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ABSTRACT Recent structure-based computational studies suggest that, in contrast to the classical description of equilib-
rium fluctuations as wigglings and jigglings, proteins have access to well-defined spectra of collective motions, called intrinsic
dynamics, encoded by their structure under native state conditions. In particular, the global modes of motions (at the low fre-
quency end of the spectrum) are shown by multiple studies to be highly robust to minor differences in the structure or to detailed
interactions at the atomic level. These modes, encoded by the overall fold, usually define the mechanisms of interactions with
substrates. They can be estimated by low-resolution models such as the elastic network models (ENMs) exclusively based on
interresidue contact topology. The ability of ENMs to efficiently assess the global motions intrinsically favored by the overall fold
as well as the relevance of these predictions to the dominant changes in structure experimentally observed for a given protein in
the presence of different substrates suggest that the intrinsic dynamics plays a role in mediating protein-substrate interactions.
These observations underscore the functional significance of structure-encoded dynamics, or the importance of the predispo-
sition to favor functional global modes in the evolutionary selection of structures.
Proteins perform their function via chemical and physical
changes. Chemical changes include catalysis, posttransla-
tional modification, cross-link formation, and covalent
binding/unbinding of ligands. Physical changes involve
domain rearrangements, allosteric changes in conformations
(intramolecular), and protein-ligand interactions, multime-
rization, and formation of complexes and assemblies (inter-
molecular). The combination of chemical and physical (or
mechanical) properties leads to unique mechanochemical
behavior essential to biological activity (1). Some activities
require high precision (e.g., positioning of catalytic residues
in enzymes), whereas others rely on modular structures (or
substructures) that are adaptable to different functionalities,
e.g., binding different substrates by ubiquitin, or different
antigens by antibodies. Conformational flexibility accompa-
nied by sequence variations ensures in the latter case the
adaptation to binding different substrates, and to mediate
substrate specificity (2,3). Conformational flexibility that
is highly specific in its directionality is essential for allo-
steric responses, too. It is, usually, via a conformational
switch triggered by a first ligand binding (to an allosteric
site) that another (recruitment) site reconfigures to facilitate
its recognition by another ligand (4,5). How does the protein
strike the right balance between rigidity and flexibility?
How does it elicit the specific type of conformational
switch that leads the way to its biological function? How
does it ensure that those functional responses are robustly
maintained?
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Studies attempting to bridge between structure and func-
tion have led to the prominent view that the link between
structure and function is through dynamics (6). Dynamics
refers to changes in the chemical or physical state (reac-
tion dynamics or interaction dynamics, respectively). The
perspective of our study focuses on physical changes. We
consider the changes in conformation because of substrate
binding or allosteric interactions under physiological condi-
tions—the conditions under which biomolecules accomplish
their biological functions. We will submit the views that 1)
each protein fold has a unique dynamics, called intrinsic
dynamics, encoded by its structure under equilibrium condi-
tions; 2) current structure-based computational approaches
can provide a good first glimpse of proteins’ intrinsic
dynamics at the microscopic scale, broadly consistent with
experimental data, despite inherent limitations and simplifi-
cations in the models and methods; and 3) predicted dy-
namics has functional significance, and could be exploited
for design, engineering, and therapy purposes (e.g., for
exploring the druggability of target proteins). We conclude
by inviting attention to the significance of intrinsic dynamic
propensities in protein design and evolution; and we discuss
recent studies suggesting that structure-encoded dynamics is
evolutionary optimized and regulated by robustmechanisms.
Each protein has a unique intrinsic dynamics,
which may be quantitatively explored by
structure-based computational models and
methods

In principle, the dynamics of each protein is governed by the
forces experienced by its atoms as a result of intramolecular
http://dx.doi.org/10.1016/j.bpj.2015.06.004
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and intermolecular interactions; and to the extent that the
force field provides an adequate description of these
interaction potentials, the way the protein samples the
conformational space in molecular simulations is a deter-
ministic process (assuming Newtonian dynamics): it is fully
determined by the atomic positions, or the instantaneous
structure of the protein in the examined force field.
Although the highly nonlinear interactions and in particular
the aqueous environment introduce an apparent stochastic-
ity, a given protein in a given environment has in principle
its own dynamic character uniquely defined by the spatial
distribution of its atoms.

One method that found wide applications in character-
izing the unique dynamics of each protein near its native
state conditions is normal mode analysis (NMA) (7).
NMA applies to the close neighborhood of the native state
(energy minimum). It yields the spectrum of modes intrinsi-
cally accessible under equilibrium conditions. These vary
over a broad range, from global (modes that cooperatively
involve significant portions of the structure, if not the entire
structure, usually at the low-frequency end of the spectrum)
to local (at the high-frequency end). Each structure has a
unique spectrum of modes, also called collective motions.
Note that in a strict sense, the normal modes hold in the
infinitesimal proximity of the global energy minimum,
and as such, they provide insights into the intrinsic tendency
or predisposition of the protein to undergo particular
changes in structure near its native state.

An important feature of collective motions extracted by
NMA is the robustness of the computed global modes. It
has been widely established and confirmed by many studies
that global modes are insensitive to precise atomic coordi-
nates or detailed force field parameters, but they are robustly
defined by the overall fold/architecture of the biomolecular
system, or by the topology of interresidue contacts. This
fundamental concept, first shown in the pioneering coarse-
grained NMA of Tirion (8), prompted the introduction of
elastic network models (ENMs) for delineating the equilib-
rium dynamics of biomolecular systems, starting from the
Gaussian Network Model (GNM) (9,10), followed by
coarse-grained NMAwith ENM variants by Hinsen, Perahia,
and coworkers (11–13). A natural extension broadly used has
been the anisotropic network model (ANM) (14). The main
advantage of ANM analysis, like other ENM-NMA, is the
ability to efficiently yield a unique solution for the collective
motions of the examined structure without the need to
perform any simulations or energy minimization. This is
achieved by eigenvalue decomposition of a simple, closed-
form expression for the Hessian—a 3N � 3N matrix
composed of N � N submatrices of the following form (14):

Hij ¼ �gij

R2
ij

2
4

x2ij xijyij xijzij
xijyij y2ij yijzij
xijzij yijzij z2ij

3
5;
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for i s j, where xij, yij, zij are the x-, y-, and z-compo-
nents of the distance vector Rij between nodes i and j,
directly taken from the known (e.g., crystal) structure;
the spring constant gij ¼ g, if the distance Rij between
nodes i and j is shorter than a cutoff distance rc, and
zero otherwise; and Hii ¼ Sj Hij, where the summation
is over off diagonal elements. There have been various for-
malisms in the literature for choosing the spring constants,
ranging from this simplest formulation to detailed ap-
proaches customized per protein (15). In particular, the
use of a distance-dependent expression for g that helps
eliminate the parameter rc has been broadly adopted
(11,16). Most of these approaches usually emphasize the
need to use stiffer springs for covalently bonded pairs of
residues. However, the results from ENMs, and in partic-
ular the predicted global modes, have been consistently
shown to be robust to changes in spring function and
parameters (see, for example, (17)).

As a corollary to the deterministic nature of molecular
motions and interactions, molecular dynamics (MD) simu-
lations would, in principle, provide us with an accurate
description of biomolecular systems dynamics near their
equilibrium (native) coordinates—if the generated trajec-
tories are long enough to thoroughly sample the conforma-
tional space. Unfortunately, this is not the case, even with
the most advanced simulation hardware and software.
Remarkable successes have been made in developing MD
methodologies applicable to systems of the order of 108

atoms (18,19), or conducting millisecond-range simulations
(20). Yet, the former is restricted to the timescale of nano-
seconds, and the latter, to small proteins only. However,
MD convergence studies clearly show that it is impossible
to obtain statistically significant data from full atomic MD
simulations on the time evolution of many biological
processes of interest (21,22). In contrast, ENM offers
significant advantage for its computational efficiency and
easy usage with orders of magnitude less computational
expensive.

ENMs have their own limitations. They are coarse-
grained—they usually describe the protein at the level of
one-node-per-residue, each residue being identified by the
position of its Ca-atom. They do not take account of spe-
cific interactions: all interresidue interactions are repre-
sented by a uniform harmonic potential between residue
pairs connected in the network (which are within a cutoff
separation). The network connectivity, or the spatial distri-
bution of the nodes and springs, fully defines the dynamics
of the structure represented as an ENM. Third, ENMs
do not (usually) take account of the solvent or lipid
environment. Finally, by definition, they do not incorporate
nonlinear effects nor couplings between modes. The ENM
formalism assumes fluctuations about a single well. As
such, it may not be suitable for modeling the conforma-
tional dynamics of flexible objects such as loops that
have multiple populated states.
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Despite all limitations and simplifications,
structure-based computations can provide a
mechanistic description of the unique dynamics,
often consistent with experiments

Despite all these limitations, computational models and
methods are useful. The question often reduces to
deciding which particular properties, or processes, are
of interest, and choosing the proper model and methods
depending on the specific time and length windows
that are being examined. For example, if the goal is to
have a detailed atomic understanding of the mechanism
of extracellular (EC) gate opening by a given neuro-
transmitter transporter, one essentially examines by MD
simulations the interactions near the binding site, or near
the extracellular (EC) vestibule (Fig. 1, A–C) in the pres-
ence of the whole structure. Simulations up to 100s of
nanoseconds are sufficient to consistently view substrate
binding and EC gate closure or opening events in trans-
porters, for example, in the presence of explicit mem-
brane, water molecules, ions, and substrate molecules. In
addition to elucidating the behavior of individual proteins,
MD data permit us to make inferences on the common
mechanisms of function selected by family members that
share similar folds despite sequence dissimilarities, or
the distinctive mechanisms for binding different ligands.
The comparison of the behavior of dopamine transporter
ments. (D) Global structural differences between LeuT in OFo state before su

and inward-facing open (IFo) state (blue) after substrate release to the intracellul

simulations of OFo 4 IFo transition (28). TM1b-TM10, TM6a-TM10, and TM

extent of reconfiguration. The passage over an occluded state where the transpo

(25), is highlighted.
(DAT) and leucine transporter (LeuT), both sharing
the LeuT fold, clearly elucidates the equivalent role of
particular residues in EC (or intracellular, IC) gating
(Fig. 1, A–C).

On the other hand, if one seeks to gain insights into
the conformational space accessible on a global scale,
ENM-based analyses turn out to be exceptionally powerful.
For example, ENM-based computations help visualize the
transition between the outward-facing (OF) and inward-
facing (IF) states of neurotransmitter transporters (23,28)
(Fig. 1, D and E), consistent with the alternating access
mechanism (25,29–31). Other examples (from the past
5 years) are the transition between the open or closed con-
formers of enzymes in the respective ligand-free and
ligand-bound forms (32), the reconfiguration between the
alternative (e.g., R and T) functional forms of allosteric
proteins such as hemoglobin or GroEL (33–35) (Fig. 2),
the ATP-coupled conformational mechanics of motor pro-
teins such as myosin (34,36,37), kinesin, G-actin (38), or
F1-ATPase (34), the functional mechanisms of transporters
(39–41) including the above illustrated OF 4 IF transition
(Figs. 1, C and D, and 3), pore opening or allosteric gating
of ion channels (42–47), or the global structural changes or
concerted domain rearrangements that are stabilized upon
ligand/inhibitor binding by certain proteins (6,32,48–50)
(Fig. 4).
FIGURE 1 Local and global structural changes

captured by full-atomic and coarse-grained

structure-based computations. (A and B) Closure

of the extracellular (EC) gate after substrate bind-

ing, observed in MD simulations of leucine trans-

porter (LeuT) (23). LeuT is known to transport

alanine (most efficiently), leucine, and other amino

acids. Panel A displays its substrate binding site in

the outward-facing, open (OFo) crystal structure

(24), before substrate binding. The oppositely

charged residues R30 and D404, originally far

apart (A), closely interact in upon substrate binding

(leucine, blue space filling) (B), as illustrated for

the LeuT in substrate-bound outward-facing closed

(OFc) state (25). Likewise, the two aromatic resi-

dues, Y108-F253 closely associate to form another

layer further consolidating the EC gate (23). (C)

MD simulations of a LeuT structural homolog,

human dopamine transporter (hDAT, modeled after

the OFo dDAT structure (26)) show local changes

in conformation upon dopamine (DA) (light violet

space filling) binding (27), which closely resemble

those stabilized in substrate-bound LeuT. R85-

D476 and Y156-F320 serve as the EC gates in

this case. Transmembrane (TM) helical segments

TM1a-b, TM6a-b, and TM10 that line the binding

cavity, exhibit significant structural rearrange-

bstrate binding (dark orange), OFc state after substrate binding (yellow),

ar (IC) medium (24) (E) Global structural changes observed in ENM-based

1a-TM6b center-of-mass (COM) distances serve as metrics for probing the

rter is closed to both EC and IC media, consistent with experimental data

Biophysical Journal 109(6) 1101–1109



FIGURE 2 Allosteric changes in the bacterial

chaperonin complex GroEL/GroES structure are

facilitated by intrinsically accessible ANM

modes. GroEL consists of two heptameric rings,

which assume the states (33,51): T: ATP-free; R:

ATP-bound before substrate protein (SP) and co-

chaperonin (GroES) binding; R0: ATP-, SP-, and
GroES-bound; R00: ADP-, SP-, and GroES-bound.

(A) Crystal structures of GroEL in T/T (PDB:

1GR5) and R’’/R (PDB: 1GRU) states, side view

(top) and top view (bottom). Residues are color-

coded by experimental B-factor, as low (blue), in-

termediate (green), and high (red). (B) Projection

of GroEL monomers on the conformational sub-

space spanned by the principal modes PC1 and

PC2 derived from the principal component anal-

ysis (PCA) of an ensemble of 39 GroEL and

GroEL/GroES structures deposited to date in the

PDB. Computations are performed using ProDy

(52). Examples of resolved structures, including

the symmetric football-like GroEL:GroES2:ATP14
(53), are shown in inset. (C) Comparison of

the directions of PC1 (red arrows) deduced

from the PCA of the experimental dataset and

the first ANM mode (ANM1) (green arrows)

calculated using a single monomeric structure

(in the R0 state). ANM1 and PC1 yield a correla-

tion cosine of 0.8.
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Are computationally predicted changes in
structure meaningful? Are they functional?

Many studies in the past decade, including those cited
above, have drawn attention to the physical and biological
significance of computational approaches that utilize
ENMs or their variants, either in NMA per se, or in hybrid
methods in combination with simulation methods such as
MD or Monte Carlo (MC). Structural data on proteins
resolved in more than one functional state clearly support
the hypothesis that computationally predicted modes of mo-
tions strongly resemble to the differences between experi-
mentally resolved structures, and they furthermore support
the view that computations based on a single structure
may provide an accurate, albeit low-resolution, first descrip-
tion of the conformational space accessible to that structure
under native state conditions.

One might argue, however, that ENMs (or NMA) predict
a multitude of modes, and it may be hard to assess which
ones are functionally relevant; and furthermore, given the
fact that the modes represent a complete orthonormal basis
set of 3N-dimensional directional vectors, there may always
Biophysical Journal 109(6) 1101–1109
be among them one or more that are relevant to the struc-
tural difference d3N ¼ {RS1 – RS2}3N between the selected
substates S1 and S2 of the same protein stabilized under
different conditions. We present two major observations
that refute this argument.

First, the collective modes that usually exhibit good
agreement with experiments are consistently among the
lowest frequency modes (6). They are the softest or the
most probable modes from energetic point of view (note
that the mode eigenvalue represents the curvature of
the quadratic energy change along that mode coordinate,
and provides a metric for the particular mode’s pre-
vious probability). The experimentally observed structural
change d3N is usually observed to yield a correlation cosine
of ~0.6 or higher with one of the soft modes uk computed
for S1 or S2 (e.g., 1% k% 10, with mode index k¼ 1 refer-
ring to the softest mode) (6). Furthermore, a small subset
(m ~ tens) of softest modes usually generates a cumulative
overlap Co(m) ¼ [Sk cos2(d3N, uk)]

1/2 (1 % k % m) of
0.9 or higher. For example, the change d3N between the
unbound and inhibitor-bound structures of HIV-1 reverse



FIGURE 3 Correlation between collective mo-

tions predicted by ANM and experimentally

observed structural changes in LeuT. (A) Projection

of the 50 crystal structures of LeuT monomer onto

the space of conformations spanned by the

principal components PC1 and PC2 shows three

clusters, which broadly correspond to the crystallo-

graphically resolved LeuT structures in the OFo,

OFc, and IFo states. (B) Close correspondence be-

tween the structural variations along PC1 and the

structural changes along ANM2. The close agree-

ment between PC1 and ANM2 is further illustrated

in (C). Here the distribution of square displace-

ments of residues along the dominant structural

difference (PC1; red) is compared with the pre-

dicted soft mode (ANM2; green). (D) Comparison

of residue displacements along PC1 (red arrows)

and ANM2 (green arrows). We used ProDy (52)

for analysis and visualization.
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transcriptase (RT) (Fig. 4 A), yields a correlation of 0.79
with the second-softest mode (ANM2; see Movie S1 in
the Supporting Material) predicted for the RT complexed
with nevirapine (56), and a Co(m) ¼ 0.9 for m ¼ 6
(Fig. 4, B and C).

To assess the significance of these numbers, we consider
the relationship Sk cos

2(d3N, uk) ¼ 1, where the summation
is over all modes uk, 1 % k % 3N-6. This equality implies
that the average contribution of a random mode ui would be
<cos2(d3N, ui)> ¼ (3N-6)-1. The correlation of 0.79 be-
tween u2 and d3N for HIV-1 RT, for example, indicates an
enhancement by a factor of f > 0.79/(3N-6)-1/2 ¼ 42 (using
Nz 950 for RT). Therefore, the observed correlation in RT
or many other applications (6) between the easy modes of
motion that are intrinsically accessible and the structural
changes relevant to function (or dysfunction), is far from
random: it shows the predisposition of the protein to selec-
tively undergo those conformational changes. This also sig-
nals the evolution of the structure to favor these changes, as
will be discussed below.

Secondly, we consider an even more stringent test using
the complete ensemble of structures resolved (for the
same protein) under different conditions/states. The PDB
contains several such examples, i.e., proteins for which hun-
dreds of structures have been resolved. Typical examples are
thoroughly studied drug targets resolved in the presence of
different agonists/antagonists. The idea is to analyze the
space of conformations experimentally detected for each
of these proteins and compare the dominant changes in
structure observed in this dataset with those predicted by
the ANM. This is accomplished by the following three-
step analysis (32,57,58).

1) We first examine the principal structural differences be-
tween themembers of the ensemble of structures resolved
for a given protein. This is achieved by principal compo-
nent analysis (PCA) of aligned structures (52,58); Figs. 3
A and 4 D display such ensembles of structures resolved
for LeuT and RT, respectively (50 and 201 respective
structures each represented by a dot), projected onto the
subspace spanned by the first two principal components
PC1 and PC2. The structures that cluster in different
regions are characteristic of different substates: out-
ward-facing open (OFo), outward-facing closed (OFc),
and inward-facing open (IFo) for LeuT (see also Fig. 1),
or complexes with inhibitors (blue dots), with DNA/
RNA (green), or unliganded (red) for RT.

2) We select a representative structure from the ensemble
(e.g., one centrally located in a given cluster) and
perform an ANM analysis to determine the dominant
modes (ANM1, ANM2, etc.) accessible to that structure.
The goal is to see if the transition into (or motion toward)
other functional structures (or clusters) is enabled by mo-
tions along one or more soft modes.
Biophysical Journal 109(6) 1101–1109



FIGURE 4 Comparison of theoretical predic-

tions and experimental observations for HIV-1

RT heterodimer. (A) Difference d3N between an

unliganded (1HQE) (54) and NNRTI-bound

(1VRT) (56) structures. Major structural difference

occurs at the fingers and thumb subdomains of the

subunit p66. The green dashed line indicates the

approximate boundary between p66 and p51

subunits. (B) Correlation cosines (blue bars) be-

tween d3N and soft ANM modes (uk, for k % 20)

computed for 1VRT. The cumulative overlap is

shown by the blue line. The red line shows the cu-

mulative overlap expected in the absence of any

orientational correlation between d3N and ANM

modes. (C) Comparison of the residue square-

displacement profiles based on experiments (d3N,

blue line) and computations (ANM2, red line).

(D) Projection of the ensemble of 7 unliganded

(red), 164 inhibitor bound (blue), 29 DNA/RNA

bound (green), and 1 ATP-bound (black) RT struc-

tures in the PDB onto the subspace of conforma-

tions spanned by the two principal components of

structural differences, PC1 and PC2. (E) Close

agreement between the structural changes along

PC1 (experiments) and ANM2 (theory; predicted

for the unliganded RT (1RTJ) (55)). (F) Compari-

son of the displacements along PC1 (blue arrows)

and ANM2 (red arrows). The p66 and p51 subunits

are colored yellow and green, respectively. Hinge

residues, E138 (p51; red space filling) and K101

(p66, blue space filling), at the intersubunit inter-

face are highlighted by the orange circle.

1106 Bahar et al.
3) We compare the principal components PC1, PC2, etc.,
deduced from experimental data and the dominant
modes ANM1, ANM2, etc., predicted by the ANM.
The former gives the structural variations detected to
date; and the latter, the structural changes most likely
to occur, based on ANM predictions. Fig. 3, B–D, shows
that ANM2 computed for LeuT OFo structure correlates
strongly with PC1, in support of the intrinsic ability of
the OFo LeuT to reconfigure into OFc, and then into
IFo. Likewise ANM calculations for unliganded RT
show the close correspondence between PC1 and
ANM2 (Fig. 4, E and F).

The benchmarking against large sets of structures pro-
vides solid, unambiguous evidence for the relevance of the
ENM-predicted motions, based on a single resolved struc-
ture, to cooperative changes in conformations that proteins
and their complexes and assemblies potentially undergo,
Biophysical Journal 109(6) 1101–1109
while maintaining their native fold under physiological
conditions. These motions are enabled by hinge sites, or
key interactions at the hinge regions, usually at the interface
between domains. Not surprisingly, drug-binding sites coin-
cide with the global hinge sites in many proteins.
Future directions: bridging structural dynamics
and sequence evolution

Computational studies illustrated above highlight the ability
of proteins to sample a continuum of structures, rather than
discrete substates, while maintaining their native fold.
Clearly, different extents of deformations (usually along
one of the principal modes of reconfiguration) are stabilized
depending on the identity of the substrate. The ability to
adapt to different extents of deformations is indeed a
requirement for optimizing the interactions with substrates,



FIGURE 5 Correlation between residue conservation and conforma-

tional mobility. (A) Results from statistical analysis of the conservation

propensities and intrinsic mobilities of amino acids. Both properties are

expressed as enrichments relative to average behavior of all residues over

a representative set of proteins (see Liu and Bahar (3) for details). Conser-

vation is based on Shannon entropy, lower entropy indicating higher

conservation; and mobility refers to ANM-predicted root-mean-square fluc-

tuations in residue position. (B) Color-coded ribbon diagrams for human

uracil-DNA glycosylase, illustrating the close similarity between Shannon

entropy (left) and mobility (right) profiles of residues.
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endogenous or exogenous as they accomplish their activ-
ities. These observations bring us to the significance of
intrinsic dynamics in evolution.

The question is: Does the sequence evolve to favor the
structural dynamics that lends itself to function? A large
body of studies is directed at interpreting evolutionary prop-
erties in the light of molecular structure and stability. For
example, core residues tend to be conserved as they play a
key role in stabilizing the fold; local packing density
appears to be a major determinant of protein sequence
evolution rate (59). Amino acid positions at secondary struc-
tures are usually maintained during evolution, whereas
disordered regions are less conserved per amino acid posi-
tion—although the composition of amino acids at disor-
dered regions, as well as the length and position of those
regions tend to be conserved (60). In addition, a multitude
of methods have been developed for deriving information
on coevolving pairs (or correlated mutations), and making
inferences on structure based on the hypothesis that those
pairs of amino acids that exhibit strong coevolutionary sig-
nals are likely to make contacts in the three-dimensional
structure (61–65). A recent study (66) provides an extensive
comparison of the predictive ability of several such methods
for detecting coevolutionary patterns, which also confirms
the utility of such methods for inferring structural contacts.
Although the relationship of structure and evolution is
widely recognized, there are now increasing numbers of
studies drawing attention to the functional significance
of dynamics and exploring the role of structural dynamics,
or structural flexibility in enabling functional events and
in evolution (2,3,67–70). The reasoning behind these studies
is simple: if a major incentive for sequence selection (or
mutation) is to enable (or restore) function, and if the
intrinsic dynamics is key to accomplishing functional
changes in structure, evolutionary selection is shaped by
not only the stability of the structure, but also by its inherent
flexibility. The mechanical properties of the structure are
indeed as important as their chemical properties—hence
the term mechanochemical entities for biomolecular sys-
tems. It is widely established that chemically active sites
(e.g., catalytic sites) are conserved. Why would it not be
the same for the mechanically key sites, e.g., for residues
enabling hinge-bending movements between cooperative
domain rearrangements? Several studies now show that it
is not sufficient, nor adequate, to design extremely stable
structures if the goal is to mimic/capture biological func-
tions; on the contrary, marginal stability, or intrinsic flexi-
bility, or elasticity, is key to functionality.

A simple comparison of the mobility scale of amino acids
with their evolutionary conservation propensities yields a
correlation coefficient of 0.77 (Fig. 5 A). Residues that
exhibit large fluctuations in their coordinates, or those en-
joying high mobility under native state conditions, are
sequentially variable, whereas those highly constrained
(low mobility) are conserved. Note that mobility here refers
to the displacements of residues, rather than their flexibility.
Not all flexible residues are highly mobile. For example,
glycine is very flexible and it is often located at hinge
regions; the hinge regions are usually fixed in space. So,
an average over all glycines (in a set of proteins) yields an
intermediate mobility. Likewise, residues that tend to be
buried in the core exhibit low mobilities, whereas charged
residues appear to have high mobilities. The color-coded
ribbon diagrams in Fig. 5 B illustrate the close similarity
between the conservation (left) and mobility (right) profiles
of residues in an enzyme. Although the relation between
sequence conservation and structural mobility may contain
other effects (e.g., surface residues tend to be more mobile,
in contrast to those buried in the hydrophobic core), the
existence of an (anti)correlation between conservation and
intrinsic flexibility cannot be overlooked. Our systematic
study of 34 families of enzymes showed that the correlations
become even more pronounced when focusing on the
mobilities in the global modes (3). In a series of studies,
the dynamic flexibility index determined from ENMs as a
measure of mobility is used to understand the sequence evo-
lution and functional enhancement (52,71–73).

Further analysis of coevolving residues shows that many
such pairs do indeed make contacts in the three-dimensional
structure. A systematic analysis of coevolving pairs showed
Biophysical Journal 109(6) 1101–1109
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that a large fraction of coevolved residues are located close
to each other (74). In particular, 80% of charge compensa-
tory substitutions are within very close proximity (74), if
not making direct contacts. However, calculations indicate
other correlated pairs, which occupy distant positions in
the structure. It remains to be systematically examined
whether those correlated mutations originate from allosteric
effects, whether they could be rationalized on the basis of
long-range couplings characteristic of ENM global modes
of motions. Systematic studies of allosteric proteins may
shed light to the possible functional origin of those coevolv-
ing distal sites.
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