accumulate or disappear. Species abundance and 

metabolic states are free to change in response to interactions and changing environment. 

Thus, the need for defining a community objective function and to set proper bounds on 

interspecies fluxes is obviated, given that the proper kinetic parameters are known. 

Furthermore, it is possible to extend other community modeling methods—including 

OptCom—and perform dynamic analysis35.

As an example of multi-species dFBA the co-culture of Escherichia coli and Saccharomyces 

cerevisiae was modeled34. Each microbe was capable of consuming a unique sugar (glucose 

or xylose), and the simulations were used to optimize community ethanol production. A 

similar approach was taken to model the co-culture of S. cerevisiae and Scherffersomyces 
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stipitis36 in which the production and degradation of growth-inhibitory compounds such as 

furfural were represented and growth conditions for ethanol production were optimized.

dFBA has been used to identify emergent biosynthetic capacity in 6670 unique two-species 

communities37. FBA was used to estimate microbial growth at each time point, constrained 

by kinetic uptake parameters for limiting nutrients37. Exchange fluxes can take on a range of 

possible values, so the lower bound of each was determined by FVA and the sum of all 

exchange reaction fluxes was minimized. In this way, a reproducible time course was 

produced by each simulation. In silico species could share metabolites through the shared 

environment, and emergent metabolites were those that could be produced by a co-culture 

simulation, but not by either species individually 37. Interestingly, there is a clear range 

window of phylogenetic distance in which two interacting species are more likely to exhibit 

emergent metabolic capacity37.

Another use of dFBA is to capture spatio-temporal dynamics in a community of organisms. 

In one case, dFBA was used to model the formation of Pseudomonas aeruginosa biofilm, 

where the “community” is the collection of cells in different metabolic states38. In this 

study, a GENRE corresponding to P. aeruginosa was used in a dFBA framework to estimate 

metabolite secretion, production, and diffusion over time across compartments in an agent-

based model of biofilm, recapitulating known features of biofilm formation such as oxygen-

limited biofilm growth. In a similar study, dFBA was used to model the spatio-temporal 

dynamics of three-species microbial communities on a 2D surface39. dFBA was used to 

estimate biomass production, and nutrient concentration changes in local compartments 

where diffusion allowed changes to impact connected compartments. The authors report 

successfully predicting the steady-state species composition of an engineered three-member 

community39.

These examples demonstrate the versatility of dFBA for modeling small, well-characterized 

communities, performing large-scale surveys of many potential communities and the 

possible emergent properties among them, and accounting for spatial dynamics. dFBA 

represents an exciting and underexplored area of GENRE analysis. dFBA may present a 

community modeling option with fewer up-front assumptions. However, use of dFBA may 

be constrained by computational limitations, given the inherent increase in computation over 

a time-course37 or spatial environment39. Furthermore, dFBA relies on additional kinetic 

parameters, which may nullify a primary advantage of FBA-based techniques which avoid 

extensive parameterization. A summary of dFBA-based community models is presented in 

Table 1.

It is worthwhile to compare dFBA with other established dynamic models of microbial 

communities. The Activated Sludge Model (ASM) has a long history in bioreactor control 

for wastewater treatment40. These models are based on ordinary differential equations, and 

predict the changes in nutrient concentrations and microbial abundances over time. Nutrients 

of interest are grouped (e.g. carbon, nitrogen and phosphorus sources), and microbes 

grouped according to nutrient utilization (e.g. nitrifying bacteria, phosphorus-accumulating 

bacteria). An ASM can predict the change in abundance of each microbial group as a 

function of nutrient concentrations, and and subsequent changes in nutrient concentrations 
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as a result of microbial growth. The parameters for these models are chosen to fit actual 

measurement data. An ASM does not represent each taxon individually, nor does it account 

for the metabolic differences between organisms within a group. For example, two bacteria 

from different taxa may both be classified as “nitrifying”. They would likely have different 

overall metabolic networks, and therefore respond differently to changes in carbon and 

phosphorus concentrations41. An ASM would not account for these taxon-specific metabolic 

differences, thus resulting predictions may be misleading. In contrast, modeling frameworks 

that can capitalize on genome-scale metabolic reconstruction, such as dFBA, are capable of 

accounting for these metabolic differences and can potentially improve prediction accuracy. 

In addition, dFBA dynamics are typically a function of specific uptake rates while ASM 

dynamics are a result of fitting the system kinetics to observed data. A recent review 

describes ASM models as well as other alternative community modeling frameworks that 

are not based on metabolic network reconstructions42.

“Enzyme soup” FBA

In contrast to the simple compartmentalization approach, OptCom, and dFBA, the “enzyme 

soup” approach18 ignores species boundaries entirely (Figure 3C The emphasis is on 

exploration of the metabolic potential of an entire community rather than the interactions 

between species within a community. A community-level “enzyme soup” GENRE is 

produced by annotating a meta-omic data set for enzyme presence, and the associated 

reactions are agglomerated into a single set without an attempt to segregate reactions by 

species. In this framework, any reaction from any species can potentially connect with any 

other reaction into a “meta-pathway”. Early work on this approach ignored stoichiometric 

constraints within this network, and examined the topological differences between networks 

reconstructed from healthy and diseased metagenomic data43. More recent work pioneered 

the analysis of these community-level GENREs using constraint-based methods such as 

FBA to predict biomass production and substrate utilization 44. In this work, the authors 

base their reconstruction on metaproteomic data from a naphthalene-enriched soil microbe 

dataset. They maintain stoichiometric constraints, and assign metabolic activity to taxa 

within the community based on the taxonomic annotation of the enzymes in the model. The 

biomass function is assumed to be a generalized biomass equation borrowed from other 

organisms, under the assumption that many components of biomass are common to many 

organisms44.

The enzyme soup approach has been used successfully to explore the metabolic capacity of 

complex natural communities. In one study, the interaction of several microbial “guilds” 

was studied using both the compartmentalization approach and the enzyme soup method 

(which they refer to as the “pooled reactions” method), and a “nested consortium 

analysis”45. The guilds represent community functions attributable to prokaryotic oxygenic 

phototrophs, filamentous anoxygenic phototrophs, and sulfate reducers found in 

thermophilic, phototrophic mat communities from Yellowstone National Park (USA). The 

enzyme soup method is appropriate when there is limited a priori knowledge about the 

community; conversely, the compartmentalization approach is a more accurate 

representation of the biology if extensive knowledge is available about the various 

community members45. The nested consortium analysis is based on elementary mode 
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analysis (EMA)45,46. First, elementary modes (i.e. a pool of valid physiological states) are 

identified for each guild. Second, elementary modes are re-computed for the entire 

community using the guild-level modes as input45. This “nested consortium analysis” also 

requires significant a priori knowledge of the community in order to select useful 

elementary modes at the guild-level.

The issue of compartmentalization in GENREs has been discussed in the context of 

eukaryotic organisms, in which extensive compartmentalization is used to represent 

organelles and compartments within the cell26. For example, analysis of the S. cerevisiae 

GENRE shows that compartmentalization significantly impacts basic properties such as 

network connectivity, and the accuracy of analytical results such as flux values26. When 

considering the enzyme soup approach, it is important to consider the loss of accuracy 

associated with dissolving the boundaries between community members. The main 

advantage of this approach is the low a priori knowledge required, such that it is applicable 

to little-understood systems. In some sense, the enzyme soup strategy can be thought of as 

placing bounds on the potential metabolic capacity of a microbial community. Further 

compartmentalization will provide more specific solutions within those bounds. Studies 

utilizing the enzyme soup method are summarized in Table 1.

Other methods

Other GENRE-based methods of community analysis have been explored, providing yet 

more vantage points from which to view the metabolism of complex communities. Network 

Expansion is an algorithm in which the metabolic potential of a set of reactions is explored47 

(Figure 3D). The algorithm starts with a set of metabolites as input (the environment). An 

initial set of reactions that can use the input metabolites as substrates are added to the 

network. This network is expanded in subsequent steps as products of the previously-added 

reactions are made available. New reactions that use some part of the accumulating pool of 

metabolites are added to the network. This approach was extended to a community-level 

analysis48. Given the reaction sets from two organisms, the algorithm assumes that any 

intermediate metabolites can be shared, and so performs network expansion by pooling the 

reaction sets from both organisms48. This algorithm has been used to identify emergent 

properties of pairs of microbes, where the combination can produce metabolites that cannot 

be produced by either parent species48.

In contrast to this graph-based method mentioned43, methods based on identifying the “seed 

set” of a species-level GENRE maintain species-specific boundaries and can be used to 

estimate metabolic competition or cooperation49,50 (Figure 3E). In this case, the 

stoichiometric structure of the GENRE is decomposed to create a directed graph from all 

substrate-to-product pairs. The resulting graph represents paths between metabolites, but 

does not contain stoichiometric information. Metabolites that are consumed, but never 

produced by any reaction in the network, are assigned as network inputs, or the “seed set”49. 

The seed sets for multiple species have been used to estimate the potential for competition or 

cooperation between species, demonstrating that species tend to co-occur in nature with 

mutual competitors50. These graph-based methods ignore stoichiometry and are therefore 

not useful for making flux predictions, but rather more generalized statements about network 
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similarity. This approach may be useful when using draft-quality models, for which the 

accuracy of FBA or similar analyses may not be possible.

As a final GENRE-based community analysis, we also make note of the comparative 

approach, which ignores interactions among species and seeks only to identify functional 

differences between GENREs (Figure 3F). For example, a comparative analysis of 

Burkholderia cenocepacia and Burkholderia multivorans revealed the unique reactions 

associated with each, and identified functional outcomes associated with those differences, 

such as differential virulence factor production capacity51. Similarly, a comparative analysis 

of two strains of Lactobacillus casei highlighted functional differences between these 

industrially-relevant strains52. Such comparative analyses can help to identify the functional 

roles of species within large communities by identifying both redundancy and differential 

metabolic capacity between community members.

Multi-scale Models

Outside of the community modeling methods discussed here which are effectively single-

scale models (with the possible exception of the spatial models that incorporate dFBA38,39), 

GENREs have also been successfully incorporated into multi-scale models. GENREs of soil 

microbes have been integrated with a reactive transport model based on local geochemical 

conditions53. A GENRE of the human hepatocyte has been connected with a multi-

compartment pharmacokinetic model of the human body54. Opportunities for multi-scale 

modeling abound with the increasing availability of omics data. For example, in one mouse 

study the presence of several gut microbes was modulated, and the resulting metabolomics 

data were fit with a compartmental model that represented the host liver, pancreas, kidney, 

and adipose tissues55. It is clear how a GENRE-based compartmental model could be 

integrated into an analysis of similar data. These studies highlight the potential gains from 

combining the strengths of multiple modeling frameworks.

Experimental Data that Meshes with GENRE-based Community Analysis

GENRE-based community models require data to be constructed, constrained, and 

validated; for example, quantifying species within a community is important for 

constraining objective functions (ratios of biomass equations) or validating dFBA simulation 

results. Many omics technologies are well-suited for this purpose and have been used 

extensively in GENRE studies of single species. Additional experimental approaches 

provide insight into microbial community function that may prove useful to GENRE 

community models in the near future.

Metagenomics answers the question “who is there and what might they be able to do?” The 

composition of many highly complex microbial communities has been elucidated in recent 

years through shotgun metagenomic sequencing techniques7. This approach can be used to 

identify the taxa that are present, estimate relative abundances of each taxon, and provide a 

“parts list” of genes that are present in the community56. Metagenomic data can be directly 

translated into community GENREs using any of the techniques previously discussed; 

however, difficulties arise during taxonomic assignments within the community. Below, we 

discuss tools that have been developed to address this issue in metagenomic data. A parallel 
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technology that may eventually overcome challenges in metagenomic sequencing is single-

cell sequencing 57,58. While through-put is lost, confidence is gained in assignment of 

function to a distinct organism within the community.

Metatranscriptomics and metaproteomics both help address the question “what are they 

doing?”. Functional data can be used as the basis for constructing a GENRE, or more 

commonly, to constrain an existing GENRE in order to estimate metabolic pathway usage 

under specific conditions59. Once again, assigning mRNA transcripts or proteins to a 

specific community member can prove challenging. Single-cell transcriptomics and 

proteomics can help with this difficulty60, as can the generation of reference genomes to 

which transcripts and peptides can be mapped61.

Other techniques allow the quantification of community member abundances, including 

real-time PCR, flow cytometry, and in some cases, Coulter counters. Real-time PCR can be 

used to quantify the abundances of specific community members in a mixed culture62. There 

is generally good correlation between real-time PCR and other measures such as optical 

density and viability data, unless the culture is under stress, in which case real-time PCR 

tends to overestimate the number of viable cells62. Even so, accurate maximum growth rates 

can be calculated from real-time PCR regardless of culture conditions62. Flow cytometry 

can be an effective technique to quantify community member abundance, but is limited by 

the availability of species-specific fluorescent markers63. Coulter counters have been used in 

two-member communities where species vary drastically in size64.

The burgeoning field of metabolomics offers novel tools to study the anabolic and catabolic 

capacities of simple and complex communities. Both targeted (measure of specific pre-

defined metabolites) and non-targeted (measure as many metabolites as possible, without 

pre-selection) methods have been applied to studies of microbial communities65. Both 

nuclear magnetic resonance (NMR) and mass spectrometry can be applied in targeted and 

non-targeted ways, and can provide quantification of metabolite abundances66–68. Targeted 

or non-targeted metabolomic data can be used to constrain, and validate functional outcomes 

of GENRE simulations. A technique of interest, MALDI-TOF imaging mass spectrometry, 

is a targeted method capable of measuring metabolite concentrations over a physical 

space69,70. This technique has been used to identify compounds that are produced during the 

co-culture of Streptomyces coelicolor with other actinomycetes, and how those metabolites 

localize spatially69. This technique may pair particularly well with GENRE modeling 

techniques that account for spatial information38,39.

Many tools for studying microbial communities are applied to the aggregate, which often 

makes it necessary to partition the data in order to assign activity to a specific community 

member. Spent media experiments provide a way to dissect cellular interactions within co-

culture systems. Using this technique, spent media is produced by growing the first 

organism in fresh media. The first organism is removed (i.e. by filtration sterilization) 

resulting in “sterile” media, and the resulting supernatant is then used to culture a second 

organism. This technique was used to demonstrate that Enterobacter cloacae produced 

fermentation byproducts that enhanced hydrogen production by Rhodobacter sphaeroides71. 

Further, this technique was used to determine the ability of Lactobacillus to inhibit Candida 
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albicans, Gardnerella vaginalis and Streptococcus agalactiae72. A disadvantage of this 

technique is the lack of inter-species signaling, such that the first species (used to produce 

spent media) cannot respond to the presence of the second species. However, the advantages 

of this technique are that the direction of interaction and causality can easily be determined, 

and individual species can be monitored because they are grown individually. In addition, 

spent-media experiments can be paired with metabolomics and other measures to produce 

data that can be integrated with GENRE simulations.

Co-culture of community members on solid surfaces such as agar plates can also help to 

overcome difficulties in partitioning community members. “Cross streak” analysis is a 

technique whereby single cultures are mixed on the surface of a plate73. Growth and other 

phenotypes can be visually assessed or paired with other tools such as imaging mass 

spectrometry69. This approach was elegantly used to identify members of the human 

microbiota that promote growth of antibiotic resistant Staphylococcus aureus74. At the most 

basic level, these screens can be used to qualitatively determine the nature of interactions, 

which can be used to interpret results of GENRE simulations.

Challenges and Opportunities

Partitioning Communities

Assigning activity to particular species is a fundamental difficulty working with mixed 

communities and is further compounded when complete genomes are not available for all 

species in the community75. This difficulty assigning activity to a particular species 

motivates the use of “enzyme soup” methods as discussed above. Considerable progress has 

been made recently to assemble catalogues of reference genomes, but a great deal remains to 

be done (and will likely never be “complete”)76. Traditional genome sequencing has relied 

on culturing individual isolates in order to extract large quantities of purified DNA, but this 

is not feasible for the vast majority of organisms77. Alternative methods rely on 

computationally partitioning genomes from mixed metagenomic sequencing 

samples75,77–84. Three main types of information are used to bin member genomes from 

mixed samples: 1) DNA composition-based methods, which rely on an empirically-observed 

trend for genomes to display unique “k-mer” frequencies (patterns of one to five 

bases)82,85,86; 2) Abundance variations across many samples, where contiguous DNA 

segments with similar abundance profiles across many samples are likely to originate from 

the same organism75,77–79; 3) Taxonomic annotations derived from similarity to known 

taxa84,87–89. There are many active efforts to improve the isolation of individual genetic 

information from mixed metagenomic samples, and these efforts can translate directly to 

improved GENRE construction. Species-specific genomes, particularly from non-culturable 

organisms, will be invaluable resources for understanding the function of complex 

communities through GENRE-based analysis.

Automating High-quality Metabolic Reconstructions

Ideally, automated generation of GENREs from metagenomic or genomic data will result in 

models that have predictive power with minimal manual curation or experimental validation. 

In practice, however, even the most well-curated GENREs cannot fully recapitulate 
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experimental phenotypes90. Therefore, the validity and usefulness of automatically 

generated GENREs should be assessed by their utility relative to manual reconstructions. A 

GENRE that can be used to predict growth conditions and gene essentiality will allow a 

myriad of applications in community modeling and serves as an attainable short-term goal 

for the development of algorithms for automatically generating GENREs.

Several attempts at automated and semi-automated creation of GENREs have been made, 

which have been compared and reviewed previously91,92. Many studies report using 

GENREs created with a combination of automated methods and manual curation31,52,93,94, 

but there are few, if any, reports of automatically generated GENREs used to contextualize 

experimental data without manual curation to some degree. Greater precision and 

throughput is necessary when generating GENREs for uncharacterized, unique communities 

composed of diverse sets of microbes that vary greatly across environments or hosts, as is 

often the case in biomedical or ecological applications.

The next generation of algorithms for automated GENRE generation includes a variety of 

promising approaches in the context of community modeling. When draft reconstructions 

are created directly from genome annotations, gap-filling is needed to connect dead-end 

reactions to produce a functional network. Parsimony-based95,96, likelihood-based97, and 

phylogeny-based98 strategies have been developed to fill gaps during automated 

reconstruction without relying on experimental data. Parsimony-based methods posit that the 

most parsimonious pathway that fills a gap is the most likely to occur, which results in a 

smaller GENRE than other gap-filling methods. Likelihood-based methods incorporate 

multiple gene annotations and use them during the gap-filling stage to present alternative 

reactions that are each given a likelihood score, greatly expanding the space of possible 

pathways. While likelihood-based and parsimony-based methods provide similarly accurate 

results when predicting experimental phenotypes97, the former provides a framework for 

finding low-quality gene annotations, which, when removed or fixed, may improve the 

quality of GENREs created with other methods. Phylogeny-based methods start with the 

assumption that reactions tend to be more conserved in closely related species than distantly 

related species. Phylogenetic relationships have been used in the context of gene annotation 

by assuming that functionally linked proteins have correlated evolution, thus homologs for 

functionally linked proteins are likely to be present in the same subset of organisms99. The 

outcome of this assumption is that sets of proteins involved in the same function or 

metabolic pathway can be more accurately annotated in newly sequenced genomes when 

corresponding homologs involved in that function are identified in another species.

Evolutionary relationships have been shown to have a significant, predictable impact on 

gene essentiality and growth phenotypes using existing automated GENRE creation 

methods100, and a framework called CoReCo has been developed which assumes such an 

impact a priori to enhance the GENRE creation process for multiple species 

simultaneously98. Out of the existing context-based methods, incorporating phylogenetic 

relationships within a community to guide model creation is particularly interesting because 

relationships should be obtainable from metagenomic data. Conversely, the assignment of 

species from metagenomic data could be enhanced by evaluating the function of GENREs 

created based on multiple putative phylogenies for putative species.
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These gap-filling methods present examples of the types of information that need to be 

integrated in reconstruction algorithms given the constraints of microbial communities. 

Assumptions based on evolutionary arguments have proven potential in this regard, and may 

have exceptional power that needs to be explored in communities containing both closely 

and distantly-related species. Finally, integrating multiple assumptions and sources of 

information has the potential to increase GENRE validity in an additive manner and should 

be explored further.

A final step in model generation that may be particularly relevant to community analyses is 

model reconciliation. Reconciliation removes the differences between GENREs that 

represent non-biological noise created through the reconstruction process. Such noise can be 

due to many factors including, but not limited to, gene annotation uncertainties, differences 

in the naming conventions in reaction databases used, and unspecified or incorrectly 

specified reaction reversibility101. When reconciliation is performed between models for 

two related species, the result is typically a reduction in the number of reactions that are 

unique to each model. This could be particularly useful for searching for therapeutic targets 

in pathogens that are closely related to a non-pathogen in the same community, as is 

common in the human microbiome102. Reconciliation would result in greater certainty that a 

target is unique to the pathogen, reducing the probability of off-target effects in commensal 

organisms.

Reconciliation of automatically generated GENREs from a community may be particularly 

useful because differences in sequencing quality are likely to be small in a community 

sample and the same model generation algorithm is likely to be used for all species. The 

resulting GENREs may be very effective at revealing noise introduced from the 

reconstruction method, since differences in sequencing and model generation algorithms are 

controlled. However, reconciliation between two models currently requires a significant 

amount of manual input and user choice, making it difficult to scale-up to large 

communities.

Integrating Omics

High-throughput omics technologies such as transcriptomics, proteomics, metabolic flux 

analysis, and metabolomics all present opportunities for new understanding of microbial 

communities when integrated with GENRE analysis, but challenges remain with the best 

approaches for data integration. As with metagenomic information, partitioning omics data 

sets and assigning them to a particular community member remains a challenge. Along these 

lines, difficulties may arise when multiple, highly similar strains exist within the same 

community interrogated with omics approaches. Transcriptomics and proteomics will both 

benefit from advances in genome binning and assembly and the resulting species-specific 

references76. Leveraging proteomic techniques, one study used peptide-based 13C metabolic 

flux analysis to assign metabolic fluxes to species within a community103. Metabolomics is 

perhaps the most challenging, as it can be very difficult to trace the origins of a metabolite in 

a shared supernatant. Because of inherent limitations in metabolomic technologies that 

prevent assignment of metabolites to specific community members, GENRE based analyses 
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offer the most effective way to generate ab initio hypotheses about the partitioning of 

metabolic roles within microbial communities.

Regardless of the method of omics partitioning, it is expected that existing methods for 

omics integration into single-species models will translate well to community models28,59. 

Many tools for integration of expression data and proteomics data have been developed and 

validated for individual species104; for example, GIMME and MADE represent the trade-off 

between assumptions and data105,106. GIMME constrains a GENRE with expression data by 

requiring user-supplied thresholds for each gene, and then optimizing the solution based on 

consistencies in pathway up/down regulation105. MADE is a related algorithm that infers 

gene-specific thresholds based on multiple expression data sets106. If expression data can be 

easily mapped to reference genomes or proteomes for individual species, these and other 

existing tools will be applicable. However, in a multi-species community, species abundance 

is convoluted with gene expression, and precautions should account for such effects. The 

integration of meta-omics data into community GENRE models may follow a similar path to 

that of genome assembly algorithms. Metagenomic assembly tools are very similar to single 

genome assembly tools, with minor changes to address the challenges associated with mixed 

communities107,108. Perhaps omics integration algorithms will follow a similar path.

Engineering Communities

Perhaps the most exciting aspect of GENRE community models is the opportunity for 

community design and engineering. As modeling techniques improve, it is hoped that 

mechanisms of interspecies interaction will become better understood and more predictable. 

Early computational tools have already proved valuable from a community engineering 

standpoint, as demonstrated by the ability to design nutritional environments that modulate 

the interactions between species in co-culture27. FBA-based methods have indicated optimal 

growth rates of E. coli which could be subsequently obtained by adaptive evolution 

experiments109,110; likewise, it may be possible to use FBA-based methods to predict the 

necessary individual adaptations of synthetic auxotrophs in co-culture111. When large 

community GENRE models have been well-validated, they can be used to explore the 

impact of specific therapeutic interventions such as prebiotics, probiotics, and targeted 

removal of species in the human gut microbiome20,22,112. Analyses such as gene-knockout 

screens may be extended to species-knockout screens (i.e. sequential removal of each 

species from the community and analysis of the resulting consequences)51,113,114. For this 

type of analysis, it is not currently known what adjustments to flux predictions need to be 

made to produce accurate simulations. In the case of gene knockout simulations, techniques 

such as minimization of metabolic adjustment (MOMA) are used to predict the updated flux 

distribution115. Analogous algorithms will likely be useful for community-level analyses.

It is also unclear how current metabolic engineering tools will be extended to community 

engineering applications. Algorithms such as OptKnock, OptGene, or the Redirector 

algorithm have proven useful at a single-organism level116–118. Similar optimization 

frameworks may be devised for community models, but complexity scales not only with the 

number of species, but also with the many ways species models can be conjoined. There are 
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great incentives to advance such engineering approaches since examples show that microbial 

consortia are more efficient and robust than a single engineered species12,119.

Conclusion

Metabolic systems biology of microbial communities is an exciting and rapidly developing 

field with the potential to revolutionize our understanding of microbial communities of 

societal importance. Existing methods have shown promise, including 

compartmentalization, separating species-level and community-level objectives, dynamic 

analysis, the “enzyme-soup” approach, multi-scale modeling, and others. The rise of omics 

technologies has enabled high-level views of microbial community composition and 

metabolism, but it remains a challenge to partition community function and assign it to 

individual community members. Future work is also need to integrate omics data into 

community-level metabolic models. Moreover, the sheer number of species in many 

microbial communities demands new automated reconstruction methods that result in 

GENREs without the need for further manual curation. As technologies and modeling 

frameworks improve, we expect that there will be proportional advances in the fields of 

ecology, health science, and microbial community engineering.
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Figure 1. There are many aspects of life in a microbial community that would be useful to 
capture using mathematical models
Techniques utilizing constraint-based metabolic models (sometimes in conjunction with 

other modeling approaches) are capable of capturing all of these scenarios.
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Figure 2. A simple workflow for genome-scale metabolic network reconstruction and 
accompanying constraint-based analysis
The process begins with an annotated genome. The metabolic network is derived from this 

genome annotation by searching databases for homologous proteins with known enzymatic 

activity. The corresponding metabolic reactions are collected into a draft network 

reconstruction. This simple procedure can be augmented through gap filling, and often 

manual curation. A metabolic objective is defined, which for microbes is often assumed to 

be a biomass equation (i.e. it is assumed that cells are configured to grow as fast as 

possible). Exchange reactions are defined to allow metabolites to enter and leave the 

network. All reactions are compiled into a stoichiometric (S) matrix. FBA is a common 

analytical approach that searches for a flux distribution through the network that optimizes 

the metabolic objective subject to steady-state constraints and flux bounds.
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Figure 3. Community modeling frameworks that feature GENREs
The compartmentalization approach unites all species-level GENREs into a unified 

stoichiometric matrix with a shared compartment. The objective function is generally 

assumed to be a linear combination of the individual biomass functions from each species. 

The community objectives approach (OptCom) is an extension of the simple 

compartmentalization approach that utilizes a nested, bi-level optimization framework. The 

bi-level optimization approach enables the representation of more classes of interactions 

between species, but comes at the cost of increased computational complexity. Dynamic 

analysis simulates changes in metabolites and biomass over time, which requires constraints 

on uptake reaction kinetics. “Enzyme soup” FBA ignores species boundaries and assumes 

that all reactions can interact in a community-level meta-GENRE. Other methods include: 

graph-based methods, which can be used to quantify general characteristics of an interaction 

between species, such as the level expected competition or cooperation; network expansion, 

which has been used to identify potential emergent biosynthetic capacity between species by 

comparing species-specific “reachable” metabolites to the result of pooling reactions from 

both species; comparative analyses, which are used to assess the differences in gene 

essentiality, biosynthetic capacity and resource utilization between species.
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Table 1
A timeline for computational metabolic systems biology of microbial communities

C indicates the compartmentalization approach. CO indicates the community objectives method. DA indicates 

the dynamic analysis approach. ES indicates the enzyme soup approach. OM indicates other frameworks, 

including graph-based approaches, network expansion, and the comparative method.

A Timeline for Computational Metabolic Systems Biology of Microbial Communities

C Stolyar et al. (2007) Recapitulate mutualistic interaction between Desulfovibrio vulgaris and Methanococcus maripaludis

OM Christian et al. (2007) Emergent biosynthetic capacity for 99,681 species pairs determined by network expansion

C Taffs et al. (2009) Interaction of three microbial guilds. Interrogated using three modeling approaches, including simple 
compartmentalization, “enzyme soup”, and an approach based on elementary mode analysis (EMA)

C Bordbar et al. (2010) Mycobacterium tuberculosis embedded in alveolar macrophage metabolic reconstruction

C Klitgord & Segrè (2010) Computationally design media to induce commensal and mutualistic interactions between several pairs 
of species

OM Sun et al. (2010) Comparative analysis of Pelobacter carbinolicus and Pelobacter propionicus

C Freilich et al. (2011) Prediction of competitive and cooperative potential among 6,903 species pairs

CO Zomorrodi & Maranas (2011) OptCom method introduction and analysis of D. vulgaris and M. maripaludis community

DA Hanly & Henson, (2011) Optimization of glucose/xylose utilization by mixed cultures of E. coli and Saccharomyces cerevisiae

DA Zhuang et al. (2011) Simulation of community responses to nutrient modulation. Community included G. sulfurreducens 
and R. ferrireducens

DA Tzamali et al. (2011) Exploration of interactions between many E. coli gene-knockout strains

C Heinken et al. (2012) Interaction of Bacteroides thetaiotamicron and mouse host

C Khandelwal et al. (2013) Development of tools to estimate species abundances and yields, applied to co-culture of Escherichia 
coli auxotrophs

C Nagarajan et al. (2013) Electron flow between Geobacter metallireducens and Geobacter sulfurreducens, integrating multi-
omics data

C Shoaie et al. (2013) Interactions between combinations of 2 and 3 of B. thetaiotamicron, Eubacterium rectale, and 
Methanobrevibacter smithii. Authors also apply OptCom and compare results

DA Hanly & Henson (2013) Optimization of glucose/xylose utilization in community of S. cerevisiae and Scherffersomyces stipitis

OM Levy & Borenstein (2013) Analysis of competition and cooperation among all pairs of 154 species using graph-based method

OM Bartell et al. (2014) Comparative analysis of Burkholderia cenocepacia and Burkholderia multivorans

OM Vinay-Lara et al. (2014) Comparative analysis of two strains of Lactobacillus casei

CO El-Semman et al. (2014) Interaction of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. OptCom and classic 
FBA are used in analysis

CO Zomorrodi et al. (2014) OptCom is adapted to dynamic simulations. Simulated communities of E. coli auxotrophs, and a 
uranium-reducing community involving Geobacter sulfurreducens, Rhodoferax ferrireducens, and 
Shewanella oneidensis

DA Chiu et al. (2014) Screening of 6,670 two-species communities for emergent biosynthetic capacity

DA Harcombe et al. (2014) Spatial element integrated with dFBA to model interaction of Methylobacterium extorquens, E. coli, 
and Salmonella enterica

C Ye et al. (2014) Analysis of cross-feeding in vitamin-C-producing community composed of Ketogulonicigenium 
vulgare and Bacillus megaterium

C Dal’Molin et al. (2015) Multi-tissue model of Arabadopsis thaliana

ES Tobalina et al. (2015) Analysis of a naphthalene-degrading community
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