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This study aimed to explore any mutation in the CYP51 gene conferring azole resistance in Aspergillus flavus. Two voriconazole-
resistant and 45 voriconazole-susceptible isolates were included in the study. Sequence analysis demonstrated a T1025C nucleo-
tide change in CYP51C, resulting in the Y319H amino acid substitution in one resistant isolate. However, the earlier described
T788G mutation in CYP51C conferring voriconazole resistance in A. flavus isolates was present in all isolates, irrespective of
their susceptibility status.

Aspergillus flavus is the second leading cause of invasive asper-
gillosis in immunocompromised patients and the predomi-

nant causative agent of fungal rhinosinusitis and fungal eye infec-
tions (endophthalmitis and keratitis) in tropical countries, like
India, Sudan, Kuwait, and Iran (1–8). Voriconazole is used pri-
marily to treat infections caused by A. flavus. Long-term azole
therapy may predispose A. flavus to acquire resistance to azoles,
including voriconazole

Lanosterol 14 �-demethylase (LDM), which catalyzes the rate-
limiting step in the ergosterol biosynthetic pathway, serves as the
primary target for azole antifungal drugs. The mechanism of azole
resistance in Aspergillus fumigatus is well studied. Missense muta-
tions and alteration of cis regulatory regions in the LDM coding
gene CYP51A have been found to be the dominant mechanisms of
azole resistance in A. fumigatus (9–12), whereas studies to evaluate
the mechanism of azole resistance in A. flavus are sparse (13–15).
The present study is an attempt to understand the mechanism of
azole resistance in A. flavus.

Two non-wild-type (non-WT) clinical isolates of A. flavus,
NCPPF 761157 and NCCPF 760815, with higher MIC values for
voriconazole than for the respective wild-type (WT) cutoff value,
and 4 WT isolates were initially used (Table 1). The wild type and
non-wild type were defined on the basis of epidemiological cutoff
values (ECV), with the non-WT having a voriconazole MIC of �1
�g/ml and WT with a voriconazole MIC of �1 �g/ml (16). The
non-WT strain, NCCPF 761157, was isolated from a sputum sam-
ple from a patient with chronic obstructive pulmonary disease,
and NCCPF 760815 was isolated from a nasal tissue sample from
a patient from India having granulomatous fungal rhinosinusitis.
Forty-five additional WT A. flavus clinical isolates were included
to screen and validate the mutations (single-nucleotide polymor-
phisms [SNPs] and indels). Identification of the isolates was done
by sequencing partial �-tubulin and calmodulin genes using
primers bt2a (GGTAACCAAATCGGTGCTGCTTTC) and bt2b
(ACCCTCAGTGTAGTGACCCTTGGC), and cmdA7 (GCCAAA
ATCT TCATCCGTAG) and cmdA8 (ATTTCGTTCAGAATGCC
AGG) (17, 18). Antifungal susceptibility testing was done as per
CLSI and EUCAST guidelines (19–22). Coding sequences of the
close homologues of CYP51A of A. fumigatus in A. flavus, namely
CYP51A (GenBank accession no. XM_002375082.1), CYP51B
(GenBank accession no. XM_002379089.1), and CYP51C (GenBank

accession no. XM_002383890.1), were downloaded from
GenBank (http://www.ncbi.nlm.nih.gov/GenBank), as mentioned
by Liu et al. (15). Overlapping primer sets were designed for each
homologue, and PCR amplification of each open reading frame
and the upstream and downstream regions of each homologue
was performed (Table 2). To reduce errors during amplification,
two different high-fidelity DNA polymerases (Platinum Taq; Life
Technologies, Carlsbad, CA, and KOD Plus-; Toyobo Life Science
Department, Osaka, Japan) were used in different sets of experi-
ments (twice). Sequence amplification and analysis were per-
formed using the BigDye Terminator ready reaction kit and a
genetic analyzer (Applied Biosystems, Foster City, CA). Consen-
sus of the forward and reverse sequences and the contig assembly
of each product from the overlapping fragments were done using
the BioNumerics software (Applied Maths, Ghent, Belgium). Se-
quences were aligned in Clustal X2, and amino acid sequences
were deduced using the ExPASy online tool (http://www.expasy
.org/translate). To assess the impact of the Y319H substitution on
the general structure of A. flavus CYP51C, homology modeling
and molecular dynamic simulations were performed for the WT
and the Y319H mutant. The amino acid sequence of the query
protein was downloaded from UniProt protein sequence database
(UniProt ID I8TEB1). The three-dimensional (3D) homology mod-
els of the WT and Y319H mutant were generated using the Swiss-
Model (http://swissmodel.expasy.org/interactive#sequence) work-
space. The LDM (PDB ID 4K0F) structure sharing a sequence
identity of 50.51% was used as the template for model building.
Models were validated using the Qmean4 score. A production
dynamic simulation run was performed using Gromacs 4.6.5 with
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the GROMOS96 43a1 force field. Molecular dynamics (MD) tra-
jectory analysis was performed using Gromacs utilities, and all the
graphs were plotted using Grace. To study the structural and func-
tional effects of the Y319H substitution, the WT and non-WT
CYP51C were also analyzed on HOPE (23).

A comparison of the nucleotide and amino acid sequences of
CYP51A homologs of non- WT (NCCPF 761157 and NCCPF
760815) and WT strains (760816, 760690, 760425, and 760379) of
A. flavus with a reference sequence (A. flavus strain NRRL3357)
showed the G680A transition in CYP51A of strain NCCPF 761157,
resulting only in the amino acid change A205T. The upstream

(�1,000 bp) and downstream (�1,000 bp) regulatory regions
were intact in all strains. In addition, there was no change in the
nucleotide or amino acid sequences in CYP51B. However,
CYP51C was most polymorphic in nature (Table 3). Six missense
nucleotide changes and the resulting amino acid replacements
were detected in CYP51A and CYP51C. However, 5 of these sub-
stitutions (A205T, M54T, S240A, D254N, and I285V) did not ap-
pear to affect the azole susceptibility of the organism, as these
changes were also found in WT isolates. Only one nonsynony-
mous mutation, T1025C, translating to Y319H, was found to be
specific to a non-WT isolate (NCCPF 761157). To confirm these

TABLE 1 Antifungal susceptibility profile of A. flavus isolates for various drugs, performed using CLSI M38-A2 (19)

Strain

MIC/MEC (�g/ml) fora:

AMB VORb ITR POS CSP MCF ANI

NCCPF 761157 2 4 (8) 16 0.25 0.03 0.015 0.0075
NCCPF 760815 4 2 (2) 1 0.5 4 0.12 0.25
NCCPF 760816 2 0.5 (1) 0.12 0.12 0.06 0.015 0.06
NCCPF 760690 4 0.125 (0.25) 0.06 0.03 0.03 0.015 0.06
NCCPF 761379 1 0.5 0.12 0.06 0.06 0.015 0.06
NCCPF 761425 4 0.5 0.25 0.12 0.03 0.015 0.06
a MEC, minimum effective concentration of echinocandins; AMB, amphotericin B; VOR, voriconazole; ITR, itraconazole; POS, posaconazole; CSP, caspofungin; MCF, micafungin;
ANI, anidulafungin.
b Values in parentheses for voriconazole are MICs determined by EUCAST method, E.DEF 9.1 (20).

TABLE 2 Primers used in the study for amplification of homologs of CYP51

CYP51 homolog Primer name Primer sequence (5=–3=)
Position on
coordinate (bases)

CYP51A AflaCYP51A F1 CAAGAACAGCCTGCACAGAG 324
AflaCYP51AR1 GGGTGGATCAGTCTTATTA 1126
AflaCYP51AF2 GCAATCATCGTCCTAAATC 1066
AflaCYP51AR2 CTGTCCATTCTTGTAGGTA 1899
AflaCYP51AF3 GCATGAGGGAGATCTATATG 1791
AflaCYP51AR3 CCTATAATTGCTGGTTTCG 2649
AflaCYP51AF4 TGAAGCTATTCAATGTAGAC 2480
AflaCYP51AR4 ACTGCTGATGGTGTGCTAAG 3358
A205T-F GGAGTCGCATGTACCATTGA 1510
A205T-R TGAAGTTGATCGGAGTGAACC 1716

CYP51B AflaCYP51B F1 AACACGACTAGGAGCTACAC 4182
AflaCYP51BR1 CACCAATCCACTCTATC 5082
AflaCYP51BF2 GATCAGGGAAATGTTCTTC 4948
AflaCYP51BR2 ACGATCGCTGAGATTAC 5620
AflaCYP51BF3 GTTCAGCAAATGTCGAG 5550
AflaCYP51BR3 CCTTTCGTCTACCTGTT 6344
AflaCYP51BF4 AGTGGAGAGCATCCATAGTGA 6231
AflaCYP51BR4 ACAACCCGTTCAAGATATCGG 7339

CYP51C AflaCYP51CF1 CTGTTGCAGAGCCGTTGATG 33
AflaCYP51CR1 CAAAGAGCGACACATAAG 860
AflaCYP51CF2 GGTAATGTCTGGTCATAGG 751
AflaCYP51CR2 ATGAGCTTGGAATTGGG 1453
AflaCYP51CF3 CGAATTCATCCTCAATGG 1336
AflaCYP51CR3 GTCTCTCGGATCACATT 2137
AflaCYP51CF4 GGAACTCTACCAAGAGCA 2018
AflaCYP51CR4 CCTAGATACAGCTAGATACCC 2819
AflaCYP51Cdel-F CCAGCGCTCATAGGTGTATT 2634
AflaCYP51Cdel-R CGTGGTCAGTCAATTGGGTA 3102
SNP-F GCGGTTCTCTACCACGATTTG 677
SNP-R AGGGTCTCTCGGATCACATTT 1120
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findings, we used 45 wild-type isolates to screen for the SNPs and
indels coding for these phenotypes of CYP51C in azole-sensitive
strains. Tandem duplication of a promoter sequence, TR 34, along
with the nonsynonymous point mutation L98H was reported for
azole resistance in clinical and environmental isolates of A. fu-
migatus. However, a mutation of this characteristic was not found
in our azole-resistant A. flavus isolates. Nonetheless, a 4-bp dele-
tion was found in the AT-rich intergenic region downstream at
position 2734 of CYP51C, which upon screening of the WT col-
lection showed that it was not related to the resistant phenotype.
Instead, a compensatory 4-bp insertion mutation was found in the
nearby region in those isolates that harbored this deletion (data
not shown). Indel mutations usually arise in intergenic regions,
which act as mutational hot spots for indels and play a role in
purifying selection (24). The present study also contradicts the
finding of Liu et al. (15), in which the T788G mutation was impli-
cated in mediating voriconazole resistance in A. flavus. This mu-
tation was not related to voriconazole resistance in our strains, as
this SNP was found in all 47 strains tested, irrespective of their
susceptibility. Possibly, the T788G mutation is simply a geograph-
ical strain variation, as the investigators compared the CYP51C
sequence of their resistant strain with the A. flavus NRRL3357
reference sequence only. Alignment of orthologues of cytochrome
P450 of different fungal species and of humans showed substitu-
tions, including A205T, M54T, S240A, D254N, and I285V, which
were not present in the conserved motifs. (Table 3). The location
of the Y319H substitution in a highly conserved position of
CYP51C suggests that this might be one of the reasons for azole
resistance in our resistant isolates.

As the Y319H substitution is located far from the iron-porphy-
rin complex, it appears that the substitution indirectly affects drug
binding instead of having a direct effect on the docking of azoles at
the binding site (Fig. 1). MD simulations revealed that this muta-
tion increases conformational flexibility, as indicated by increased
root mean square deviation values (Fig. 2A) and root mean square
fluctuation (RMSF) (Fig. 2B); there was a simultaneous decrease

TABLE 3 Mutational analysis of CYP51A, CYP51B, and CYP51C and the corresponding amino acid changes in lanosterol 14 �-demethylase in
resistant and sensitive isolates

Strain

Mutations in CYP51 Amino acid change in LDMa

Regulatory region of CYP51CCYP51A CYP51B CYP51C CYP51A CYP51B CYP51C

NCCPF 761157 G680A None T161C A205T None M54T 4-bp deletion at bp 2734
T788G S240A at bp 2734
G830A D254N
G923A I285V
T1025C Y319H

NCCPF 760815 None None T161C None None M54T 4-bp deletion at bp 2734
T788G S240A
G830A D254N
G923A I285V

NCCPF 760816 None None T161C None None M54T None
T788G S240A

NCCPF 760690 None None T161C None None M54T None
T788G S240A

NCCPF 761379 None None T161C None None M54T None
S240A

NCCPF None None T788G None None M54T None
761425 S240A
a LDM, lanosterol 14 �-demethylase.

FIG 1 Modeled structure of CYP51C of A. flavus shown in cartoon represen-
tation. The porphyrin ring is shown in stick representation in black. The ty-
rosine residue present in the wild type and the histidine in the mutant are
shown in hot pink and green, respectively.
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in globularity, as depicted by the increase in the radius of gyration
of the mutant protein (Fig. 2C). Differences in the radius of gyra-
tion between the WT and non-WT CYP51C may be due to a loss of
noncovalent interactions, which was caused by the substitution of
tyrosine with histidine in the mutant strain. The WT tyrosine
residue forms a hydrogen bond with the valine at position 329 and
salt bridges with the valine at position 329 and glutamic acid at
position 328. Increased flexibility in the non-WT CYP51C may be
due to the polar nature of histidine causing interatomic repul-
sions. On the other hand, tyrosine present in the wild type can
form hydrophobic interactions, accounting for the lower RMSF.
The structural data for the CYP51C protein of A. flavus is not
available to infer the effect of point mutations on the conforma-
tions of drug entry channels of orthologous proteins. However, a
similar strategy has been applied in earlier studies (25–28). The
results from our study provide clues that increased conforma-
tional flexibility in the Y319H mutant may be the reason for its
reduced drug binding affinity.

However, the Y319H substitution was not found in the other
resistant isolate (NCCPF 760815). The absence of the Y319H sub-
stitution in NCCPF 760815 may be due to other mechanisms re-
sponsible for the elevated MICs in this isolate. Nonetheless, our
findings need to be evaluated in more non-WT A. flavus isolates
and by producing a Y319H mutant in a WT background and con-
firming its azole resistance.

Nucleotide sequence accession numbers. The nucleotide se-
quences of CYP51C of NCCPF 761157 and NCCPF 760815 have
been submitted to GenBank with the nucleotide accession num-
bers KR822399 and KR822400, respectively.
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