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To gain insights into the diversification trajectories of qnrB genes, a phylogenetic and comparative genomics analysis of these
genes and their surrounding genetic sequences was performed. For this purpose, Citrobacter sp. isolates (n � 21) and genome or
plasmid sequences (n � 56) available in public databases harboring complete or truncated qnrB genes were analyzed. Citrobacter
species identification was performed by phylogenetic analysis of different genotypic markers. The clonal relatedness among iso-
lates, the location of qnrB genes, and the genetic surroundings of qnrB genes were investigated by pulsed-field gel electrophoresis
(PFGE), S1-/I-CeuI-PFGE and hybridization, and PCR mapping and sequencing, respectively. Identification of Citrobacter iso-
lates was achieved using leuS and recN gene sequences, and isolates characterized in this study were diverse and harbored chro-
mosomal qnrB genes. Phylogenetic analysis of all known qnrB genes revealed seven main clusters and two branches, with most of
them included in two clusters. Specific platforms (comprising pspF and sapA and varying in synteny and/or identity of other
genes and intergenic regions) were associated with each one of these qnrB clusters, and the reliable identification of all Citrobac-
ter isolates revealed that each platform evolved in different recognizable (Citrobacter freundii, C. braakii, C. werkmanii, and C.
pasteurii) and putatively new species. A high identity was observed between some of the platforms identified in the chromosome
of Citrobacter spp. and in different plasmids of Enterobacteriaceae. Our data corroborate Citrobacter as the origin of qnrB and
further suggest divergent evolution of closely related qnrB genes/platforms in particular Citrobacter spp., which were delineated
using particular genotypic markers.

The qnrB genes constitute the most prevalent and diverse (�70
allelic variants; see http://www.lahey.org/qnrStudies/) group

within the qnr family, encoding proteins responsible for decreased
susceptibility to fluoroquinolones (1–4).

Some authors have proposed Citrobacter spp. as the origin of
qnrB genes, mainly based on species distribution (�60% in Citro-
bacter spp., including isolates from the preantibiotic era), location
(mostly on the chromosome), and the apparent absence of mobile
genetic elements in the immediate genetic environment of qnrB
genes, mostly by characterization of clinical Citrobacter sp. isolates
(3–5). Nevertheless, the absence of correlation of qnrB genes with
particular Citrobacter species, together with the lack of detailed
characterization of qnrB platforms, hinders a clear establishment
of the origin of qnrB. In fact, most of the methods conventionally
used to identify Citrobacter spp. (biochemical or phenotypic fea-
tures, matrix-assisted laser desorption ionization–time of flight
mass spectrometry [MALDI-TOF MS], or 16S rRNA gene se-
quencing) (6–8) have low discriminatory power, hindering the
accurate discrimination of these species.

Recently, Clermont et al. described a multilocus sequence anal-
ysis (MLSA) based on partial sequences of rpoB (� subunit of RNA
polymerase gene), pyrG (CTP synthetase gene), fusA (protein syn-
thesis elongation factor-G gene), and leuS (leucine tRNA synthe-
tase gene) that allowed the discrimination of the 12 recognized
Citrobacter species, namely, Citrobacter freundii, C. amalonaticus,
C. braakii, C. farmeri, C. gillenii, C. koseri, C. murliniae, C. roden-
tium, C. sedlakii, C. werkmanii, C. youngae, and C. pasteurii (6).

In this work, we aim to gain insights into the diversification
trajectories of qnrB within Citrobacter species and to unveil qnrB
surroundings possibly involved in the dissemination of this gene

to other Enterobacteriaceae. For that purpose, we performed an
affiliation of Citrobacter species and qnrB genes described to date
and a comparative analysis of genetic sequences surrounding qnrB
using nonclinical Citrobacter sp. isolates and genome and plasmid
sequences deposited in public databases.

MATERIALS AND METHODS
Bacterial isolates. Twenty-one nonclinical Citrobacter sp. isolates harbor-
ing qnrB genes recovered from different nonclinical origins, including
untreated waters used for human consumption (n � 12; 2006 to 2008),
ready-to-eat salads (n � 3; 2010), and trout aquaculture samples (trout,
feed, and sediments from a river located upstream of the trout farm) (n �
6; 2010 to 2012) from different geographic regions in Portugal, were in-
cluded in this study (see Table S1 in the supplemental material). The
isolates carried qnrB6 (n � 1), qnrB9 (n � 1), qnrB10 (n � 3), qnrB17 (n �
1), qnrB18 (n � 1), qnrB56 (n � 3), qnrB57 (n � 2), qnrB58 (n � 1),
qnrB59 (n � 3), qnrB72 (n � 2), qnrB73 (n � 1), or truncated qnrB
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(�qnrB; n � 2) genes (9; P. Antunes, E. Machado, and L. Peixe, unpub-
lished data) (see Table S1 in the supplemental material).

In addition, 40 Citrobacter sp. genomes and 16 qnrB-carrying plasmid
sequences available from the Pathosystems Resource Integration Center
(PATRIC) and/or the National Center for Biotechnology Information
(NCBI) database were used for phylogenetic analysis and/or qnrB genetic
surrounding comparisons.

Bacterial identification and phylogenetic analysis. Isolates included
in this study were identified by biochemical methods (7), mass spectrom-
etry (MALDI-TOF MS; Bruker Daltonik, Germany), and sequencing of
16S rRNA (8), leuS (leucine tRNA synthetase) (6), and recN (DNA repair
protein) genes. PCR amplification and further sequencing of recN genes
were performed by using primers recN-Fw (5=-ATTGCCATTGATGCTC
TCGG-3=) and recN-Rv (5=-ANCGAGTCGGCCTGATCGT-3=) to am-
plify a 637-bp internal fragment and the following amplification condi-
tions: one cycle of 3 min at 95°C; 35 cycles of 1 min at 95°C, 1 min at 56°C,
and 1 min at 72°C; and 1 cycle of 1 min at 72°C.

Individual nucleotide sequences of genes included in the MLSA
scheme of the Citrobacter genus (rpoB, pyrG, fusA, and leuS) (6) and recN
were aligned and the average rates of similarity calculated using MEGA
version 5.2.2 (http://www.megasoftware.net/) (10). The leuS gene se-
quences from Clermont et al. were included in this analysis (6). Similarity
scores of the leuS and recN genes were calculated and individual phyloge-
netic trees were constructed in MEGA using the neighbor-joining (NJ)
method (11), and genetic distances were calculated using the Kimura
two-parameter model (12) in the case of nucleotide sequences and using
the Jones-Taylor-Thornton (JTT) model (13) for LeuS and RecN protein
sequences. The reliability of internal branches was assessed from boot-
strap based on 1,000 resamplings (14). Pantoea ananatis strain LMG
2665T was used as the outgroup.

Clonal relatedness. Clonal relationships among isolates belonging to
the same species were established by pulsed-field gel electrophoresis
(PFGE), using XbaI as a restriction enzyme and the following electropho-
resis conditions: 10 to 40 s for 21 h at 14°C and 6 V/cm2 (15). The criteria
of Tenover et al. were used for comparison of band patterns obtained by
PFGE, and isolates representing different PFGE-types were selected for
the following studies (16).

Location, transferability, and phylogenetic analysis of qnrB genes.
Location of qnrB genes was assessed by S1-/I-CeuI-PFGE and further
hybridization with qnrB and 16S rRNA probes (17, 18). Conjugative
transfer of qnrB was evaluated by broth and filter mating assays using
Escherichia coli HB101 (streptomycin and azide resistant) as the recipient
at a 1:2 donor-to-recipient ratio and selection plates containing cipro-
floxacin (0.06 to 0.5 �g/ml) plus sodium azide (130 �m/ml) (19).

Affiliation within all qnrB genes described at the time of study design
(n � 74; http://www.lahey.org/qnrStudies/) was generated as specified
above for leuS and recN phylogenetic analysis.

Characterization of genetic surroundings of the qnrB genes. The
genetic context of qnrB genes was characterized by PCR mapping (pspF,
sapA, intI1, intI2, intI3, ISEcp1, IS3000, ISCR1, IS26) and sequencing
based on previously described sequences (3, 20–22). Sequences surround-
ing qnrB were further aligned and compared in silico with those deposited
in the GenBank database using BLAST (http://blast.ncbi.nlm.nih.gov.sci
-hub.org/Blast.cgi) and ClustalW2 (http://www.ebi.ac.uk/Tools/msa
/clustalw2/).

FIG 1 Neighbor-joining (NJ) tree based on the comparison of leuS gene se-
quences of Citrobacter species analyzed in this study. Genetic distances were
constructed using Kimura’s two-parameter model. Numbers at branch points
indicate bootstrap percentages (1,000 replications) from NJ analysis, and only
values greater than 80% are shown. Horizontal bar, genetic distance of 0.05.
Citrobacter species type strains are underlined, and the qnrB alleles are shown
in parentheses. Pantoea ananatis strain LMG 2665T was used as the outgroup
(PATRIC fig|1378093.3.peg.2577). Please refer to Table S2 in the supplemental
material for accession numbers of the sequences used.
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FIG 2 Neighbor-joining (NJ) tree based on the comparison of recN gene sequences of all Citrobacter species analyzed in this study. Genetic distances were
constructed using Kimura’s two-parameter model. Numbers at branch points indicate bootstrap percentages (1,000 replications) from NJ analysis, and only
values greater than 80% are shown. Horizontal bar, genetic distance of 0.05. Citrobacter species type strains are underlined, and qnrB alleles are shown in
parentheses. *, Citrobacter sp. I, Citrobacter sp. II, and Citrobacter sp. III correspond to putative novel species. Pantoea ananatis strain LMG 2665T was used as the
outgroup (PATRIC fig|1378093.3.peg.2577). Please refer to Table S2 in the supplemental material for accession numbers of the sequences used.
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Nucleotide sequence accession numbers. The sequences of the ge-
netic platforms associated with the different qnrB alleles characterized in
this study have been deposited in the GenBank database under the acces-
sion numbers KP339254 (qnrB6), KP339255 (qnrB9), KP339256
(qnrB10), KP339257 (qnrB17), KP339258 (qnrB18), KP339259 (qnrB56),
KP339260 (qnrB57), KP339261 (qnrB58), KP339262 (qnrB59), KP339263
(qnrB72), and KP339264 (qnrB73). recN and leuS nucleotide sequence
data from the different Citrobacter sp. isolates identified in this study are
available in the GenBank database under accession numbers KR998019
(Citrobacter sp. I), KR998020 (Citrobacter sp. I), KR998021 (Citrobacter
sp. III), KR998022 (Citrobacter sp. I), KR998023 (C. braakii), KR998024
(Citrobacter sp. I), KR998025 (Citrobacter sp. I), KR998026 (C. freundii),
KR998027 (C. freundii), KR998028 (Citrobacter sp. I), KR998029 (Citro-
bacter sp. I), KR998030 (C. braakii), KR998031 (C. braakii), KR998032
(Citrobacter sp. I), KR998033 (Citrobacter sp. I), KR998034 (Citrobacter
sp. III), KR998035 (Citrobacter sp. I), KR998036 (C. braakii), KR998037
(Citrobacter sp. I), KR998038 (Citrobacter sp. I), KR998039 (C. freundii),
KR998040 (C. freundii), KR998041 (Citrobacter sp. I), KR998042 (Citro-
bacter sp. I), KR998043 (C. braakii), and KR998044 (C. braakii).

RESULTS AND DISCUSSION
Citrobacter species identification and clonality. The identifica-
tion at the species level of all the Citrobacter sp. isolates included in
this study was not possible by biochemical methods, MALDI-TOF
MS, or sequencing of the 16S rRNA gene (data not shown), as
previously recognized (6, 23). In contrast, analysis of leuS and
recN gene sequences provided an accurate discrimination of the
currently recognized Citrobacter species, as explained below.

The leuS gene presented the highest discriminatory power (av-
erage rate of similarity close to 88.5%, statistically supported) of
the genes included in the MLSA scheme proposed by Clermont et
al. (6). Therefore, the leuS-based phylogenetic tree allowed the
delineation of 12 distinct clusters (Fig. 1), each one supported by a
type strain from each Citrobacter species, corroborating the topol-
ogy obtained by the concatenated affiliation of the MLSA scheme
(6). These clusters were defined with a cutoff value of �97.5%,
supported by bootstrap values greater than 92% (Fig. 1).

The recN gene provided a greater resolution than leuS, present-
ing an average rate of similarity close to 85.6%. The recN tree
topology was overall congruent with that obtained for leuS se-
quences (Fig. 2), with the presence of the same 12 clusters ob-
served (cutoff values of �96.1% statistically supported by boot-
strap values greater than 94%) supported by sequences from the
available type strains. Interestingly, 3 new clusters were observed,
namely, Citrobacter sp. I (n � 10), Citrobacter sp. II (n � 1), and
Citrobacter sp. III (n � 3), which might correspond to isolates
from novel species (Fig. 2). Citrobacter sp. I presented a genetic

distance of 0.071 (bootstrap value of 97%) with its closest related
species C. freundii, whereas Citrobacter sp. II and Citrobacter sp. III
presented genetic distances of 0.081 (bootstrap value of 99%) and
0.073 (bootstrap value of 100%) with the closest related species C.
werkmanii and C. braakii, respectively. Further studies are in
progress to clearly establish the identity of the isolates included in
these clusters.

Phylogenetic trees constructed based on amino acid sequences
of LeuS and RecN showed that most nucleotide substitutions were
synonymous, despite resulting in a less clear delineation between
species due to the higher conservative character of amino acid
sequences (see Fig. S1 and S2 in the supplemental material).

According to our phylogenetic analysis, Citrobacter sp. isolates
characterized in this study were identified as C. braakii (n � 83
PFGE types), C. freundii (n � 22 PFGE types), and putatively two
novel species (Citrobacter sp. I [n � 107 PFGE types] or Citrobac-
ter sp. III [n � 11 PFGE types]) (see Table S1 in the supplemental
material).

Location and affiliation of qnrB genes. No plasmids were de-
tected in any of the Citrobacter isolates included in this study, and
in all cases, qnrB was chromosomally located and not transferable
by conjugation, further supporting the natural occurrence of this
gene in the chromosome of Citrobacter spp. (3–5). The qnrB gene
diversity found was in accordance with previous data (24, 25),
probably driven by the interplay of different selective events (nat-
ural recombination events and/or alternative selective forces) (1,
26–28).

The phylogenetic tree constructed based on qnrB gene se-
quences (Fig. 3A) revealed seven distinct clusters (I to VII) and
two branches comprising qnrB39 and a new qnrB (C. pasteurii
strain CIP 55-13T), supported by bootstraps of �92% and shar-
ing �92.83% identity between them. The corresponding affilia-
tion based on amino acid sequences of QnrB showed that most
nucleotide substitutions were synonymous, which resulted in a
similar tree topology (see Fig. S3 in the supplemental material),
with some exceptions consisting of genes showing a higher degree
of nucleotide divergence (qnrB31, qnrB53, or qnrB39), as observed
by other authors for blaCTX-M genes (29). Our phylogenetic anal-
ysis also showed that most of the qnrB genes, including those char-
acterized in this study, belonged to cluster I (n � 33, including
qnrB6, qnrB9, qnrB17, qnrB18, qnrB57, and qnrB58) or to cluster
III (n � 18, including qnrB10, qnrB56, qnrB59, and qnrB72),
whose diversification might be favored by their association with
particular host species and/or niches (see below). Few qnrB genes

FIG 3 Affiliation of qnrB genes and qnrB genetic platforms from Citrobacter spp. (A) Neighbor-joining tree based on 74 qnrB gene sequences (http://www.lahey
.org/qnrStudies/). Genetic distances were constructed using the Kimura 2-parameter model. Numbers at branch points indicate bootstrap percentages (1,000
replications) from NJ analysis, and only values greater than 80% are shown. Horizontal bar, genetic distance of 0.05. The nucleotide sequence of qnrD1 (GenBank
accession number FJ228229) was used as the outgroup. The qnrB genes for which the genetic environment was first characterized in this study are surrounded
by circles, whereas those available in the GenBank database are underlined. pl, plasmid-borne qnrB; cr, chromosomally located qnrB; *, qnrB location not
assessed. (B) Schematic representation of the genetic platforms (GP) carrying chromosomally located qnrB genes. Numbers between ORFs indicate the size of the
intergenic region in base pairs (bp). Vertical black bars represent IRR2. Genes identified in qnrB platforms are pspF (encoding a phage shock protein), orf2 (open
reading frame of a gene of unknown function), sdr (encoding a short-chain dehydrogenase/reductase protein), cinA (encoding competence/damage-inducible
domain protein), HP (encoding a hypothetical protein), ppp (encoding putative periplasmic protein), and/or sapA (encoding a protein involved in antimicrobial
peptide resistance). Genetic platforms have been deposited in the GenBank database under accession numbers KP339254 (qnrB6), KP339255 (qnrB9),
ADLG01000026.1 (qnrB9), CP007557 (qnrB12), KP339256 (qnrB10), KP339257 (qnrB17), KP339258 (qnrB18), ACDJ02000027.1 (qnrB18), JMUJ01000007.1
(qnrB28), JTBV01000001.1 (qnrB28), JAPA01000008.1 (qnrB30), JN173057 (qnrB35), JN173060 (qnrB38), NZ_AMPE01000004.1 (qnrB38),
NZ_AKTT01000018.1 (qnrB38), NZ_AOUE01000004.1 (qnrB38), JTBJ01000001.1 (qnrB38), JAPB01000002.1 (qnrB38), ABWL02000005.1 (qnrB39),
KP339259 (qnrB56), KP339260 (qnrB57), KP339261 (qnrB58), KP339262 (qnrB59), AB734055 (qnrB60), AB734053 (qnrB61), BBMW01000005.1 (qnrB69),
KP339263 (qnrB72), KP339264 (qnrB73), and CDHL01000019 (new qnrB from CIP 55-13T).
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were enclosed in cluster II (n � 2), IV (n � 4, including qnrB73),
V (n � 6), VI (n � 4), or VII (n � 5).

Detailed characterization of qnrB genetic platforms. Analysis
of the genetic surroundings of complete qnrB genes revealed eight
different qnrB genetic platforms (GP1 to GP8) (Fig. 3B). pspF
(encoding a phage shock protein) and sapA (encoding a protein
involved in antimicrobial peptide resistance) genes were consis-
tently found upstream and downstream of qnrB genes, respec-

tively. A high variability was observed mostly downstream of
qnrB, with differences in the presence of other genes (orf2, cinA,
HP, and/or ppp) and in the size and identity of intergenic regions
(IGRs) upstream and downstream of qnrB (Fig. 3B). Interestingly,
we observed conserved genetic platforms (gene content and se-
quence identity) for closely related qnrB genes (i.e., those grouped
in the same cluster), with an exception in cluster I, possibly ex-
plained by a recombination event (Fig. 3).

FIG 4 Nucleotide sequence alignment of intergenic regions upstream of chromosomally located qnrB. The �35 and �10 promoters are indicated by gray
shading, and the sequence of the LexA box is boxed. Sequences were aligned using ClustalW2 software (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The IGR-1
sequences represented in this figure are found in the GenBank database through the accession numbers KP339254 (qnrB6), KP339255 (qnrB9), KP339256
(qnrB10), CP007557 (qnrB12), KP339257 (qnrB17), KP339258 (qnrB18), JMUJ01000007.1 (qnrB28), JAPA01000008.1 (qnrB30), JN173057 (qnrB35), JN173060
(qnrB38), ABWL02000005.1 (qnrB39), KP339259 (qnrB56), KP339260 (qnrB57), KP339261 (qnrB58), KP339262 (qnrB59), AB734055 (qnrB60), AB734053
(qnrB61), BBMW01000005.1 (qnrB69), KP339263 (qnrB72), KP339264 (qnrB73), and CDHL01000019 (new qnrB from CIP 55-13T).
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As the characterization of IGRs was important to elucidate the
origin and evolutionary routes of other antibiotic resistance genes
(29, 30), we performed a detailed analysis of IGRs located in the
qnrB genetic environment. In fact, the intergenic regions up-
stream of qnrB (IGR-1) were closely related (in size and in nucle-
otide sequence) among qnrB alleles that were grouped in the same
cluster (identity, �96%) (Fig. 4), including those from cluster I
(see above), whereas they exhibited a loss of identity between clus-
ters (identity, 60% to 85%). This IGR-1 encompassed a LexA
box consensus sequence located upstream of qnrB and down-
stream �35 and �10 promoter sequences (Fig. 4), which might
directly regulate the expression of qnrB genes, as previously
suggested (31, 32).

Interestingly, taking into consideration the similarity of the
platforms carrying closely related qnrB genes and the identifica-
tion of Citrobacter isolates carrying each qnrB, an association was
found between each particular qnrB platform and specific Citro-
bacter species. The qnrB cluster I was associated with Citrobacter
sp. I, qnrB cluster III with C. braakii, qnrB cluster IV with Citro-
bacter sp. III, qnrB cluster V with C. freundii, qnrB cluster VII with
C. werkmanii, the branch comprising qnrB39 with Citrobacter sp.
II, and finally the branch comprising the new qnrB allele with C.
pasteurii. One unique exception was detected (an isolate carrying
qnrB56 from cluster III belonged to Citrobacter sp. I instead of C.
braakii), which may be explained by a genomic recombination
event. This relationship was not established for qnrB alleles in-
cluded in clusters II and VI due to the lack of genomic information
from the corresponding strains in available databases. Thus, our
findings provide additional data to support the acquisition of qnrB
between pspF and sapA by a progenitor of at least some Citrobacter
species prior to platform diversification. This hypothesis is further
supported by the observation that 89% of isolates from particular
species (C. freundii, C. braakii, C. werkmanii, C. pasteurii, Citro-
bacter sp. I, Citrobacter sp. II, and Citrobacter sp. III) carry a com-
plete or truncated qnrB gene, suggesting species adaptation to
variable ecological niches (see Table S2 in the supplemental ma-
terial).

Analysis of the genetic environment surrounding the trun-
cated qnrB genes (�qnrB) identified in this study revealed that the
end of the pspF-qnrB intergenic region (encompassing promoter
regions) and the first 360 bp of the qnrB gene were truncated
(pspF-[47/49 bp]-�qnrB-[643 bp]-sapA). This genetic environ-
ment was identical (97% to 100%) with those described in the
chromosome of other Citrobacter spp., including C. freundii strain
ATCC 8090T (GenBank accession numbers AB734052, AB734052,
and AB734054), which suggests pseudogenization or deletion
processes driven by insertion sequences (ISs) and eventually
prophages (33, 34).

In silico analysis of qnrB-carrying plasmid platforms. Our in
silico analysis revealed that some of the qnrB genetic platforms
identified in the chromosome of Citrobacter sp. I and C. braakii
have already been detected in plasmids of different Enterobacteri-
aceae species (Fig. 1). This is the case for the genetic platforms
containing qnrB2, qnrB1, or qnrB6 (qnrB cluster I), previously
identified in IncN, IncL/M, or IncFII plasmids in different Enter-
obacteriaceae species (GenBank accession numbers JX193301,
JX101693, EU715254, KF193607, JX424423, JF775514, GU723682,
and GU723680). Also, an identity was observed between the qnrB10
platform detected in the chromosome of C. braakii and that in IncR

plasmids (GenBank accession numbers EU052800, EU091084,
and CP006662).

Some possibilities of mobilization of qnrB and/or regions sur-
rounding qnrB were investigated. We did not find insertion se-
quences (ISs) or integrons in the qnrB genetic environment of the
isolates characterized in this study, but an inverted repeat region
(IRR; CTGAATTACTGGGT) was detected within the coding se-
quence of the pspF gene (including those associated with �qnrB).
The IRR is also found in the same position in the chromosome
of Citrobacter spp. (GenBank accession numbers AB734055,
JN173060, AB734055, and AB734054) and in plasmids of differ-
ent Enterobacteriaceae species (GenBank accession numbers
EU523120, JN995611, JX101693, GU295957, JX424423, JX298080,
and EU643617). This IRR is similar (0- to 5-bp mismatches) to
IRR2, which was previously implicated in the mobilization of
qnrB19 after recognition by ISEcp1C (35) and which might have
been involved in the mobilization of other qnrB genes to plasmids.
Nevertheless, different ISs (e.g., IS26, ISCR1, ISEcp1, IS3000,
IS6100) have been identified in the vicinity of diverse plasmid-
mediated qnrB genes deposited in the GenBank database, suggest-
ing the involvement of multiple mechanisms in the mobilization
and/or assembly of the plasmid-associated qnrB genetic sur-
roundings.

In conclusion, this study provides a comprehensive and exten-
sive analysis of all qnrB genes and surrounding genetic platforms
described to date and contributes to delineating the taxonomic
positions of the different species within the Citrobacter genus. Our
data corroborate Citrobacter as the origin of qnrB and further sug-
gest independent diversification trajectories of specific qnrB
genes/platforms in particular Citrobacter species (C. freundii, C.
braakii, C. werkmanii, C. pasteurii, and in three putatively new
Citrobacter species). Moreover, we unveil a potential route for
mobilization of qnrB genes to plasmids, potentiating the dissem-
ination of particular qnrB alleles in the clinical setting.
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