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Candida parapsilosis is the main non-albicans Candida species isolated from patients in Latin America. Mutations in the ERG11
gene and overexpression of membrane transporter proteins have been linked to fluconazole resistance. The aim of this study was
to evaluate the molecular mechanisms in fluconazole-resistant strains of C. parapsilosis isolated from critically ill patients. The
identities of the nine collected C. parapsilosis isolates at the species level were confirmed through molecular identification with a
TaqMan qPCR assay. The clonal origin of the strains was checked by microsatellite typing. The Galleria mellonella infection
model was used to confirm in vitro resistance. We assessed the presence of ERG11 mutations, as well as the expression of ERG11
and two additional genes that contribute to antifungal resistance (CDR1 and MDR1), by using real-time quantitative PCR. All of
the C. parapsilosis (sensu stricto) isolates tested exhibited fluconazole MICs between 8 and 16 �g/ml. The in vitro data were con-
firmed by the failure of fluconazole in the treatment of G. mellonella infected with fluconazole-resistant strains of C. parapsilo-
sis. Sequencing of the ERG11 gene revealed a common mutation leading to a Y132F amino acid substitution in all of the isolates,
a finding consistent with their clonal origin. After fluconazole exposure, overexpression was noted for ERG11, CDR1, and MDR1
in 9/9, 9/9, and 2/9 strains, respectively. We demonstrated that a combination of molecular mechanisms, including the presence
of point mutations in the ERG11 gene, overexpression of ERG11, and genes encoding efflux pumps, are involved in fluconazole
resistance in C. parapsilosis.

Candida parapsilosis (sensu lato) is a common human opportu-
nistic pathogen that is able to cause superficial and invasive

diseases and is especially prevalent in neonates and adult patients
with catheter-related fungemia (1–3). C. parapsilosis (sensu lato) is
the most common non-albicans Candida (NAC) species isolated
from bloodstream infections in Spain, Italy, and many countries
in Latin America and is also becoming prevalent at U.S. medical
centers (4–10).

Although C. parapsilosis strains are usually susceptible to
azoles, recent reports indicate the emergence of invasive infec-
tions due to fluconazole (FLC)-resistant C. parapsilosis isolates
(11–16). Azole drugs, especially FLC, are commonly used to
treat Candida infections because of their safety and the avail-
ability of oral and intravenous formulations (17, 18). This fam-
ily of antifungal agents prevents the synthesis of ergosterol, a
major component of fungal plasma membranes, by inhibiting
the cytochrome P450-dependent enzyme lanosterol 14 �-de-
methylase (19).

FLC resistance in C. albicans may occur in two ways, (i) re-
duced FLC accumulation caused by active efflux of drugs, result-
ing particularly from overexpression of the CDR1, CDR2, and
MDR1 genes (20–23), and (ii) an alteration in the drug target that
results in an increased level of production of the enzyme or in its
reduced binding affinity for FLC (22–26). However, it is still not
clear whether or not these mechanisms are also relevant for NAC
species, including C. parapsilosis. In this study, we evaluated the
mechanisms of FLC resistance in C. parapsilosis recovered during
an outbreak of candidemia documented in a single hospital in
Brazil.

(Some of the data included in this report were presented in

part at the 54th Interscience Conference on Antimicrobial
Agents and Chemotherapy, Washington, DC, 5 to 9 September
2014 [57].)

MATERIALS AND METHODS
C. parapsilosis strains. C. parapsilosis (sensu lato) isolates included in the
present study were obtained from intensive care unit patients with candi-
demia enrolled in a retrospective survey conducted from July 2011 to
February 2012 at a Brazilian institution (27). Initial yeast identification
and susceptibility testing were performed with the Vitek II system (bio-
Mérieux, Marcy-l’Etoile, France). Nine C. parapsilosis isolates for which
the azoles MICs exceeded the established susceptibility breakpoints were
sent to a reference laboratory (Laboratório Especial de Micologia, Univer-
sidade Federal de São Paulo, São Paulo, Brazil) for further molecular
identification and confirmation of antifungal susceptibility by the CLSI
reference method. Resistant strains were selected for in vivo studies and
molecular characterization of mechanisms of FLC resistance. In addition,
reference strain C. parapsilosis ATCC 22019 was included as a control
organism in all laboratory tests.
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Molecular identification of C. parapsilosis (sensu lato) isolates by
real-time TaqMan qPCR assays. DNA was extracted from the isolates by
mechanical disruption with glass beads and phenol-chloroform (28).
Real-time quantitative PCR (qPCR) was performed with species-specific
TaqMan probes as previously described by our group (29).

In vitro susceptibility testing. Antifungal susceptibility testing was
performed with the CLSI microdilution assay (30). FLC, voriconazole
(VRC), and anidulafungin (ANF) were provided by the Pfizer Pharma-
ceutical Group (New York, NY), and amphotericin B (AMB) was pro-
vided by the Sigma Chemical Corporation (St. Louis, MO). The interpre-
tative guidelines in CLSI document M27-S4 were used classify C.
parapsilosis isolates as susceptible, susceptible dose dependent, or resistant
to antifungals (31, 32).

Microsatellite typing. Genomic DNA of C. parapsilosis isolates was
extracted from 48-h-old cultures with the MagNA Pure 96 platform
(Roche Diagnostics, Almere, The Netherlands) as described previously
(33). Two multiplex PCRs were performed to amplify three trinucleotide
repeat regions in one PCR and three hexanucleotide repeat regions in the
second PCR; the setup of these assays has been described previously (34).
Subsequently, the PCR products were diluted 20� with double-distilled
H2O (ddH2O) and 1.0 �l of this dilution was added to a mixture of 0.1 �l
of CC-500ROX (Promega, Leiden, The Netherlands) and 8.9 �l of
ddH2O. Prior data analysis, samples were boiled for 1 min at 95°C and
then cooled to 4°C. Data analysis was performed on an ABI3500xL genetic
analyzer platform and subsequently analyzed with GeneMapper software
(Applied Biosystems, Palo Alto, CA). Microsatellite profiles were im-
ported into BioNumerics v6.6 (Applied Maths, Sint-Martens-Latem, Bel-
gium), and a dendrogram was generated by treating the data as categorical
values, followed by cluster analysis by the unweighted-pair group method
using average linkages. A comparison was made with a selection of Aus-
trian isolates from a recent study (34).

Sequencing of the ERG11 gene. The entire open reading frame (ORF)
of the ERG11 gene encoding lanosterol 14 �-demethylase was amplified
and sequenced with specific primers (Table 1). PCR products were puri-
fied with the Wizard SV Gel and PCR Clean-Up System (Promega, Mad-
ison, WI) and sequenced on the ABI 3100 genetic analyzer platform (Ap-
plied Biosystems). DNA sequences and the corresponding amino acid
sequences were analyzed with the SeqMan II and EditSeq software pack-
ages (Lasergene v8.0; DNAStar, Madison, WI).

Relative quantification of gene expression by RT-qPCR. Reverse
transcription (RT)-qPCR was undertaken to estimate the expression of
the CDR1, MDR1, and ERG11 genes by C. parapsilosis strains during FLC
exposure (after 1.5 h of exposure). Experiments were repeated three times.

RNA extraction. An overnight culture of each isolate grown in 2 ml of
morpholinepropanesulfonic acid (MOPS)-buffered RPMI (RPMI-
MOPS) was diluted to an initial inoculum of 105 CFU/ml in fresh RPMI-
MOPS and grown at 37°C with shaking at 250 rpm. The isolates were
exposed to the MIC of FLC, which was added after 6 h of growth (to cells

in log-phase growth) and continued for 1.5 h. Following drug exposure,
cells were harvested for RNA isolation as previous described (22). cDNA
was synthesized with the Verso cDNA synthesis kit (Thermo Scientific,
Waltham, MA).

RT-qPCR. cDNA was analyzed by RT-qPCR with a CFX96 Touch
Real-Time PCR detection system (Bio-Rad Laboratories, Hercules, CA)
and specific primers (Table 1). iTaq Universal SYBR green Supermix (Bio-
Rad Laboratories) was used for PCRs according to the manufacturer’s
recommendations. The 2���CT method was used for relative quantifica-
tion of gene expression, and the data were normalized to ACT1 gene
expression (22).

In vivo studies. To confirm the observed FLC resistance phenotype,
we assessed the response to FLC treatment of both FLC-resistant and
-susceptible C. parapsilosis strains in a Galleria mellonella infection model.

Fungal inoculum preparation. C. parapsilosis (sensu stricto) isolates
ATCC 22019 and LEMI 8657 were used for in vivo experiments. The cells
were grown overnight in yeast extract-peptone-dextrose (YPD) at 30°C.
Cells were collected by centrifugation and washed three times with phos-
phate-buffered saline (PBS). Yeast cells were counted with a hemocytom-
eter. The cell number was confirmed by determining the number of CFU
per milliliter on YPD plates.

Inoculation of G. mellonella with C. parapsilosis (sensu stricto)
strains. Wax moth larva killing assays were performed as previously de-
scribed (35). Briefly, groups of 16 larvae (250 to 350 mg; Vanderhorst
Wholesale, St. Marys, OH) were each inoculated with 106 CFU/larva. A
Hamilton syringe was used to inject 10-�l aliquots of the inoculum into
the hemocoel of each larva via the last left proleg (36). After injection,
larvae were incubated at 37°C and the number of dead larvae was moni-
tored daily. Two control groups were included; one was inoculated with
PBS to observe the killing due to physical trauma, and the other received
no injection as a control for general viability.

Treatment with FLC. Infected larvae were treated with FLC (14 mg/
kg; Sigma Chemical Corporation, St. Louis, MO) (35). The antifungal was
provided immediately after the infection and was delivered in a 10-�l
volume to the last right proleg. Groups of 10 larvae were treated with FLC
alone to test its toxicity. Survival was monitored every 24 h.

Fungal burden determination. Fungal burdens were determined by
CFU counting at 16 h after inoculation. For this purpose, five larvae per
group were weighed and homogenized in 1 ml of sterile PBS with a Tissue
Tearor (model 398; Biospec Products, Bartlesville, OK) and serial dilu-
tions of the homogenates were plated on YPD agar plates containing ka-
namycin (45 �g/ml), streptomycin (100 �g/ml), and ampicillin (100 �g/
ml). Plates were incubated at 30°C for 72 h before colonies were counted.

Statistics. Killing curves were plotted, and estimated differences in
survival (log rank and Wilcoxon tests) were analyzed by the Kaplan-Meier
method with the Prism v5 software (GraphPad, La Jolla, CA). The same
software was used for statistical analysis of the CFU of C. parapsilosis in the
hemocoel (t test). A P value of �0.05 was considered significant. Each
experiment was repeated at least three times, and all of the independent
experiments gave similar results. The data presented in this report are
from a representative experiment.

Nucleotide sequence accession numbers. The sequences obtained in
this study have been deposited in GenBank under accession numbers
KR082784 to KR082792.

RESULTS
Molecular identification of C. parapsilosis (sensu lato) isolates
by real-time TaqMan qPCR assays. The nine C. parapsilosis
strains selected for this study were genetically identified as C.
parapsilosis (sensu stricto) when tested by the species-specific Taq-
Man probe, confirming the phenotypic characterization by stan-
dard mycological procedures.

Antifungal susceptibility tests. Table 2 summarizes the MICs
of the four antifungal agents tested for the nine C. parapsilosis
clinical isolates and reference strain ATCC 22019. The nine C.

TABLE 1 Oligonucleotide sequences used in this study

Oligonucleotidea Sequence (5= to 3=) Purpose

MDR1_CP_F GATTTTTCGCTAGTCCGTGTTTG MDR1
real-time PCRMDR1_CP_R TGTAGGCGCATAGGTCTCAGGT

ERG11_CP_F GTACACCGTCATTACTCTACCCAACA ERG11
real-time PCRERG11_CP_R TGCTCCTTTCATTTACAACATCATTT

CDR1_CP_F ATTTGCCGACATCCACCGTTAGG CDR1
real-time PCRCDR1_CP_R ACCATGCTGTTTGCGAGTCCA

ERG11_CP_F1 CGAGATAATCATCAACGAACATTC ERG11
sequencingERG11_CP_R1 CGTTTAAAACATCCAAAGACCTTA

ERG11_CP_F2 AATCTGAGGGTTTCCTTGATGGT
ERG11_CP_R2 AAAGACCGCATTGACTACCGAT
a The letters F and R in the primer names describe the 5=-to-3= orientations of the
primers as follows: F, forward (sense); R, reverse (antisense).
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parapsilosis bloodstream isolates tested exhibited resistance to
FLC (MICs of �8 mg/liter). One isolate was considered resistant
to VRC (MIC of 1 mg/liter), and eight were considered interme-
diate (MIC of 0.5 mg/liter). All of them were considered wild type
for AMB (MICs of 0.125 to 0.25 mg/liter) and susceptible to ANF
(MICs of �2 mg/liter). Further characterization of the FLC resistance
mechanisms of all nine C. parapsilosis isolates was performed.

Microsatellite typing. Microsatellite typing allowed the differ-
entiation of the nine strains into five different subtypes. The ge-
netic relatedness of the nine isolates is presented in the dendro-
gram in Fig. 1, which shows that the Brazilian isolates are clustered
together, with few differences among them.

Sequencing of the ERG11 gene. The complete ORF of the

ERG11 gene of the nine resistant C. parapsilosis isolates and refer-
ence strain C. parapsilosis ATCC 22019 was determined. The
ERG11 sequences were 1,569 bp in length, and a comparison of
these sequences with the available corresponding sequence of ref-
erence strain ATCC 22019 (GenBank accession no. GQ302972)
revealed the presence of a silent mutation (T591C) and a missense
mutation (A395T) that led to a Y132F amino acid substitution and a
change in the protein sequence (Table 2). Single allele mutations (i.e.,
heterozygous for the mutation) were not observed; there were only
point mutations in both alleles (i.e., homozygous for the mutation).

Expression of ERG11, CDR1, and MDR1 in C. parapsilosis
(sensu stricto) bloodstream isolates. To investigate if changes in
the expression patterns of the ERG11 gene, the ABC transporter

TABLE 2 In vitro activities of four antifungal agents against nine clinical isolates of C. parapsilosis (sensu stricto) in the CLSI broth microdilution
assay complemented by ERG11 sequence analysis and expression of the ERG11, CDR1, and MDR1 genes

C. parapsilosis
(sensu stricto) isolate

MIC (mg/liter)
Mutations in
ERG11 gene

Avg cDNA level (SD)a

FLC VRC ANF AMB ERG11 CDR1 MDR1

LEMI 8646 8 1 2 0.25 T591C, A395T 7.4 (0.3) 9.2 (0.6) 1.5 (0.08)
LEMI 8650 8 0.5 2 0.25 T591C, A395T 3.7 (0.1) 4.8 (0.1) 0.9 (0.06)
LEMI 8653 16 0.5 2 0.25 T591C, A395T 1.5 (0.1) 4.0 (0.3) 0.9 (0.1)
LEMI 8655 16 0.5 1 0.25 T591C, A395T 3.3 (0.2) 3.4 (0.1) 0.8 (0.2)
LEMI 8657 16 0.5 2 0.125 T591C, A395T 3.9 (0.3) 3.7 (0.2) 1.0 (0.06)
LEMI 8662 16 0.5 2 0.25 T591C, A395T 5.7 (0.5) 5.7 (0.5) 1.3 (0.2)
LEMI 8379 8 0.5 2 0.25 T591C, A395T 4.0 (0.3) 3.3 (0.3) 0.8 (0.04)
LEMI 8382 8 0.5 2 0.25 T591C, A395T 7.3 (0.4) 7.3 (0.5) 1.2 (0.06)
LEMI 8383 8 0.5 1 0.25 T591C, A395T 4.4 (0.4) 7.6 (0.6) 1.0 (0.1)
ATCC 22019 0.5 0.5 1 0.125 NDb 1.0 (0.00) 1.0 (0.07) 1.0 (0.07)
a cDNA levels were calculated relative to average levels of cDNA obtained for the wild-type strain. The values are the averages from three replicates, and the standard deviations are
in parentheses. The cDNA levels of the different genes were normalized to that of the ACT1 gene.
b ND, none detected.

FIG 1 Cluster analysis of nine C. parapsilosis isolates based on six short tandem repeat markers.
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gene CDR1, and the major facilitator superfamily (MFS) trans-
porter gene MDR1 could be associated with the FLC resistance
phenotype observed in our clinical isolates, RT-qPCR analysis was
used. Table 2 illustrates the relative expression of each respective
gene obtained for the nine resistant isolates after FLC exposure
(1.5 h of exposure) compared to the expression of the same genes
in wild-type reference strain ATCC 22019 (where the mRNA ex-
pression levels were given a value of 1.0).

All resistant C. parapsilosis isolates expressed increased levels of
ERG11 (1.5 to 7.4 times) and CDR1 (3.3 to 9.2 times) in the pres-
ence of FLC (P � 0.001). The expression of MDR1 increased only
in isolates LEMI 8646 and LEMI 8622 (P � 0.05). Taken together,
the present data suggest that all of the isolates concomitantly overex-
pressed at least two genes usually involved in Candida resistance.

In vivo studies. As shown in Fig. 2, both the FLC-resistant and
reference strains caused a lethal infection to G. mellonella larvae.
Treatment with FLC did not prolong the survival of larvae infected
with FLC-resistant strain LEMI 8657. However, when the infec-
tion was due to FLC-susceptible strain ATCC 22019, the treat-
ment produced significant survival (P � 0.001). In addition, we
also evaluated the impact of FLC on the fungal burden of suscep-
tible and resistant C. parapsilosis strains within the hemocoel (Fig.
3). Although FLC administration did not prolong survival, treat-
ment of larvae in the LEMI 8657 group led to a slight decrease in
the CFU count. In contrast, FLC treatment dramatically lowered
the in vivo fungal burden of larvae infected with ATCC 22019
compared to that of the untreated group (P � 0.005), suggesting
that FLC inhibited strain ATCC 22019 but not resistant strain
LEMI 8657.

DISCUSSION

In this study, the mechanisms of FLC resistance in nine C. parap-
silosis strains isolated during an outbreak of candidemia were eval-
uated; this represents the first comprehensive assessment at the
molecular level of mechanisms of FLC resistance in clinical C.
parapsilosis strains from Brazil. Our results indicate that various
molecular mechanisms, including the presence of point muta-
tions in the ERG11 gene, overexpression of ERG11, and efflux
pump-encoding genes are involved in the FLC resistance of C.
parapsilosis strains.

Although most clinical C. parapsilosis isolates are susceptible to
triazoles, some investigators have reported a rise in the incidence
of invasive infections due to FLC-resistant strains (13, 14, 16, 37).
The emergence of C. parapsilosis FLC resistance is a cause for
concern because of the ability of this species to be frequently trans-
mitted through contaminated medical devices or fluids and via
health care workers (1). In C. albicans, FLC resistance has been
found to be due to a combination of different molecular mecha-
nisms, including mutations in and overexpression of ERG11 and
the overexpression of two genes, CDR1 (a Candida drug resistance
gene) and MDR1 (a multidrug resistance gene) (20, 23, 38).

Alterations in the ERG11sequence have been reported in C.
albicans, Candida tropicalis, C. glabrata, and Candida kefyr (22,
39–45). In the present study, all nine C. parapsilosis isolates that
exhibited high FLC MICs had a point mutation in the ERG11
sequence that led to a Y132F amino acid substitution, compared
to wild-type reference strain ATCC 22019. A similar point muta-
tion was recently observed in resistant C. parapsilosis strains from
patients in the United States (46). Interestingly, the occurrence of
a missense mutation at position 132 was previously reported for C.
albicans and C. tropicalis (41, 43, 44). Taken together, these data
support the hypothesis that the mutation at position 132 might be
a hot spot for ERG11-mediated resistance in Candida species, as
suggested by Jiang and coworkers (43).

By using RT-qPCR, we assessed the quantitative expression of
ERG11, as well as the expression of the ABC transporter gene
CDR1, and the MFS transporter gene MDR1 after exposure to
FLC. All of the clinical FLC-resistant C. parapsilosis isolates
showed increased expression of mRNA of the ERG11 gene, which
encodes the target lanosterol 14 �-demethylase. Supporting our
data, similar results were obtained with NAC species, including C.
glabrata, C. tropicalis, Candida dubliniensis, and Candida krusei
(40, 43, 47–51). In contrast, Silva et al. analyzed the resistance
mechanisms developed by induced resistant C. parapsilosis strains

FIG 2 Effects of FLC (14 mg/kg) during infection of larvae with 106 cells of susceptible C. parapsilosis strain ATCC 22019 per larva (A) and 106 cells of C.
parapsilosis resistant strain LEMI 8657 per larva (B).

FIG 3 Effect of antifungal treatment on the fungal burden in G. mellonella
infected with C. parapsilosis ATCC 22019 or LEMI 8657. White bars, no treat-
ment; black bars, FLC treatment (14 mg/kg). *, P � 0.05.
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and found that the expression of ERG11 is reduced in FLC-resis-
tant isolates (52). This observation might be related to the fact
that, unlike Silva et al., we checked the overexpression of ERG11
after culturing C. parapsilosis strains in the presence of FLC.

Overexpression of the MDR1 and CDR1 genes has been linked
to FLC resistance in C. albicans and C. dubliniensis (23, 38, 53–55).
Homologues of the MDR1 gene have been described in C. tropi-
calis, C. glabrata, and C. krusei, but their overexpression has not
yet been identified as a cause of azole resistance in clinical isolates
(40, 43, 47, 56). Recent studies have demonstrated upregulation of
MDR1 in azole-resistant C. parapsilosis strains (46, 52). Accord-
ingly, in the present study, two out of nine isolates showed in-
creased MDR1 mRNA expression in the presence of FLC.

All nine resistant isolates in the present study showed increased
expression of CDR1, suggesting that this transporter contributes
to FLC resistance. Although several studies have reported that
overexpression of the CDR1 gene plays an important role in FLC
resistance in some Candida species, the role of this specific trans-
porter in C. parapsilosis remains unclear (23, 35). Silva et al. sug-
gested the overexpression of CDR1 in FLC-induced resistant C.
parapsilosis strains, since they observed upregulation of the tran-
scription factor encoded by NDT80, which, in C. albicans, modu-
lates azole tolerance by controlling the expression of the CDR1
gene (52).

In order to assess the correlation between the in vitro resistance
phenotype and an in vivo model, G. mellonella larvae were infected
to evaluate the response to FLC therapy. The in vivo response
showed a very good correlation with the resistance phenotype
documented in vitro. It is worth mentioning that, as documented
in our in vivo infection model in G. mellonella, the presence of the
Y132F point mutation in C. parapsilosis appears not to be associ-
ated with decreases in fitness and virulence. Indeed, the resistant
strain (LEMI 8657) exhibited 50 and 80% killing rates at 24 and
72 h postinfection, respectively, compared to the wild-type
strain (ATCC 22019), which had 50 and 100% killing rates at 96
and 144 h.

In summary, we demonstrated that C. parapsilosis FLC-resis-
tant strains are present in Brazil with a potential for nosocomial
spread of the pathogen via health care workers. The G. mellonella
model demonstrated that, in our collection of C. parapsilosis
strains, resistance to FLC came at no cost in pathogenicity and
virulence. Finally, our data demonstrated that not only overex-
pression of MDR1 and mutations in ERG11 but also overexpres-
sion of ERG11 and CDR1 might be involved in FLC resistance in C.
parapsilosis.
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